TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Hermann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - VAAM- Annual Conference 2019 of the Association for General and Applied Microbiology CY - Mainz, Germany DA - 17.03.2019 KW - HI-Tension KW - MIC KW - Methanogens KW - Corrosion KW - Sulfate reducing bacteria PY - 2019 AN - OPUS4-47739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC.zeige weniger T2 - Dechema CY - Berlin, Germany DA - 09.04.2019 KW - Corrosion KW - Corrosion products KW - Methanogens KW - Sulfate reducing bacteria KW - Flow-system KW - Environmental simulation PY - 2019 AN - OPUS4-47853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Schreiber, Frank T1 - Investigating the effects of biocides and corrosion inhibitors on corrosive methanogens N2 - Microbiologically influenced corrosion (MIC) is the deterioration of metals due to the metabolic activities of microorganisms. Microorganisms can take electrons directly from the metal surface (EMIC) thereby causing corrosion. Well known culprits of EMIC are: sulfate-reducing bacteria (SRB), acetogens and methanogens. T2 - AMiCI WG2 workshop Berlin CY - Berlin, Germany DA - 7.7.2018 KW - Corrosion KW - Biocides KW - Methanogens PY - 2018 AN - OPUS4-45734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Protasov, E A1 - Noah, J O A1 - Kästle Silva, J O A1 - Mies, U S A1 - Hervé, V A1 - Dietrich, C A1 - Lang, K A1 - Mikulski, L A1 - Platt, K A1 - Poehlein, A A1 - Köhler-Ramm, T A1 - Miambi, E A1 - Boga, H I A1 - Feldewert, C A1 - Ngugi, G K A1 - Plarre, Rüdiger A1 - Sillam-Dussès, D A1 - Šobotník, J A1 - Daniel, R A1 - Brune, A T1 - Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods N2 - Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to nonmethanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods,suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological nichesprovided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages. KW - Nitrososphaerales KW - Archaea KW - Methanogens KW - Gut microbiota KW - Termites KW - Cockroaches KW - Millipedes KW - Bathyarchaeia PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588230 DO - https://doi.org/10.3389/fmicb.2023.1281628 SN - 1664-302X VL - 14 SP - 1 EP - 21 PB - Frontiers AN - OPUS4-58823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -