TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver A1 - Stege, H. A1 - Oesterle, D. A1 - Bretz, S. A1 - Geiger, G. T1 - Disclosing a new aspect in modern European art: multidisciplinary analysis of modern reverse paintings on glass (1905-1955) N2 - The technique of painting on the reverse side of a glass panel was rediscovered by German artists at the beginning of the 20th century. They appreciated the impressive gloss, luminosity, and depth of colours in this genre. Compared to stained glass, the distinctive properties of this technique are: (1) the paint is applied “cold”, hence, it doesn’t involve a firing step, (2) reverse paintings on glass are framed and always viewed in reflected light and (3) the reverse paint stratigraphy is different from canvas paintings, starting with the front most layer and ending with the backing layer. In 1908 several artists, including Gabriele Münter, Wassily Kandinsky, Heinrich Campendonk, August Macke and Franz Marc of the “Der Blaue Reiter” (the Blue Rider) collective took an interest in this technique and started to share their interest with other colleagues in Europe. Our pioneering project is tracing this transfer of knowledge by a multidisciplinary approach in terms of art history, paint technology and material science. More than 100 artists and >1000 reverse paintings on glass were identified during the project. This high number of objects clearly points out that this technique was by far more important for modern art than previously assumed. In-situ, non-invasive measurements (XRF, Raman, VIS, DRIFTS) on a well-considered selection of 67 paintings reveal the broad palette of colorants ranging from traditional to experimental. Special attention is paid to the impact of synthetic organic pigments (SOP) in artists palette. Demonstrative examples by W. Kandinsky, L. G. Buchheim and F. Jespers are used to discuss analytical challenges and highlights. T2 - Art & Archaeology 2018 CY - Jerusalem, Israel DA - 09.12.2018 KW - Reverse glass painting KW - Spectroscopy KW - In-situ analysis PY - 2018 AN - OPUS4-47042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schütz, R. A1 - Maragh, J. A1 - Weaver, J. A1 - Rabin, Ira A1 - Masic, A. T1 - The Temple Scroll: Reconstructing an ancient manufacturing practice N2 - The miraculously preserved 2000-year-old Dead Sea Scrolls, ancient texts of invaluable historical significance, were discovered in the mid-20th century in the caves of the Judean desert. The texts were mainly written on parchment and exhibit vast diversity in their states of preservation. One particular scroll, the 8-m-long Temple Scroll is especially notable because of its exceptional thinness and bright ivory color. The parchment has a layered structure, consisting of a collagenous base material and an atypical inorganic overlayer. We analyzed the chemistry of the inorganic layer using x-ray and Raman spectroscopies and discovered a variety of evaporitic sulfate salts. This points toward a unique ancient production technology in which the parchment was modified through the addition of the inorganic layer as a writing surface. Furthermore, understanding the properties of these minerals is particularly critical for the development of suitable conservation methods for the preservation of these invaluable historical documents. KW - Temple Scroll KW - Dead Sea Scrolls PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-495314 DO - https://doi.org/10.1126/sciadv.aaw7494 VL - 5 IS - 9 SP - 1 EP - 9 PB - AAAS AN - OPUS4-49531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schuehle, Florian A1 - Richter, Matthias T1 - Quality assured uptake rates for passive sampling of indoor air VOCs N2 - Generation of experimental uptake rates (UR) for > 70 VOCs (7d /100 μg m-3) Application in German Environmental Survey – VOC exposure assessment Assurance of transparency concerning UR generation and uncertainty creates basis for decision making and comparability of measurement results. Exemplarily the uncertainty u(UR) of toluene UR was modelled and determined statistically with own laboratory data (relative standard deviation of actively sampled test gas atmosphere – RSDa and n = 5 exposed passive samplers – RSDp) in line with EN 838 as well as from variation of literature UR – RSD UR,lit. T2 - Airmon 2022, 10th International Symposium on modern principles of air monitoring and biomonitoring CY - Bristol, UK DA - 06.11.2022 KW - IAQ KW - VOC KW - Diffusive sampling KW - Uptake rate PY - 2022 AN - OPUS4-56583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rimon, Hasia A1 - Rabin, Ira ED - Fuller, R.E. ED - Lange, A. T1 - Conservation of the Dead Sea Scrolls N2 - The current state of preservation of the DSS results from the synergetic effect of various factors such as great age, post-discovery treatments, poor storage conditions, environmental influences and exhibitions. With rare exceptions, neither the initial state nor a list of the treatments performed on each DSS fragment is known. Reconstruction of the individual fragment history will have to rely upon advanced analytical techniques to identify the treatments and their effects. Management of the scrolls may be divided roughly into three periods: a) the scholarly archiving period, from 1948 to the mid-1960s; b) first attempts at conservation, from the mid-1960s to late-1980s; c) Israel Antiquities Authority Scrolls Lab, from 1991 onwards. KW - Preservation KW - Dead Sea Scrolls PY - 2023 SN - 2468-3027 VL - 3D SP - 102 EP - 105 PB - Brill CY - Leiden / Boston AN - OPUS4-58910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Grimmer, Christoph A1 - Musyanovych, A. A1 - Strzelczyk, Rebecca Skadi A1 - Horn, Wolfgang T1 - Emission reference materials for indoor air measurements N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. VOC in combination may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. Emission concentrations can become further elevated in new or refurbished buildings where the rate of air exchange with fresh ambient air may be limited due to improved energy saving aspects. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use (building) materials proved to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable emission reference materials (ERM). For the emission test chamber procedure according to EN 16516, no artificial ERM is commercially available. The EU-funded EMPIR project MetrIAQ aims to fill this gap by developing new and improved ERMs. The goal is to obtain a material with a reproducible and temporally constant compound release (less than 10 % variability over 14 days). Two approaches were tested: the impregnation of porous materials with VOC, and the encapsulation of VOC in polymer microcapsules. Impregnation is performed with help of an autoclave and supercritical CO2. The encapsulation is done by interfacial polymerisation on VOC droplets. For both approaches, synthesis and/or material parameters were varied to obtain an optimal ERM. Findings about the optimisation of ERM generation, as well as performance of the best emission reference materials, will be presented. T2 - GAS Analysis 2024 CY - Paris, France DA - 30.01.2024 KW - Emission reference materials KW - Materials emissions test KW - VOC KW - Indoor air quality PY - 2024 AN - OPUS4-59506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Grimmer, Christoph A1 - de Krom, I. A1 - Maes, F. A1 - Lecuna, M. A1 - Musyanovych, A. A1 - Strzelczyk, Rebecca Skadi A1 - Horn, Wolfgang T1 - Metrological sound reference products for quality assurance and quality control measures in material emissions testing N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. Different VOC combinations may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use materials proven to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability and metrological traceability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable reference materials. The emission test chamber procedure according to EN 16516 comprises several steps from sample preparation to sampling of test chamber air and chromatographic analysis. Quality assurance and quality control (QA/QC) must therefore be ensured. Currently, there is a lack of suitable reference products containing components relevant for the health-related evaluation of building products. The EU-funded EMPIR project 20NRM04 MetrIAQ (Metrology for the determination of emissions of dangerous substances from building materials into indoor air) aims to develop 1) gaseous primary reference materials (gPRM), which are used for the certification of gaseous (certified) reference materials (gCRM) and 2) emission reference materials (ERM). Most commercial gas standards of indoor-relevant compounds are not certified due to the lack of primary reference materials to which the project aims to contribute. The gPRM under development is a gas-phase standard containing trace levels of VOCs in nitrogen or air from the check standard according to EN 16516 (n-hexane, methyl isobutyl ketone, toluene, butyl acetate, cyclohexanone, o-xylene, phenol, 1,3,5-trimethylbenzene) with a target uncertainty of 5 %. The gPRM can be sampled into sorbent tubes to obtain transfer standards in the form of gCRM. The well characterised ERM represents a sample of a test specimen, e.g. building material, that is loaded into the emission test chamber for a period of several days and is used to evaluate the whole emission test chamber procedure. It shall have a reproducible and temporally constant compound release of less than 10 % variability over 14 days. Different approaches for retarded VOC release, such as the encapsulation of pure compounds and the impregnation of porous materials, are being tested to reach this aim. Furthermore, the design of the ERM is accompanied by the development of a numerical model for the prediction of the emissions for each of the target VOCs. The current progress of the work on both materials will be presented. T2 - CIM 2023 - 21st International Metrology Congress CY - Lyon, France DA - 07.03.2023 KW - Indoor air quality KW - VOC KW - Materials emissions testing KW - Emission reference material KW - Quality assurance/quality control PY - 2023 AN - OPUS4-57142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahrig, M. A1 - Torge, Manfred T1 - 3D inspection of the restoration and conservation of stained glass windows using high resolution structured light scanning N2 - The initial focus of this research was on the development of a general workflow for the documentation and monitoring of historical stained glass windows using structured light scanning. Therefore windows from different churches, time periods and with different corrosion and damage phenomena were scanned before and after conservation measures. To evaluate the execution of the restoration measures the data was compared using 3D inspection software to examine the differences in geometry between the two scans. Various problems had to be solved, for example, how to deal with heavily reflective surfaces and the extreme contrast between light and dark surfaces, as seen in the borders between ‘Schwarzlot’ painting and plain glass. The application of materials for matting the surfaces, such as Cyclododecane spray, was impossible due to the high accuracy of the surface measurement required for 3D inspection. Regarding the contrast differences of the surfaces, the creation of exposure fusions and the use of polarization filters to reduce reflections were tested. In addition to the general problems encountered when recording translucent surfaces, the historical glasses caused additional problems in calculating surface comparisons. For example, the windows have to be moved and turned around several times, both during the conservation process and while scanning, causing deformations of the geometry due to the flexible lead rods allowing a certain degree of movement. T2 - 27th CIPA International Symposium “Documenting the past for a better future” CY - Ávila, Spain DA - 01.09.2019 KW - Stained glass KW - Restoration and conservation KW - Structured light scanning KW - 3D inspection KW - Glass scanning PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491286 DO - https://doi.org/10.5194/isprs-archives-XLII-2-W15-965-2019 VL - XLII-2/W15 SP - 965 EP - 972 PB - International Society of Photogrammetry and Remote Sensing (ISPRS) CY - Hannover AN - OPUS4-49128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahrig, M. A1 - Torge, Manfred T1 - 3D Inspection of the restoration and conservation of stained glass N2 - The initial focus of this research was on the development of a general workflow for the documentation and monitoring of historical stained glass windows using structured light scanning. Therefore windows from different churches, time periods and with different corrosion and damage phenomena were scanned before and after conservation measures. T2 - 27th CIPA International Symposium “Documenting the past for a better future” CY - Ávila, Spain DA - 01.09.2019 KW - Stained glass KW - Restoration and conservation KW - Structured light scanning KW - 3D inspection KW - Glass scanning PY - 2019 AN - OPUS4-49600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Krutzsch, M. T1 - The Writing Surface Papyrus and its Materials N2 - Our experimental knowledge about the inks of antiquity and late antiquity rarely goes beyond their visual description. In rare cases, inks typology has been determined by means of microscopy and reflectography, i.e. using their physical and optical properties, respectively. Since carbon, plant and iron gall inks belong to different classes of compounds they could be easily distinguished had only pure inks been used. Even these crude observations suggest that the inks used differed greatly in their composition. Reconstruction of the ink recipes with the help of advanced non-destructive analytical techniques could serve as a powerful accessory for in the studies of ancient papyri. The proposed paper will present a short survey of the methods of material analysis and the challenges offered by ancient inks. The examples of the ink studies from the collections of the Israel Museum in Jerusalem and Egyptian Museum in Berlin will conclude the paper. T2 - 28th Congress of Papyrology CY - Barcelona, Spain DA - 01.08.2016 KW - Papyrus KW - Ink PY - 2019 SP - 773 EP - 781 AN - OPUS4-49532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabin, Ira A1 - Kohl, Anka A1 - Bicchieri, M. A1 - Sodo, A. A1 - Piantanida, G. T1 - New results in Dead Sea Scrolls non-destructive characterisation. Evidence of different parchment manufacture in the fragments fromReed collection N2 - This work presents the non-destructive spectroscopic characterisation of original Dead Sea Scrolls (DSS)parchment fragments from Ronald Reed collection. The fragments are of paramount importance becausethey have never been subjected to any treatment of preservation and restoration, this allows to investi-gate the manufacturing method of real original Jewish parchments. The manufacture of “sacred” Jewishparchments, in fact, is traditionally supposed to use a superficial tannin treatment. To study the DSS frag-ments, it was necessary both to analyse mock-up samples, especially manufactured in order to reproduceancient Oriental Jewish ritual parchments, and to compare the results with those obtained in the analysisof modern and ancient Western Jewish ritual parchments, in order to test the effectiveness of the selectedspectroscopic techniques. Traditionally, the main difference between Oriental and Western traditionalparchment preparation consisted in the dehairing method: enzymatic for Oriental and lime-based forWestern. Moreover, a finishing treatment with tannin was supposed to be applied on ritual Jewish parch-ments. The need of reference samples derives from the knowledge that each parchment preparation,treatment and degradation can induce structural modifications that affect the spectral features. FourierTransform Infrared Spectroscopy by Attenuated Total Reflection (ATR-FTIR), FT-Raman and m-Ramanwere used in this study. The experimental results allowed us to recognise, with different sensitivity, thepresence of tannin by using m-Raman and IR spectroscopies and to prove that not all the archaeologicalsamples were manufactured in the same way with vegetal extracts. Many salts (tschermigite, dolomite,calcite, gypsum and iron carbonate) were found on the surface of DSS fragments. They can derive fromthe degradation processes and storage environment before the discovery or from the manufacture. More-over, the different sensitivities and instrumental characteristics of the used techniques permitted us toestablish an analytical protocol, useful for further studies of similar materials. KW - ATR-FTIR KW - Tannins KW - Dead Sea Scrolls KW - Raman KW - FT-Raman PY - 2018 DO - https://doi.org/10.1016/j.culher.2018.01.014 VL - 32 SP - 22 EP - 29 PB - Elsevier Masson SAS AN - OPUS4-49533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Kaska, K. ED - Uhlirz, T1 - Why Do We Need to Study Inks? N2 - While studying the socio-geographic history of inks, division 4.5 (Analysis of cultural artefacts and assets) of the BAM (Bundesanstalt für Materialforschung und -prüfung) in Berlin together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink, and a subsequent in-depth analysis using several spectroscopic techniques. Using this protocol, scientists can assist scholars in addressing a rather broad range of historical questions that cannot be answered unequivocally through scholarly research alone. Among these are investigations on collaboration between scribes and scriptoria, on the usage and annotation of manuscripts and on their path through time and space in general. This research can thus help to reconstruct the circumstances of the production of written heritage as well as their history and transmission. To facilitate the dialogue between the scholars and the scientists a simple optical tool was developed to allow the scholars to perform preliminary ink analysis required for formulation of the question that in turn can be answered by scientific in-depth investigations. In this paper, ink types and their identification method is accompanied by examples of the recent work conducted on parchment manuscripts in the Austrian National Library. T2 - Congress Visual Heritage, CHNT 23 CY - Vienna, Austria DA - 15.12.2018 KW - Ink KW - Parchment PY - 2020 SP - 1.1 EP - 1.9 CY - Wien AN - OPUS4-50242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira A1 - Hahn, Oliver ED - Michel, C. ED - Friedrich, M. T1 - Detection of Fakes: The Merits and Limits of Non-Invasive Materials Analysis N2 - This paper addresses the sensitive issue of authenticating unprovenanced manuscripts of high monetary value to certify they are genuine. Over the last decade, the popularity of material studies of manuscripts using non-destructive testing (NDT) has increased enormously. These studies are held in especially high esteem in the case of suspicious writings due to the methodological rigour they are reputed to contribute to debate. We would like to stress that materials analysis alone cannot prove that an object is genuine. Unfortunately, audiences with a humanities background often tend to disregard the technical details and treat any published interpretation of instrumental analysis as an objective finding. Four examples are outlined here to illustrate what questionable contributions the natural sciences can make in describing manuscripts that have actually been forged. KW - Fakes KW - Non-invasive analysis KW - Limitations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517202 SN - 978-3-11-071422-7 DO - https://doi.org/10.1515/9783110714333 SN - 2365-9696 VL - 20 SP - 281 EP - 290 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-51720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira A1 - Caldararo, N. A1 - Rimon, H. ED - Russel, R.E. ED - Lange, A. T1 - The Role of DNA Analysis in the Study of the Biblical Manuscripts N2 - Interest in the type of skin used in scriptural materials and preparation methods increased from the nineteenth into the twentieth century. This was due partly to the number of newly discovered fragments and to the invention of new instruments and scientific procedures to identify animal skins and produce qualitative means to demonstrate specific preparation reagents and techniques. The invention of various means of analyzing the DNA of organic materials brought about a revolution in archaeology and in conservation. Difficulties in overcoming contamination of archaeological samples resulted in a number of controversies but also produced advances and improvement in the techniques of ancient DNA analysis and interpretation of results. KW - DNA KW - Dead Sea Scrolls KW - Parchment PY - 2023 SN - 2468-3027 VL - 3D SP - 120 EP - 123 PB - Brill CY - Leiden / Boston AN - OPUS4-58914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira ED - Russel, R.E. ED - Lange, A. T1 - Non-invasive Analytic Tools in Studies of Manuscripts N2 - Physico-chemical analyses of writing materials offer insight into various questions associated with historical, cultural, and conservational aspects of manuscript studies. The catalogue of questions that can be addressed with these methods includes authenticity, dating, the attribution of various parts of the text to different scribes and the relation between the primary and secondary texts. Similarly, preservation of the manuscripts requires knowledge of the composition of the original materials versus old repairs, identification of damage, as well as recognition of natural aging and degradation processes. The material sciences can contribute data about the chemical compositions of the writing materials, elucidation of the techniques of their production and the absolute age of organic components, as well as characterization of corrosion effects, evaluation of conservation treatment, and monitoring of the preservation state. KW - Material Analysis KW - Manuscripts PY - 2023 SN - 2468-3027 VL - 3D SP - 114 EP - 116 PB - Brill CY - Leiden / Boston AN - OPUS4-58912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira ED - Russel, R.E. ED - Lange, A. T1 - Ancient Inks N2 - In the last decade scientists and scholars have accumulated more knowledge on black ink used for writing in Antiquity and the early Middle Ages. Ready availability of non-destructive testing instruments employed in interdisciplinary projects on historic manuscripts have made it possible to determine the composition of ink and to compare it with the extant records. KW - Writing Ink KW - Antiquity PY - 2023 SN - 2468-3027 VL - 3D SP - 117 EP - 120 PB - Brill CY - Leiden / Boston AN - OPUS4-58913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rabin, Ira ED - Raggetti, L. T1 - Material Studies of Historic Inks: Transition from Carbon to Iron-Gall Inks N2 - This chapter offers observations and considerations concerning black writing inks encountered in writing supports transmitting documentary and literary texts of the late Antiquity and early Middle Ages. It discusses different types of inks, the Methods of their detection and their use in different times and geographical areas. KW - Material analysis KW - Writing inks KW - Ink fingerprint PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528057 DO - https://doi.org/10.1163/9789004444805_006 SP - 70 EP - 78 PB - Brill CY - Leiden AN - OPUS4-52805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira ED - Ciner, P. ED - Nunez, A. T1 - Writing Materials of the Dead See Scrolls N2 - The first manuscripts from the Qumran caves were found in 1947. Within the following 10 years, clandestine and legal excavations revealed some 900 highly fragmented manuscripts from the late Second Temple period. This collection is generally known as Scrolls of the Judea Desert or Dead Sea Scrolls (DSS). For many years after their discovery, text analysis and fragmeents attribution were the main concern of the scholars dealing with the scrolls. The uncertain archaeological provenance of the larger part of the collection added an additional difficulty to the formidable task of sorting some 19000 fragments. After 60 years of scholar research the question of origin, archaeological provenance and correct attribution of the fragmenst are still hotly debated. To dtermine a possible contribution to the debate from the point of view of writing materials, we used otpical and electron microscopy, various X-ray based techniques as well as vibratiional sprectroscopy. We validated our approach with SY - based studies using the advantages of the synchroton radiation source with respect to the benchtop devices. Our laboratory studies showed that often production and storage locality could be distinguished thenks to the specific residues ("fingerprint") they left on the material. Moreover, we have diescovered that diferrent parchment production processses coexisted in the antiquity, and the resulting writing materials can readily be distinguished. T2 - 2nd International Conference on Patristic Studies CY - San Juan, Argentina DA - 28.03.2017 KW - Dead Sea Scrolls KW - Text analysis KW - Fragmented manuscripts KW - X-ray based techniques KW - Archaeological provenance PY - 2021 SN - 978-2-503-59149-0 DO - https://doi.org/10.1484/M.STR-EB.5.1211558 SN - 2566-073X VL - 0095/ 19 SP - 325 EP - 331 PB - Brepols CY - Turnhout, Belgium AN - OPUS4-54593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Evolution of writing black inks N2 - The evolution and socio-geographic distribution of writing inks from Late Antiquity to the Middle Ages are one of the foci of our investigative work at the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin and the Centre for the Study of Manuscript Cultures, Hamburg University. This presentation will examine the inks used by Jews in the in different geographical zones try to correlate the results of the material analysis with written records and existing traditions. We will compare the inks proposed by Maimonides, who lived in 12th-century Egypt, with the considerations of Rashi, who lived in 11th-century northern France, and see that they both advocated use of the inks commonly known and produced in their respective regions. It is Maimonides who proposes to add tannins to the soot inks, but rejects the metallic salt, both of which were practices that were well attested in contemporary Arabic recipes for making ink. In contrast, Rashi was favourable to employing the plant inks in use in contemporary Northern Europe. T2 - Jewish-Christian Relations from the Mediterranean to the Indian Ocean: Evidence from Material Culture CY - Bochum, Germany DA - 26.03.2019 KW - Ink KW - Jewish cultures PY - 2019 AN - OPUS4-48136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Material analysis of manuscripts: methodological introduction N2 - Natural sciences play auxiliary role in the studies of manuscripts. The success of their contribution depends strongly on the formulation of the question and the choice of the methods to obtain the requested answer. Therefore, one should try to go beyond the understanding of the basic principles of the scientific analysis. We will start with a glance at the basic principles of the techniques used in the material science for determination of the elemental composition (X-ray emission) and molecular composition (FTIR & Raman). We will move then to the bench and mobile equipment commonly used in the field of cultural heritage. At the end we will choose a question to be answered and design an ideal experiment that will be modified according to the limitations dictated by on-site conditions. In the ateliers in the afternoon we will a) compare two XRF devices that differ in their spatial resolution; b) use a high resolution microscope (Keyence) to obtain a close look at writing surfaces and materials; c) we will learn to determine the type of the inks with the help of another microscope (DinoLite AD413T-12V), a usb microscope with visible, UV and NIR illumination; d) we will learn to use FTIR-ATR device for determination of the type of the writing surface; e) We will use mobile Raman device for identification of pigments. T2 - Summer School: Manusciences19 CY - Frejus, France DA - 10.03.2019 KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Parchment N2 - This lecture will present history of parchment based on written sources and chemical examination of antique, medieval and modern parchment. Our studies of the Dead Sea Scrolls writing surfaces show that they can be divided roughly into three groups: leather, parchments of a light tint, and those of various shades of brown. The latter ones are invariably tanned, whereas the middle group is characterized by the presence of various inorganic salts. Some of the pale parchments, among them the Temple Scroll (11Q19), are remarkably similar to medieval European parchment. Therefore we have formulated the working theory that in the Judaea of the Hellenistic period two different parchment-making traditions existed side by side: an ‘eastern’ one (represented by the tanned parchments of Qumran, closely resembling Aramaic documents from the fifth century BC, and a ‘western’ one (represented by the untanned/lightly tanned ones similar to early Christian Greek parchments). This division has found support during our studies of the Geniza fragments, in which Babylonian and Palestinian traditions seem to follow the “eastern” and “western” technologies, respectively. T2 - Sumer School: Manusciences19 CY - Frejus, France DA - 10.03.2019 KW - Parchment KW - Leather KW - Tanning PY - 2019 AN - OPUS4-48138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Inks and pigments N2 - The writing materials used in various cultures and epochs can be divided into two groups. The first comprises materials that write themselves, producing script by rubbing their own material off onto the writing surface. It includes charcoal, graphite, chalk, raddle, and metal styluses. Depending on the material and consistency, these are cut or pressed to make styluses and then used for writing. The second group comprises all coloring liquids that are applied to the writing surface with a quill, pen, or printing block. It includes inks made from dye solutions (for example, tannin inks) and those made from pigment dispersions (for example, sepia, soot, and bister inks). The latter are sometimes also rubbed as pastes into letters incised into the writing surface, where they increase visual contrast. Due to the variety of recipes and the natural origin of raw materials, there is a wide range of different components and impurities in writing materials. Soluble inks (Tinten) Soluble inks are based mainly on dyes forming a water solution. Colored inks were manufactured with different plant or insect dyes (e.g. Brazil wood, kermes). To stabilize the volatile material, the dyes were mixed with a mordant (e.g., alum). Brown plant inks – best-known as blackthorn or Theophilus’ inks – are usually produced from the blackthorn bark and wine. In the early European Middle Ages, inks of this kind were widely used in the production of manuscripts in monasteries. Usually, they are light brown, so sometimes small amounts of iron sulfate were added, which led to what was called an “imperfect” iron gall ink. The difference between “classic” iron gall ink and such imperfect ink is therefore not clear: the distinction is not possible, especially with the naked eye. Dispersion inks (Tuschen) According to its generic recipe, one of the oldest black writing materials is produced by mixing soot with a binder dissolved in a small amount of water. Thus, along with soot, binders such as gum arabic (ancient Egypt) or animal glue (China) are among the main components of soot inks. From Pliny’s detailed account of the manufacture of various soot-based inks, we learn that, despite its seeming simplicity, producing pure soot of high quality was not an easy task in Antiquity. Therefore, we expect to find various detectable additives that might be indicative of the time and place of production. One such carbon ink requires the addition of copper sulfate . The experimental discovery of this ink in 1990 led to a misleading expression “metal ink” that is sometimes found in the literature. Colored dispersion inks based on pigments such as orpiment, cinnabar, or azurite have been known since Antiquity. Natural or artificially produced minerals are finely ground and dispersed in a binding medium. As in soot inks, water-soluble binders such as gum arabic or egg white were used. Iron gall ink (Eisengallustinten) Iron gall inks are a borderline case between these two groups. They are produced from four basic ingredients: galls, vitriol as the main source of iron, gum arabic as a binding media, and an aqueous medium such as wine, beer, or vinegar. By mixing gallic acid with iron sulfate, a water-soluble ferrous gallate complex is formed; this product belongs to the type “soluble inks”. Due to its solubility, the ink penetrates the writing support’s surface, making it difficult to erase. Exposure to oxygen leads to the formation of insoluble black ferric gallate pigment, i.e., “dispersion ink”. Natural vitriol consists of a varying mixture of metal sulfates. Since for ink making it was obtained from different mines and by various techniques, inks contain many other metals, like copper, aluminum, zinc, and manganese, in addition to the iron sulfate. These metals do not contribute to color formation in the ink solution, but possibly change the chemical properties of the inks. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Ink KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Material studies of historic inks: From antiquity to the Middle Ages N2 - While studying the history of inks, division 4.5 of the BAM (Bundesanstalt für Materialforschung und Prüfung) together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink, and a subsequent in-depth analysis using several spectroscopic techniques. One of them, X-ray Fluorescence (XRF) aims primarily at establishing the fingerprints of inks containing metals, making it possible to distinguish among different inks. Our research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo) as well as other medieval Jewish and Armenian communities. The presentation shows the panorama of historic inks and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Age. T2 - Kolloqium CY - KIT, Germany DA - 17.05.2019 KW - historic inks PY - 2019 AN - OPUS4-48131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Material studies of the Dead Sea Scrolls N2 - Our study is dedicated to non-destructive characterization of the support and the inks of the DSS. To that aim we use micro-XRF, 3D- SY-XRF, different IR methods including synchrotron radiation based reflectance spectroscopy, optical and electron microscopy. The lecture discusses advantages and the shortcomings of the non-destructive testing approach. T2 - Seminar CY - Freie Universität Berlin, Germany DA - 04.02.2019 KW - Dead Sea Scrolls PY - 2019 AN - OPUS4-48132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Evolution of writing black inks N2 - Our research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo) as well as other medieval Jewish and Armenian communities. The presentation shows the panorama of historic inks and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Age. T2 - Elephantine Salon CY - Ägyptisches Museum Berlin, Germany DA - 22.03.2019 KW - Carbon ink KW - Iron-gall ink KW - Historic ink PY - 2019 AN - OPUS4-48134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Analyzing historic inks: From antiquity to the Middle Ages. N2 - While studying the socio-geographic history of inks, division 4.5 of the Bundesanstalt für Materialforschung und Prüfung (BAM) together with the Centre for the Study of Manuscript Cultures (CSMC) in Hamburg has developed a non-invasive protocol for ink analysis. It consists of a primary reflectographic screening to determine the type of the ink (soot, tannin or iron-gall) and a subsequent in-depth analysis using several spectroscopic techniques: X-ray fluorescence (XRF), Infrared and Raman spectroscopies. The first of them, XRF elemental analysis aims at establishing the unique fingerprints of inks containing metals or trace elements in carbon inks. In addition, we use Raman analysis to identify so-called mixed inks, an ink category that received little attention so far. Finally, with the help of IR spectroscopy we obtain information about the ink binders. T2 - Coptic Literature in Context. The Contexts of Coptic Literature Late Antique Egypt in a dialogue between literature, archaeology and digital humanities CY - Rom, Italy DA - 25.02.2019 KW - Ink PY - 2019 AN - OPUS4-48135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nöller, Renate A1 - Hahn, Oliver ED - Dora, C. ED - Fabian, C. ED - Knoche, M. ED - Linder, M. ED - Mittler, E. ED - Schmitz, W. T1 - VIS-Spectroscopy of Aztec colors. Possible application of a non-destructive analytical method N2 - VIS-spectrometry is a rapid, non- invasive, mobile method that offers a first overview of possible colorants used for painting. This is worked out in detail for European paintings and applied for artefacts and illuminated manuscripts. Manuscripts from Asia for example show colorful decoration identified to be mostly prepared with mineral pigments such as cinnabar, azurite, malachite or orpiment, which can be well confirmed by elemental analyses due to their color-giving metal ions. This is not the case for the colorants used in pictorial manuscripts from pre-Hispanic America, painted mainly with organic dyes from plants. The palette of colors used by the Aztecs is very rich due to their extensive empire and long- distance communication with vassal states liable to tributes including dyes of high quality. These include for example red cochineal, yellow zacatlaxcalli, tagetes, safflower, and achiotl, as well as blue indigo, or matlalli. T2 - Manuscripta Americana: Aufarbeitung einer Sammlung CY - Ibero-Amerikanisches-Institut, SPK DA - 14.02.2019 KW - Pigments KW - Dyes KW - Humboldt Codices KW - Non-destructive test PY - 2020 SN - 978-3-447-11511-7 SN - 0067-8236 VL - 53 SP - 35 EP - 57 PB - Harrassowitz Verlag CY - Wiesbaden AN - OPUS4-51934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nöller, Renate A1 - Feldmann, Ines A1 - Kasztovszky, Z. A1 - Szőkefalvi-Nagy, Z. A1 - Kovács, I. T1 - Characteristic Features of Lapis Lazuli from Different Provenances, Revised by µXRF, ESEM, PGAA and PIXE N2 - The objective of this study is to find out, to what extent the geochemical characteristics of lapis lazuli can be utilized in respect to its provenance. A wide range of variables is taken into consideration depending on the quantity of samples analysed from a specific geological region and the methods applied. In order to provide evidence, a multi-technique analytical approach using µXRF, ESEM, PGAA and PIXE is applied to samples from the most famous deposits of lapis lazuli. Special elements determined as fingerprints are compared in relation to the forming conditions obvious in textural features. The results and statistical output allow a differentiation that enables an optimized local classification of the blue stone. An absolute requirement for all geo-tracing performed on blue colored cultural objects of unknown provenance is awareness of the limits of analysis. The possible sources of lapis lazuli are tested by analysing the blue pigment used as paint on murals and ink on manuscripts from the Silk Road. KW - Lapis lazuli KW - Micro-XRF KW - ESEM KW - PGAA KW - PIXE KW - Pigment analyses KW - Provenance studies PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491181 DO - https://doi.org/10.17265/2328-2193/2019.02.003 SN - 2328-2193 VL - 7 IS - 2 SP - 57 EP - 69 PB - David CY - New York, NY AN - OPUS4-49118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nöller, Renate A1 - Danielewski, A. A1 - Giel, R. A1 - Overgaauw, E. A1 - Hahn, Oliver T1 - Material analysis of Aztec codices in Berlin. Assignment of small fragments compiled as cutouts on one plate in Humboldt’s “Atlas pittoresque du voyage” N2 - The collection Manuscripta Americana in Berlin consists of fragmented codices acquired by Alexander von Humboldt in Mexico. Some of these Humboldt Codices are published as hieroglyphic writings of the Aztecs in “Vues des Cordilleres et Monuments des Peuples indigènes de l’Amerique”. Starting from a special compilation of seven fragments on plate 36 in the “Atlas”, we investigated the corresponding original fragments using material analysis in order to clarify their historical relations. The analyses were carried out with X-ray fluorescence analysis, VIS spectroscopy, and infrared spectroscopy in diffuse reflection and revealed typical indigenous colors like cochineal, indigo, and organic yellows (e.g. mangrove and zacatlaxcalli). Four fragments under investigation show exactly the same material and thus must once have belonged together in one compendium. An additional manuscript from Mizquiahuala also shown on plate 36 can be matched to another one that is not published in the “Atlas”. KW - Manuscripts KW - Alexander von Humboldt KW - Non-destructiv testing KW - Colourants KW - Writing materials PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498971 DO - https://doi.org/10.1080/20548923.2019.1682816 SN - 2054-8923 SP - 1 EP - 14 PB - Routledge, Taylor & Francis Group CY - London AN - OPUS4-49897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nöller, Renate T1 - Scientific analysis of the Humboldt fragments N2 - The presented Humboldt Codices are from the early colonial period of Mexico and originate from different localities 1. typical indigen colors and mixtures: cochineal (red), indigo (blue and green), carbon (black), mangle, zacatlaxcalli, organic (brown, yellow)- critical! 2. colonial influence: iron gall ink for writing 3. single fragments belong together: are cut (fragments IX-XII), from Mizquahuala distributed (VII, XIII, XIV, [XV]) (VII, XIII in Mexico, XIV in Paris) T2 - Workshop: Manuscripta Americana: Aufarbeitung einer Sammlung; Staatsbibliothek zu Berlin - PK CY - Berlin, Germany DA - 14. Februar 2019 KW - Humboldt Codices KW - XRF-, VIS- FTIR-spectroscopy KW - Dyes PY - 2019 AN - OPUS4-47589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noeller, Renate A1 - Feldmann, Ines A1 - Kasztovszky, Z. A1 - Szőkefalvi-Nagy, Z. A1 - Kovács, I. T1 - Characteristic Features of Lapis Lazuli from Different Provenances, Revised by µXRF, ESEM, PGAA and PIXE N2 - The objective of this study is to find out, to what extent the geochemical characteristics of lapis lazuli can be utilized in respect to its provenance. A wide range of variables is taken into consideration depending on the quantity of samples analysed from a specific geological region and the methods applied. In order to provide evidence, a multi-technique analytical approach using µXRF, ESEM, PGAA and PIXE is applied to samples from the most famous deposits of lapis lazuli. Special elements determined as fingerprints are compared in relation to the forming conditions obvious in textural features. The results and statistical output allow a differentiation that enables an optimized local classification of the blue stone. An absolute requirement for all geo-tracing performed on blue colored cultural objects of unknown provenance is awareness of the limits of analysis. The possible sources of lapis lazuli are tested by analysing the blue pigment used as paint on murals and ink on manuscripts from the Silk Road. KW - Provenance studies KW - Micro-XRF KW - Lapis lazuli KW - ESEM KW - PGAA KW - PIXE KW - Pigment analyses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480048 DO - https://doi.org/10.17265/2328-2193/2019.02.003 VL - 7 IS - 2 SP - 57 EP - 69 PB - David Publishing AN - OPUS4-48004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Noeller, Renate A1 - Danielewski, Angelika A1 - Giel, Robert A1 - Hahn, Oliver A1 - Overgaauw, Everadus T1 - Analysis of the codices `Fragmens de Peinture hiéroglyphique Aztèques, deposés à la Bibliotheque royale de Berlin´ represented on plate 36 in `Vues des Cordillères et Monuments des Peuples Indigènes de l`Amerique, Voyage de Humboldt et Bonpland´ N2 - The mayor part of the Berlin collection `Manuscripta Americana´ consists of documents compiled by Alexander von Humboldt. The diversity of the written fragments and their shape presume few accordance concerning purpose, place or time of production. Even before the papers came to Berlin, manuscripts were copied, divided and collected by famous scholars also in Mexico. Back in Europe, Humboldt visited further collections and published the detected hieroglyphic writings altogether with cultural objects and landscapes in the book `Vues des Cordillères et Monuments des Peuples Indigènes de l`Amerique, voyage de Humboldt et Bonpland´, labelled corresponding to the cultural background. By scientific and culture historical analyses, the Humboldt codices are revised and related to each other and others. In especial, the compilation of fragments shown on plate 36 in the book is looked at more closely. Whereas most of the plates represent only one sheet of painted amate paper, here segments with details of seven fragments are put together. It is tried to comprehend why these pieces are on one plate. To find out a common feature of the documents, their content and represented form are compared. A correlation between some pieces is obvious and thus is also expected in the manufacture of the codices, in the kind of material used. For this the inks and colors are determined by scientific analysis including XRF-, Raman-, FTIR- and VIS- spectroscopy. Special material is detected and related to results of former analysis of codices written during the colonial period of America. Herewith a clear cultural assignment of the manuscripts is performed. A relation of the fragments represented on plate 36 among each other and to other codices of the collection Manuscripta Americana in Berlin is discussed. Also, if the manuscripts are unique `originals´ or represent fragments of documents, whose corresponding pieces maybe found- in the best case- incorporated in other collections. We detected, that at least two of them can be put into relation to similar manuscripts deposited in Mexico. Further material analysis should clarify, if the corresponding pieces are identical- from one document, or if one of them is a copy. Herewith an approximation to authenticity features and history is issued. T2 - 42nd International Symposium on Archaeometry ISA 2018 CY - Merida, Yucatan, Mexico DA - 20.05.2018 KW - Vues des Cordillères KW - VIS KW - Humboldt Codices KW - XRF KW - FTIR KW - Raman PY - 2018 AN - OPUS4-47554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehring, Grzegorz A1 - Gordon, Nehemia A1 - Rabin, Ira T1 - Distinguishing between seemingly identical inks using scanning μXRF and heat maps N2 - This study will present a new approach to distinguishing writing inks that have the same elemental compositions and visual appearances. The approach is based on displaying the intensity of elemental distributions as heat maps that represent data recorded with a scanning μX-ray fluorescence spectrometer. The heat maps present the data so as to facilitate digitally identifying and distinguishing between inks used to produce, correct, and reink two medieval Torah scrolls. As ritual objects, Torah scrolls had to be written in accordance with exacting standards that evolved over time. This requirement led to successive stages of modifications, sometimes over centuries. Both vitriolic and non-vitriolic inks used to modify Torah scrolls can be visually identical to each other. Furthermore, different non-vitriolic inks usually have an identical elemental composition. The solid material analysis evidence and its presentation as heat maps made it possible to discriminate between original and altered portions of text that in some cases would have been impossible. Our interdisciplinary work brought together conservation, material science, paleog-raphy, and philology to enable the identification of complex stratigraphy in multiple stages of production, correction, and reinking. ©2 0 2 2 Published by Elsevier Masson SAS. KW - Spectroscopy KW - Scanning micro-X-ray fluorescence KW - Vitriolic iron-gall inks KW - Non-vitriolic iron-gall inks KW - Heat maps KW - Torah scrolls KW - Scribal corrections PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557271 DO - https://doi.org/10.1016/j.culher.2022.07.007 SN - 1296-2074 VL - 57 SP - 142 EP - 148 PB - Elsevier Masson SAS AN - OPUS4-55727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehring, Grzegorz A1 - Girard, Solène A1 - Rabin, Ira T1 - Conservation and Technical Evaluation of an Early Medieval Papyrus Codex N2 - In 2005, a team of Polish archaeologists discovered three Coptic codices, two on papyrus and one on parchment, in the rubbish dump of a hermitage at Sheik Abd el-Gurna, Egypt. While the parchment codex and the remains of the bindings of the papyrus ones have been conserved, the text blocks of the papyrus codices were opened and disassembled and after being disinfected remained untouched for nearly 15 years, until the current project started. Currently, all three books are stored in the collection of the Coptic Museum in Cairo. Our team undertook the conservation of and archaeometric research on the papyrus codices. The first of the books contains the Canons of Pseudo-Basil, while the second is an Encomium of St. Pisenthios. Both codices have been palaeographically dated to the seventh-eighth centuries CE. In this paper, we describe our project and present the results of the work carried out on the Canons of Pseudo-Basil. Our work involved photography in transmitted light, measurements of the thickness of the papyrus leaves, and digital microscopy under three-light illumination. These measurements allowed us to determine the types of the inks and characterize the papyrus writing substrate. For conservation, we used a novel method developed in the Egyptian Museum in Berlin that comprises suspending papyrus folios on a translucent, extremely thin Japanese paper inside glass frames without the use of adhesives.In 2005, a team of Polish archaeologists discovered three Coptic codices, two on papyrus and one on parchment, in the rubbish dump of a hermitage at Sheik Abd el-Gurna, Egypt. While the parchment codex and the remains of the bindings of the papyrus ones have been conserved, the text blocks of the papyrus codices were opened and disassembled and after being disinfected remained untouched for nearly 15 years, until the current project started. Currently, all three books are stored in the collection of the Coptic Museum in Cairo. Our team undertook the conservation of and archaeometric research on the papyrus codices. The first of the books contains the Canons of Pseudo-Basil, while the second is an Encomium of St. Pisenthios. Both codices have been palaeographically dated to the seventh-eighth centuries CE. In this paper, we describe our project and present the results of the work carried out on the Canons of Pseudo-Basil. Our work involved photography in transmitted light, measurements of the thickness of the papyrus leaves, and digital microscopy under three-light illumination. These measurements allowed us to determine the types of the inks and characterize the papyrus writing substrate. For conservation, we used a novel method developed in the Egyptian Museum in Berlin that comprises suspending papyrus folios on a translucent, extremely thin Japanese paper inside glass frames without the use of adhesives. KW - Papyrus KW - Codex KW - Conservation KW - Iron gall ink KW - Coptic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570998 DO - https://doi.org/10.1080/00393630.2023.2183554 SN - 0039-3630 SP - 1 EP - 12 PB - Taylor & Francis AN - OPUS4-57099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehring, Grzegorz A1 - Bonnerot, Olivier A1 - Gordon, N. A1 - Rabin, Ira T1 - Writing and Correcting a Torah Scroll in Germany of the Thirteenth and Fourteenth Centuries N2 - Scientific material analysis of the elemental composition of inks from different strata of a manuscript has the potential to complement scholarly observations using palaeography and philology in reconstructing the history of the manuscript’s production, correction and repair. There are three typologically different classes of black writing inks: soot inks consist of carbon particles. KW - Manuscript studies KW - Hebrew studies KW - Ink analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540658 DO - https://doi.org/10.25592/uhhfdm.9749 VL - Comparative Oriental Manuscript Studies Bulletin 7, 2021 IS - 7 SP - 2 EP - 20 PB - Centre for the study of manuscript cultures CY - Hamburg AN - OPUS4-54065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehring, Grzegorz A1 - Bonnerot, Olivier A1 - Gerhardt, M. A1 - Krutzsch, M. A1 - Rabin, Ira T1 - Looking for the missing link in the evolution of black inks N2 - In the transition from carbon to iron-gall inks, the two documents from the Egyptian Museum and Papyrus Collection in Berlin with shelfmarks P 13500 and P 13501 discussed in this work present an important case. Their inks appear brownish, although they date back to the fourth and third century BCE, when carbon inks are believed to have been commonly if not exclusively used. Using imaging micro-X-ray fluorescence and infrared reflectography, we discovered that the inks in both documents contain a significant amount of copper in addition to carbon. Comparing the extant recipes for black writing inks and the experimental evidence, we suggest that these inks are a transition between the pure carbon and the iron-gall inks. Such inks may have been quite common before the production of iron-gall ink was clearly understood and established. KW - Black writing ink KW - Hellenistic KW - Papyrus KW - XRF imaging KW - NIR imaging PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523708 DO - https://doi.org/10.1007/s12520-021-01320-5 VL - 13 IS - 4 SP - Article 71 PB - Springer AN - OPUS4-52370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehring, Grzegorz A1 - Hahn, Oliver A1 - Shevchuk, Ivan A1 - Huskin, Kyle A1 - Cohen, Zina A1 - Rabin, Ira T1 - Breaking the limits of the non-destructive instrumental analysis of writing inks N2 - The ink analysis protocol developed through cooperation between the Bundesanstalt für Materialforschung und -prüfung in Berlin and the Centre for the Study of Manuscript Cultures at the University of Hamburg involves the use of imaging techniques for ink screening, followed by spectroscopic analysis. In our presentation, we will begin by briefly reviewing the history of writing inks and discussing the three main categories: carbon-based inks, plant, and iron-gall inks. We will address their chronology, precursors, and mixed forms, as well as the features that allow for their identification. Then, we will present the techniques we use in ink analysis, whereby we would like to highlight the limitations, advantages, and disadvantages of each approach. Finally, we will discuss the new mass-spectrometric method based on micro-sampling and using atmospheric solid analysis probe (ASAP). T2 - Future of the Past CY - Torun, Poland DA - 14.06.2023 KW - Ink analyses KW - Spectroscopy KW - Mass spectroscopy PY - 2023 AN - OPUS4-58882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehring, Grzegorz A1 - Pronobis-Gajdzis, M. A1 - Targowski, P. A1 - Rabin, Ira T1 - What should we take into an account in the characterization of iron-gall ink by means of X-ray fluorescence? N2 - The earliest known recipes for iron gall inks include four basic ingredients: oak galls – pathological growths of oak leaves; metal salts – usually referred to as vitriol; a binder such as gum Arabic; and water. The final product differs in the elemental composition due to the multitude of recipes as well as differences within the composition of the ink’s ingredients. Nowadays, based on the qualitative and semi-quantitative evaluation of X-ray fluorescence data, it is possible to distinguish inks on the basis of the so-called fingerprint model. The first goal of our study was to determine to what extent the type of XRF spectrometer affects the quality of the ink evaluation. We tested two types of spectrometers, semi-stationary machines equipped with polycapillary focusing optics and a handheld spectrometer with a diaphragm collimator and a relatively big interaction spot. The second goal was to address the issue of whether the ink composition might be affected by storage in a metal container. The presentation will discuss the role of the spectrometer type in the evaluation of a thin layer material such as ink. We have also learned that the iron-gall ink composition might depend on the type of vessel in which ink was being stored. T2 - Konferenz - XIV IADA Congress - Warsaw 2019 CY - Warsaw, Poland DA - 23.09.2019 KW - Iron-gall ink KW - XRF KW - Inkwells KW - Ink composition PY - 2019 AN - OPUS4-49149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehring, Grzegorz A1 - Targowski, P. A1 - Rabin, Ira T1 - Can an inkwell leak into ink? N2 - X-ray fluorescence analysis, due to its non-destructive nature and ist suitability to work with historic objects in situ, quickly became one of the most important methods for the evaluation of iron-gall ink. The main advantage of this qualitative and semi-quantitative method is that it makes it easy to differentiate between inks, based on the assumption that the differences result from the manufacture of the ink. This work explores the question whether the ink ‘fingerprint’ results strictly from the elemental composition of the basic ink ingredients even if it is stored in vessels made of metals or metal alloys. In addition, we tested and compared the performance of three different XRF spectrometers. We prepared various lab-grade inks according to historical ink recipes and measured the metal content of the ink deposited on sized cotton Linters paper with three types of XRF spectrometers: a simple hand-held device with an interaction spot of 4 mm and two devices equipped with poly-capillary Xray optics for line scanning and imaging. Since the exact elemental mass composition of the non-aged ink samples was known, we were able to evaluate the accuracy of the research procedure. Lab-grade inks were then aged in the metal jars imitating inkwells. The aging of the inks in the metal containers resulted in the significant change of the primary inks fingerprint as opposed to that of the control inks stored in glass containers. This effect was independently confirmed by the measurements conducted with every instrument we used. We will present a brief comparison of the results 43 achieved when using different spectrometers and a possible hypothesis explaining the processes that occurred. T2 - Konferenz -7th Meeting X-ray and other techniques in investigations of the objects of cultural heritage CY - Krakow, Poland DA - 17.05.2018 KW - Iron-gall ink KW - XRF KW - Inkwells KW - Ink composition KW - Performance comparison PY - 2018 AN - OPUS4-49157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Melzer, C. A1 - Wintermann, C. A1 - Hahn, Oliver A1 - Golle, U. A1 - Ketelsen, T. A1 - Dietz, Georg T1 - Red chalk as a medium of transfer in dutch and flemish drawings N2 - The Weimar research project has set the goal of placing style-critical research on Old Master drawings on a new, methodologically proven foundation. The starting point is the stock of Dutch drawings possessed by the Klassik Stiftung Weimar, whose extent (ca. 1,400 items) and character make it one of the most significant outside the Netherlands. The focus here is on drawings that were executed with red chalk. This drawing material has different functions - one of which is the use as a transmission material. The methodological approach is double: first, the scientific indexing of this stock. The foundations for this, along with classic analysis of style, are innovative material-scientific methods of investigation. T2 - Red Chalk Drawings. Sources, Techniques and Styles c. 1500-1800 CY - Florence, Italy DA - 18.09.2019 KW - Drawing KW - Red chalk KW - Non-destructiv testing PY - 2019 AN - OPUS4-50240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maltomini, F. A1 - Ghigo, T. A1 - Hahn, Oliver A1 - Rabin, Ira ED - Fournet, J.-L. ED - Kramer, B. ED - Luppe, W. ED - Maehler, H. ED - McGing, B. ED - Poethke, G. ED - Reiter, F. ED - Richter, S. T1 - Florentine papyri under examination: The material study of the inks used at the beginning of the Common Era in the "Family of Kôm Kâssûm" Archive (Hermopolis) N2 - Carbon inks with metallic admixtures are found on some papyri of the 2nd century CE from a family archive in Hermopolis. The great diversity of inks found in a single household within a short period of time suggests that inks were purchased rather than self-made. KW - Carbon ink KW - Iron-gall ink KW - Mixed ink KW - XRF ink analysis KW - Family archives KW - Hermopolis PY - 2021 DO - https://doi.org/10.1515/apf-2021-0010 SN - 0066-6459 SN - 1867-1551 VL - 67 IS - 1 SP - 146 EP - 165 PB - De Gruyter CY - Berlin AN - OPUS4-53160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Diana A1 - Hahn, Oliver ED - Lois, C. T1 - Colours on East Asian Maps N2 - Maps and colours have a close connection. Drawn or printed in black on white, subsequently added colours enhance maps with additional information. Colours were not just there to improve maps aesthetically, but they regulated how they were read and thus reinforced their meanings, significances and ideas. Colour is an important key to a more precise understanding of the map’s purposes and uses; moreover, colours are also an important aspect of a map’s materiality. The material scientific analysis makes it possible to find out more about the making of colours and the process of colouring maps. By skillfully deploying colours, map colourists were able to create mimetic representations of nature or codify information in an abstract form. The use of colours involved many considerations as to the materials. ‘Reading’ colours in this way gives a glimpse into the social lives of mapmakers as well as map users and reveals the complexity of the historical and social context in which maps were produced and how the maps were actually made. Within the scope of the three-year joint research project Coloured Maps (2018–2021), we undertook an in-depth and systematic study of hand-drawn and hand-coloured maps from East Asia in the Museum am Rothenbaum (MARKK) in Hamburg and produced between the seventeenth and twentieth centuries. With a multi-perspective approach and transdisciplinary methods (humanities and the sciences), we were able to pool and compare the research results from different fields of research on Asian maps. The aim of this publication is to provide a first general overview of the subject of colours on maps in East Asia in the period from the seventeenth to the early twentieth century and to stimulate further research on the topic. KW - Maps and colours KW - Colouring KW - Colourants KW - Dyes and pigments KW - Map production and publishing KW - Non-invasive scientific methods PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569682 UR - https://brill.com/display/title/61839 SN - 978-90-04-54562-5 VL - 2023 SP - 1 EP - 79 PB - Brill CY - Leiden, Netherlands AN - OPUS4-56968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ketelsen, T. A1 - Wintermann, Carsten A1 - Melzer, C. A1 - Dietz, Georg A1 - Golle, U. A1 - Hahn, Oliver ED - Cole, M. ED - Dogramaci, B. ED - Lehmann, A.-S. ED - Sölch, B. ED - Wedekind, G. T1 - Connoisseurship and the Investigation of Materiality: Four “Rembrandt” Drawings in Weimar N2 - The aim of this paper is to present the productive interplay of connoisseurship and material analysis when dealing with drawings by Rembrandt – or previously attributed to him – in the collection of the Klassik Stiftung Weimar. This concerns the more precise determination of the drawing materials used and the reconstruction of the genesis of the drawings discussed. The material analysis allows us to decide whether and how Rembrandt’s inks can be used to determine authorship at all. The “material turn” in drawing studies thus intervenes in the discussion about authorship and opens up a broader production aesthetic perspective. No longer the “style” but rather the handeling becomes the decisive criterion for answering the question “Rembrandt, or not?” KW - Archaeometry KW - History of Art KW - Drawings KW - Rembrandt PY - 2021 SN - 0044-2992 VL - 84 IS - 4 SP - 483 EP - 518 PB - Deutscher Kunstverlag CY - Berlin/München AN - OPUS4-54342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ketelsen, T. A1 - Hahn, Oliver A1 - Golle, U. A1 - Wintermann, C. A1 - Melzer, C. A1 - Dietz, Georg T1 - Blindness and Insight. The Rhetoric of Connoisseurship and the Investigation of Materiality. N2 - The aim of the lecture is to present the productive interplay of connoisseurs and material analysis using the example of selected drawings from the Rembrandt collection of the Klassik Stiftung Weimar. We try to determine the point at which the question of the materiality of the drawings makes sense in the traditional discourse of connoisseurship. On the one hand, this involves the question of authorship – Rembrandt – or not? – and the locating of attributed drawings in the context of the work. On the other hand, it is about making drawing processes visible, characterizing ways of drawing and workshop practices as well as distinguishing different forms of reworking and copying within the Rembrandt workshop. The material analyses culminate in the question of whether Rembrandt’s inks can be distinguished at all. It becomes apparent that the newly gained knowledge about the materiality of the drawing no longer reveals itself to the “mere” view of the connoisseur. Rather, it is only generated by the digital image. The rhetoric of connoisseurs must therefore be contrasted with the necessity of a hermeneutics of the digital image. The envisaged “material turn” of drawing science is thus simultaneously able to take up the critique of the question of authorship, which has been growing ever more recently, and to transfer it to a more comprehensive perspective of aesthetics of production. T2 - Drawings by Rembrandt. Connecting art history, science and conservation CY - Amsterdam, Rijksmuseum, The Netherlands DA - 06.02.2020 KW - Rembrandt KW - Drawings KW - Non-destructive testing KW - Inks KW - Paper PY - 2020 AN - OPUS4-50384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Richter, Matthias T1 - Round robin tests of odour and VOC emissions from building products – What have we learned so far? N2 - Emission testing of volatile organic compounds (VOC) and odour from materials and products is commonly based on emission test chamber measurements. These measurements are often the basis of mandatory or voluntary labelling procedures. To ensure the comparability of results from different testing laboratories their performance must be verified. For this purpose, round robin tests (RRTs) are conducted. Bundesanstalt für Materialforschung und - prüfung (BAM) offers such a RRT every two years using well characterised test materials with defined VOC emissions. In addition to the VOC quantification, the evaluation of odour is also implemented in the round robin tests. At the beginning, only perceived intensity (PI) was tested but over the years also the acceptance evaluation was considered. In principle, the results of PI and acceptance evaluation are comparable. The advantage of PI is the lower number of panel members necessary for one evaluation. T2 - Healthy Buildings 2023 Europe CY - Aachen, Germany DA - 11.06.2023 KW - Perceived intensity KW - VOC-emission KW - Poficiency test KW - Chamber test KW - Odour PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580001 SP - 434 EP - 436 PB - ISIAQ (International Society of Indoor Air Quality and Climate) CY - Herndon, VA, USA AN - OPUS4-58000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Wilke, Olaf T1 - Volatile organic compounds from building products - Results from seven proficiency tests with emission test chambers conducted between 2008 and 2021 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test every two years using well-characterised test materials (one sealant, one furniture board and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 41 VOCs were included of which 37 gave test chamber air concentrations between 10 and 98 µg/m³. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Four compounds had higher concentrations between 250 and 1105 µg/m³. The relative standard deviations (RSD) of BAM proficiency tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 23% in 2021. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51%. T2 - Proficiency Testing in Analytical Chemistry, Microbiology and Laboratory Medicine CY - Windsor, United Kingdom DA - 25.09.2023 KW - Proficiency Test KW - VOC-Emission KW - Chamber-test PY - 2023 AN - OPUS4-59694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang T1 - Selection of low emittiong material for the construction of display cases based on the BEMMA procedure N2 - Museums worldwide are equipped with different display cases. Exhibit display cases should protect cultural objects from dust as well as from mechanical and physical damage. To ensure a stable climate inside the display cases, a low air exchange rate is maintained. Typically air exchange rates are often smaller than 0.1 d 1, which can result in rising concentrations of potential harmful immissions inside of the display cases due to emissions from materials. Especially high concentrations of organic acids, which can emit from e.g. sealing materials, can produce damage of cultural objects. In 2012 BAM introduced a procedure witch is called: BEMMA-Scheme (Bewertung von Emissionen aus Materialien für Museumsausstattungen) which stands for: “Assessment of Emissions from Materials for Museum Equipment”. Micro chambers are used for VOC emission tests of display case construction materials, e.g. textiles, plastics, sealing material, coatings and others. Each sampling procedure is carried out in duplicate. Emissions like formic acid, acetic acid, formaldehyde and oximes are excluded and the sum of emissions of VVOCs, VOCs and SVOCs is limited. For a positive assessment all listed criteria must be fulfilled; otherwise the display construction material fails the BEMMA scheme. The BEMMA scheme is not a guarantee for an emission free display case, but a necessary requirement for the choice of suitable materials for emission and immission reduced display cases. T2 - Materials Testing Symposium CY - New York City, USA DA - 06.11.2019 KW - Museum KW - Emission KW - Dispay case KW - BEMMA KW - VOC PY - 2019 AN - OPUS4-49589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Jann, Oliver A1 - Hahn, Oliver T1 - The BEMMA-Scheme helpful for low VOC inside display cases? N2 - Museums worldwide are equipped with different display cases. Exhibit display cases should protect cultural objects from dust as well as from mechanical and physical damage. To ensure a stable climate inside the display cases, a low air exchange rate is maintained. Typically, air exchange rates are often smaller than 0.1 d-1, which can result in rising concentrations of potential harmful VOC inside of the display cases due to emissions from materials. Especially organic acids, e. g. formic or acetic acid which can emit from e.g. sealing materials or wood-based materials, can produce damage of cultural objects. In 2012 BAM introduced a procedure which is called: BEMMA-Scheme (Bewertung von Emissionen aus Materialien für Museums¬ausstattungen) which stands for: “Assessment of Emissions from Materials for Museum Equipment”. Regarding the testing procedure only construction materials were evaluated, not the display cases their self. Micro chambers are used for VOC emission tests of display case construction materials, e.g. plastics, sealing materials, coatings, textiles and others. Each sampling procedure is carried out in duplicate. Emissions like formic acid, acetic acid, formaldehyde, piperidine-derivates and oximes are excluded and the sum of emissions of VVOCs, VOCs and SVOCs is limited. For a positive assessment all listed criteria must be fulfilled; otherwise the display construction material fails the BEMMA scheme. T2 - Indoor Air Quality in Heritage and Historic Environments CY - Online meeting DA - 12.10.2020 KW - Museum KW - VOC-emission KW - BEMMA KW - Display case PY - 2020 AN - OPUS4-51470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heiles, M. A1 - Rabin, Ira A1 - Hahn, Oliver ED - Friedrich, M. ED - Quenzer, J. ED - Wandrey, I. T1 - Palaeography and X-ray fluorescence spectroscopy: Manuscript production and censorship of the fifteenth century German manuscript Cod. germ. 1 of the Staats- und Universitätsbibliothek Hamburg N2 - The manuscript Codex germanicus 1 (Cod. germ. 1) of the Staats- und Universitätsbibliothek Hamburg is a fifteenth-century German-language manuscript. It comprises two codicological units and has an especially complex developmental history. To trace this developmental history, neglected until now in the research literature, the manuscript was investigated, for the first time not solely with classical codicological and palaeographical methods, but also with the aid of X-ray fluorescence spectroscopy, in order to determine the composition of the writing materials. These methods made it possible, first, to support and check palaeographic findings and, second, to gain information about the stratigraphy of the manuscript where palaeographic methods find their limits – in regard to short entries, rubrications, and non-alphabetical signs. KW - Archaeometry KW - Non-destructive testing KW - Inks PY - 2018 SN - 1867-9617 VL - 2018 IS - 11 SP - 109 EP - 132 PB - Universität Hamburg CY - Hamburg AN - OPUS4-45818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver A1 - Nöller, Renate ED - Dora, C. ED - Fabian, C. ED - Knoche, M. ED - Linder, M. ED - Mittler, E. ED - Schmitz, W. T1 - Writing inks in the Manuscripta Americana – a pilot study N2 - The manuscripts – which have been inventoried as Manuscripta Americana in the State Library of Berlin and the Biblioteka Jagellońska in Krakow with the signatures Ms. Americ. 1-15 – are codices mainly from the colonial times of the 16th to 18th centuries. They uniquely reflect the relationships between indigenous culture and Spanish colonial masters. This study focusses on the scientific investigation of three manuscripts (Manuscripta Americana 3, 8, and 10) that are kept today in Krakow. It is assumed that these three parts belong together in a certain way, so various material analyses were carried out to prove this assumption. The scientific investigation focusses on the different black and brown writing inks. T2 - Manuscripta Americana: Aufarbeitung einer Sammlung CY - Ibero-Amerikanisches-Institut, SPK DA - 14.02.2019 KW - Humboldt Codices KW - Writing inks KW - Non-destructive testing PY - 2020 SN - 978-3-447-11511-7 SN - 0067-8236 VL - 53 SP - 21 EP - 32 PB - Harrassowitz Verlag CY - Wiesbaden AN - OPUS4-51935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hahn, Oliver A1 - Nehring, G. A1 - Freisitzer, R. A1 - Rabin, Ira T1 - A study on early european inks from St. Paul in lavanttal N2 - Typology of Inks Archives and museums around the world contain a vast number of manuscripts that were written in different inks: carbon inks, plant inks, iron-gall inks and mixed inks. Yet most archaeometric studies of manuscripts focus on the palette of pigments found in illuminated manuscripts whereas identification of the inks is still largely based on cultural-historical studies and visual inspections. One of the reasons of this disproportion in the studies can be explained by the properties of Raman spectroscopy, the technique of choice for identification of pigments. In contrast, this technique is only partially viable when dealing with organic colourants. Brown and Clark discuss these difficulties and the uncertainties of identification of iron-gall inks by Raman spectroscopy in their pioneering work on early medieval Anglo-Saxon manuscripts (K. Brown and R. Clark 2004). To facilitate instrumental analysis of inks, we have developed a protocol that starts with the identification of the inks type (Rabin et al. 2012) which doesn’t require complicated instrumentation and can be carried out by paleographers and codicologists. Three typological ink classes The black writing materials used in manuscript production in Antiquity und Middle Ages can be sorted in three typologically different ink classes: soot, plant and iron-gall. Soot ink is a fine dispersion of carbon pigments in a water soluble binding agent; plant-based ink consists of a solution of the tannins extracted from gallnuts or tree bark; iron-gall ink, is produced by mixing a soluble compound of iron (II) with gallic or tannic acid extracted from gallnuts or tree bark. Therefore, iron-gall ink presents a boundary case between solution and dispersion ink, in which a water-soluble preliminary stage oxidizes and evolves into a black, insoluble precipitate similar to the carbon pigments when the writing is exposed to air (Krekel 1999). The additional category of mixed inks, i.e. inks produced by addition of various metals to the soot inks or intentional mixing of iron-gall and soot - based inks started attracting scholarly attention only recently because their significance was established only a short while ago (Brun et al. 2016, Colini 2018, Nehring et al. 2021). We suggest that plant and mixed inks build a bridge from the carbon ink of Antiquity to the properly formulated iron-gall ink that became a standard black ink from the late Middle Ages to the 19th century when it gave way to modern inks. KW - Early european inks KW - Typology of Inks KW - Raman spectroscopy KW - Illuminated manuscripts KW - Archaeometric studies KW - Dispersion of carbon pigments PY - 2021 VL - 2021 SP - 56 EP - 75 PB - Gazette du livre médiéval CY - Paris AN - OPUS4-53844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -