TY - JOUR A1 - Abdallah, Khaled A1 - Stock, S. C. A1 - Heeger, Felix A1 - Koester, M. A1 - Nájera, F. A1 - Merino, C. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. A1 - Dippold, M. A. T1 - Nitrogen Gain and Loss Along an Ecosystem Sequence: From Semi-desert to Rainforest N2 - Plants and microorganisms, besides the climate, drive nitrogen (N) cycling in ecosystems. Our objective was to investigate N losses and N acquisition strategies along a unique ecosystem-sequence (ecosequence) ranging from arid shrubland through Mediterranean woodland to temperate rainforest. These ecosystems differ in mean annual precipitation, mean annual temperate, and vegetation cover, but developed on similar granitoid soil parent material, were addressed using a combination of molecular biology and soil biogeochemical tools. Soil N and carbon (C) contents, δ15N signatures, activities of N acquiring extracellular enzymes as well as the abundance of soil bacteria and fungi, and diazotrophs in bulk topsoil and rhizosphere were determined. Relative fungal abundance in the rhizosphere was higher under woodland and forest than under shrubland. This indicates toward plants' higher C investment into fungi in the Mediterranean and temperate rainforest sites than in the arid site. Fungi are likely to decompose lignified forest litter for efficient recycling of litter-derived N and further nutrients. Rhizosphere—a hotspot for the N fixation—was enriched in diazotrophs (factor 8 to 16 in comparison to bulk topsoil) emphasizing the general importance of root/microbe association in N cycle. These results show that the temperate rainforest is an N acquiring ecosystem, whereas N in the arid shrubland is strongly recycled. Simultaneously, the strongest 15N enrichment with decreasing N content with depth was detected in the Mediterranean woodland, indicating that N mineralization and loss is highest (and likely the fastest) in the woodland across the continental transect. Higher relative aminopeptidase activities in the woodland than in the forest enabled a fast N mineralization. Relative aminopeptidase activities were highest in the arid shrubland. The highest absolute chitinase activities were observed in the forest. This likely demonstrates that (a) plants and microorganisms in the arid shrubland invest largely into mobilization and reutilization of organically bound N by exoenzymes, and (b) that the ecosystem N nutrition shifts from a peptide-based N in the arid shrubland to a peptide- and chitin-based N nutrition in the temperate rainforest, where the high N demand is complemented by intensive N fixation in the rhizosphere. KW - Nitrogen KW - Rhizosphere KW - Microbial abundance KW - Natural abundance of 15N KW - Nitrogen fixation KW - Nitrogen uptake PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543708 SN - 2673-8619 VL - 2 SP - 1 EP - 14 PB - Frontiers Media CY - Lausanne AN - OPUS4-54370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alder-Rangel, A. A1 - Idnurm, A. A1 - Brand, A. A1 - Brown, A. A1 - Gorbushina, Anna A1 - Kelliher, C. A1 - Campos, C. A1 - Levin, D. A1 - Bell-Pedersen, D. A1 - Dadachova, E. A1 - Bauer, F. A1 - Gadd, G. A1 - Braus, G. A1 - Braga, G. A1 - Brancini, G. A1 - Walker, G. A1 - Druzhinina, I. A1 - Pocsi, I. A1 - Dijksterhuis, J. A1 - Aguirre, J. A1 - Hallsworth, J. A1 - Schumacher, Julia A1 - Ho Wong, K. A1 - Selbmann, L. A1 - Corrochano, L. A1 - Kupiec, M. A1 - Momany, M. A1 - Molin, M. A1 - Requena, N. A1 - Yarden, O. A1 - Cordero, R. A1 - Fischer, R. A1 - Pascon, R. A1 - Mancinelli, R. A1 - Emri, T. A1 - Basso, T. A1 - Rangel, D. T1 - The Third International Symposium on Fungal Stress - ISFUS N2 - Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in Sao Jose dos Campos, Sao Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology. T2 - International Symposium on Fungal Stress (ISFUS) CY - Sao Jose dos Campos, Brazil DA - 20.05.2019 KW - Agricultural mycology KW - Fungal stress mechanisms and responses KW - Industrial mycology KW - Medical mycology PY - 2020 U6 - https://doi.org/10.1016/j.funbio.2020.02.007 VL - 124 IS - 5 SP - 235 EP - 252 PB - Elsevier Ltd. AN - OPUS4-50953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - Data for "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" N2 - Data for the publication "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" (https://doi.org/10.1038/s41529-022-00253-1). It includes: - The Summary of the EPS concentration, EPS sugar components and EPS linkages. - The Summary of the XPS analysis of freeze-dried biofilm samples of all strains. - The Summary of the pH, Mg, SI and Fe concentration, biomass and olivine dissolution rate for each time point of all dissolution experiments. KW - Biofilms PY - 2022 U6 - https://doi.org/10.26272/opus4-54901 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering N2 - The roles extracellular polymeric substances (EPS) play in mineral attachment and weathering were studied using genetically modified biofilms of the rock-inhabiting fungus Knufia petricola strain A95. Mutants deficient in melanin and/or carotenoid synthesis were grown as air-exposed biofilms. Extracted EPS were quantified and characterised using a combination of analytical techniques. The absence of melanin affected the quantity and composition of the produced EPS: mutants no longer able to form melanin synthesised more EPS containing fewer pullulan-related glycosidic linkages. Moreover, the melanin-producing strains attached more strongly to the mineral olivine and dissolved it at a higher rate. We hypothesise that the pullulan-related linkages, with their known adhesion functionality, enable fungal attachment and weathering. The released phenolic intermediates of melanin synthesis in the Δsdh1 mutant might play a role similar to Fe-chelating siderophores, driving olivine dissolution even further. These data demonstrate the need for careful compositional and quantitative analyses of biofilm-created microenvironments. KW - Biofilms PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549025 SN - 2397-2106 VL - 6 SP - 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-54902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - C., Ruibal A1 - L., Selbmann A1 - Serap, Avci A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna ED - Gorbushina, Anna T1 - Roof-Inhabiting Cousins of Rock-Inhabiting Fungi: Novel Melanized Microcolonial Fungal Species from Photocatalytically Reactive Subaerial Surfaces N2 - Subaerial biofilms (SAB) are an important factor in weathering, biofouling, and biodeterioration of bare rocks, building materials, and solar panel surfaces. The realm of SAB is continually widened by modern materials, and the settlers on these exposed solid surfaces always include melanized, stress-tolerant microcolonial ascomycetes. After their first discovery on desert rock surfaces, these melanized chaetothyrialean and dothidealean ascomycetes have been found on Mediterranean monuments after biocidal treatments, Antarctic rocks and solar panels. New man-made modifications of surfaces (e.g., treatment with biocides or photocatalytically active layers) accommodate the exceptional stress-tolerance of microcolonial fungi and thus further select for this well-protected ecological group. Melanized fungal strains were isolated from a microbial community that developed on highly photocatalytic roof tiles after a long-term environmental exposure in a maritime-influenced region in northwestern Germany. Four of the isolated strains are described here as a novel species, Constantinomyces oldenburgensis, based on multilocus ITS, LSU, RPB2 gene phylogeny. Their closest relative is a still-unnamed rock-inhabiting strain TRN431, here described as C. patonensis. Both species cluster in Capnodiales, among typical melanized microcolonial rock fungi from different stress habitats, including Antarctica. These novel strains flourish in hostile conditions of highly oxidizing material surfaces, and shall be used in reference procedures in material testing. KW - Microcolonial fungi KW - Multilocus phylogeny KW - Photocatalytic surfaces KW - Subaerial biofilms KW - Stress tolerance KW - Constantinomyces PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-455182 VL - 8 IS - 3 SP - 30 EP - 44 PB - MDPI CY - Basel, Schweiz AN - OPUS4-45518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Maria A1 - Paulo, Carlos A1 - Knabe, Nicole A1 - Sturm, Heinz A1 - Zaitsev, Vladimir A1 - Gorbushina, Anna T1 - Microscopic Raman study of fungal pigment using the genetically amenable rock inhabitant Knufia petricola as a model organism N2 - Fungal pigments such as melanin and carotenoids are distinctive markers of animal and plant pathogenic fungi as well as their environmental relatives. These complex pigments play important roles in pathogenicity and stress tolerance while also being useful as biomarkers. Accordingly, it is important to be able to identify in situ the pigments in black fungi, a group of clinical and environmental importance. In this study, wild-type and genetically modified strains of Knufia petricola A95 and wild fungal cells attached to ancient rock were investigated for their spectroscopic and microscopic Raman features and morphological appearance. Knockout mutants of melanin synthesis genes pks1 (polyketide synthase), sdh1 (scytalone dehydratase), and both pks1 and the carotenoid synthesis gene phd1 (phytoene desaturase) were studied We applied two different Raman microscopes using two lasers, with 633 nm and 488 nm wavelengths. We analyzed and compared Raman spectra between the measured reference substances and the mutant and wild-type strains. In the wild strain WT:A95, the peaks close to melanin peals were found at 1353 cm−1 and 1611 cm−1. There are no characteristic melanin peaks at 1580–1600 cm−1 and around 1350 cm−1 at the spectrum of the Δpks1/Δphd1 mutant and the Δsdh1 mutant. The Δpks1 mutant spectrum has the peaks at the beta-carotene v2 C-C in-plane stretch at 1155 cm−1 and v3 C-CH3 deformation at 1005 cm−1. The peaks of carotenoids and melanin were found in all mutants and the wild strain, except the Δpks1/Δphd1 mutant. Raman spectra allow for discrimination between the various pigments. Hence, interactions between natural fungal melanin, as well as other protective pigments, and complex environmental matrices can be characterized on a range of spatial and temporal scales. KW - Raman Spectroscopy KW - Instrumentation KW - Analytical Chemistry KW - Knufia petricola KW - Confocal microscopy KW - Atomic and Molecular Physics and Optics PY - 2023 U6 - https://doi.org/10.1016/j.saa.2023.123250 SN - 1386-1425 VL - 303 SP - 1 EP - 11 PB - Elsevier BV AN - OPUS4-58792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - Genetic Engineering of the Rock Inhabitant Knufia petricola Provides Insight Into the Biology of Extremotolerant Black Fungi N2 - Black microcolonial fungi (Ascomycetes from Arthonio-, Dothideo-, and Eurotiomycetes) are stress-tolerant and persistent dwellers of natural and anthropogenic extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) melanin in the multilayered cell walls. To understand how black fungi live, survive, colonize mineral substrates, and interact with phototrophs genetic methods are needed to test these functions and interactions. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a model for developing methods for genetic manipulation. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and the implementation of the three resistance selection markers genR (geneticin/nptII), baR (glufosinate/bar), and suR (chlorimuron ethyl/sur). The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter. The black-white screening due to the concurrent elimination of pks1 and phs1 (carotenoids) allows to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. The co-localization and interaction of the two K. petricola White Collar orthologs were demonstrated. Two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for a broad implementation in other fungi. This variety of genetic tools is opening a completely new perspective for mechanistic and very detailed study of expression, functioning and regulation of the genes/proteins encoded by the genomes of black fungi. KW - Microcolonial fungi KW - DHN melanin KW - Cloning vectors KW - Genetics PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546192 SN - 2673-6128 VL - 3 PB - Frontiers Media CY - Lausanne AN - OPUS4-54619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja A1 - Gorbushina, Anna A1 - Plarre, Rüdiger A1 - Stephan, Ina T1 - Umweltsimulation an der BAM – Grundlegende Ansätze mit Beispielen aus der natürlichen Umwelt N2 - Drei grundlegend verschiedene Ansätze für Umweltsimulation werden an Beispielen illustriert: (i) Ganzheitlicher Ansatz - Nachstellen von Umweltmilieus im Labor Ziel ist hier das Nachstellen von (kombinierten) Umweltbedingungen im Labor; die Umweltparameter werden mit all ihren Wechselwirkungen aufgebracht. Hauptnutzen ist eine gegenüber der natürlichen Beanspruchung erhöhte Reproduzierbarkeit der Umweltbedingungen. Hat man sein Laborsetup entwickelt, ist es auf verschiedene Materialien anwendbar. Unter solchen Laborbedingungen ermittelte Lebensdauern sind dabei nicht auf die typischerweise sehr variablen Real-Umweltbedingungen übertragbar. (ii) Parametrisierter Ansatz - Ermittlung einzelner Materialempfindlichkeiten Hierbei werden im Labor die Wirkungen separater Umweltparameter auf Materialien nachgestellt. Für eine solche Separation der Einflussfaktoren ist insbesondere die Aufschlüsselung möglicher Wechselwirkungen der Umwelt-parameter (z.B. Mikroklima an bestrahlten Oberflächen) erforderlich. Einzelne (meist Alterungs-) Empfindlichkeiten können qualitativ nachgewiesen werden oder sogar – als Beanspruchungs-Wirkungs-Funktionen – quantifiziert werden, was einen wesentlichen Schritt in Richtung der Digitalisierung der Material¬prüfung darstellt. Insbesondere ist dann auch eine Lebensdauer-vorhersage für vorgegebene Zeitreihen der Beanspruchungs¬parameter umsetzbar. (iii) Rückwirkungen auf die Umwelt Umweltbeanspruchungen können zur Freisetzung von Schadstoffen in die Umwelt führen. Durch die Nachstellung kritischer, aber realitätsnaher Einsatzszenarien kann die Menge an freigesetzten Substanzen abgeschätzt werden. Egal, welcher Ansatz verfolgt wird – ein Vergleich mit der oder einer Real-beanspruchung ist unerlässlich, ebenso wie die Messdatenaufzeichnung (data logging) aller potenziell relevanten Beanspruchungsparameter während dieser Realbeanspruchung. Obwohl die naturnahe Umwelt – sowohl in der BAM als auch bei der GUS – gegenüber der technischen Umwelt eher untergeordnet auftritt, werden zur Illustration Beispiele aus der naturnahen Umwelt verwendet. T2 - 50. Jahrestagung der GUS CY - Online meeting DA - 23.03.2022 KW - Umweltsimulation PY - 2022 SN - 978-3-9818507-7-2 SP - 79 EP - 89 AN - OPUS4-55015 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Feldmann, Ines A1 - Schuessler, J.A. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Schott, J. T1 - How the rock-inhabiting fungus K. petricola A95 enhances olivine dissolution through attachment N2 - Free-living and mycorrhizal fungi are able to enhance the weathering of rock and other solid substrates. Deciphering the exact mechanisms of these natural processes requires their experimental simulation. Moreover, by performing these simulations with genetically amenable rock-weathering fungi, one can knock-out certain fungal traits and consequently identify their weathering-relevant function. Here, the effect of the rock-inhabiting fungus, Knufia petricola A95, on the dissolution kinetics of an Fe-bearing olivine (Mg1.86Fe0.19SiO4) is investigated at 25 °C and pH 6 using reproducible batch and mixed flow experiments. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, which produces more extracellular polymeric substances (EPS) than the wild type (WT), enables the comparative study of the role of melanin and EPS in olivine dissolution. In abiotic dissolution experiments, the olivine dissolution rate decreased considerably over time at pH 6 but not at pH 3.5. This inhibition of abiotic olivine dissolution at pH 6 was most likely caused by the in-situ oxidation of ferrous Fe and/or the precipitation of ferric hydroxides at the olivine surface. In corresponding biotic experiments at pH 6, both the wild type K. petricola and its melanin-deficient mutant ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe oxidation and precipitation were thus prevented and olivine dissolution proceeded faster than in the abiotic experiments. By sequestering Fe directly at the olivine surface, the attached wild type K. petricola cells were particularly efficient at preventing the oxidation of Fe at the mineral surface: the slowdown of olivine dissolution almost completely disappeared. The attachment capacity of these wild type cells is most likely mediated by wild type-specific EPS. Our presented experimental systems allow the oxidation of mineral-released Fe and include a rock-inhabiting fungus, thus simulating chemical, physical and biological conditions that set dissolution rates in a way that is relevant to natural ecosystems. KW - Black fungi KW - Bio-weathering KW - Forsterite KW - Knock-out mutant KW - Extracellular polymeric substances KW - Melanin Adhesion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509332 VL - 282 SP - 76 EP - 97 PB - Elsevier Ltd. AN - OPUS4-50933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Wirth, R. A1 - Schreiber, A. A1 - Feldmann, Ines A1 - Knabe, Nicole A1 - Schott, J, A1 - Benning, L.G. A1 - Gorbushina, Anna T1 - High-resolution imaging of fungal biofilm-induced olivine weathering N2 - Many microorganisms including free-living and symbiotic fungi weather minerals through the formation of biofilms on their surface. Weathering thus proceeds not only according to the mineral’s chemistry and the environmental conditions but also according to the local biofilm chemistry. These processes can be dissected in experiments with defined environmental settings and by employing genetic tools to modify traits of the fungal biofilm. Biofilms of the rock-inhabiting fungus Knufia petricola strain A95 (wild-type, WT) and its melanin-deficient mutant (ΔKppks) were grown on polished olivine sections in subaerial (air-exposed) and subaquatic (submerged) conditions. After seven months of interaction at pH 6 and 25°C, the fungus-mineral interface and abiotic olivine surface were compared using high resolution transmission electron microscopy (HRTEM). The abiotic, subaquatic olivine section showed a 25 nm thick, continuous amorphous layer, enriched in Fe and depleted in Si compared to the underlying crystalline olivine. This amorphous layer formed either through a coupled interfacial dissolution reprecipitation mechanism or through the adsorption of silicic acid on precipitated ferric hydroxides. Its thickness was likely enhanced by mechanical stresses of polishing. Directly underneath a fungal biofilm (WT and mutant alike), the surface remained mostly crystalline and was strongly etched and weathered, indicating enhanced olivine dissolution. The correlation between enhanced olivine dissolution and the absence of a continuous amorphous layer is a strong indication of the dissolution-inhibiting qualities of the latter. We propose that the fungal biofilm sequesters significant amounts of Fe, preventing formation of the amorphous layer and driving olivine dissolution onwards. The seemingly similar olivine surface underneath both WT and mutant biofilms illustrates the comparably insignificant role of specific biofilm traits in the weathering of olivine once biofilm attachment is imposed. Under subaerial conditions, the absence of water on the abiotic surface prohibited olivine dissolution. This was overcome by the water retention capacities of both the WT and mutant biofilm: the olivine surface underneath subaerial fungal biofilms was as weathered as the corresponding subaquatic olivine surface. Under the studied environmental settings, the effect of fungal biofilms on olivine weathering seems to be universal, independent of the production of melanin, the composition of extracellular polymeric substances (EPS) or air-exposure. KW - Bio-weathering KW - Forsterite KW - Extracellular polymeric substances KW - Melanin KW - Black fungi PY - 2021 U6 - https://doi.org/10.1016/j.chemgeo.2020.119902 VL - 559 SP - 119902 PB - Elsevier B.V. AN - OPUS4-51403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis. The differences between the wild-type fungus and its melanin-deficient mutants were tested in geomicrobiological experiments and measured are now discussed in detail, with special accent on the possible effects of the mutation on EPS and other exuded substances. T2 - Departmental colloquium of the Tuscia University CY - Viterbo, Italy DA - 14.02.2020 KW - Ascomycetes KW - Fungal biofilms KW - Material surface colonisation KW - Genetics KW - Genomics KW - Extremophilic fungi PY - 2020 AN - OPUS4-50643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A genetic toolbox for exploring the life style of the rock-inhabiting black fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence of the strain A95 is paving the way for studying interactions of K. petricola with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - black fungi KW - genomics KW - genetics PY - 2020 AN - OPUS4-50593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Microbiology / biofilms in material research and testing N2 - In the modern world there is an increased understanding that design and performance monitoring of materials have to be tested in connection to chemical, physical and (micro)biological challenges. A systematic study on how biofilms interact with materials and what could be done to engineer biofilms and/or materials in order to maximize the resistance of the material (surface) or the resistance the biofilm-modified material (bulk) is in strong need. In the Department “Materials and the Environment” of the BAM new experimental platform is being developed. With the help of different type of device for high throughput and microbiologically-controlled environment simulation we establish a new approach to clarify the mechanisms of biofilm/material interactions. Despite the focus on fundamental research, the main results of this project proposal will be transferable into material technology and construction chemistry and will influence the development of standardization in this topic. As the interactions of biofilms and materials have implications for most constructions as well as climate change, the results of the research generates additional value. T2 - Initialgespräch - DFG-Forschungsgruppe "Mikrobiologie/Biofilme" CY - Karlsruhe, Germany DA - 14.11.2019 KW - Biofilm KW - Microbiology KW - Black fungi KW - Solar panel PY - 2019 AN - OPUS4-50199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks - Black fungi from biofilms on material-atmosphere interface N2 - Interface between the atmosphere and mineral substrates is the oldest terrestrial habitat. Morphologically simple microbial biofilms were the first settlers on these inhospitable surfaces at times when the Earth was inhabited only by microorganisms and the solid substrates represented only by natural rock surfaces i.e. lithosphere. Miniature, self-sufficient microbial ecosystems continue to develop on subaerial (i.e. air-exposed) solid surfaces at all altitudes and latitudes where direct contact with the atmosphere and solar radiation occurs – on rocks, mountains, buildings, monuments, solar panels. All these sub-aerial biofilms develop under fluctuating and hostile conditions – and thus frequently harbour stress-tolerant black fungi inherently able to cope with the stresses of bright sunlight and constantly changing atmospheric conditions. Black fungi – a polyphyletic group of Ascomycetes– accumulate the dark pigment DHN melanin, diverse carotenoids and mycosporines in their cells and thus successfully colonise sunlight-flooded habitats from phyllosphere to rock surfaces. Various chemical and physical extremes and fluctuating environments belong to the challenges effectively mastered by black fungi. In our laboratory we isolate novel black fungi from man-made habitats like building materials and solar panels. Using Knufia petricola A95 as a model we conduct experiments to clarify interactions of black fungi with inorganic substrates. We use available mutants to determine the functional consequences of changes in the outer cell wall envelopes – from excreted EPS to layers of protective pigments. A genetic toolbox to manipulate this Chaetothyriales representative is in further development. Our long-term goal is to understand the fundamental mechanisms how black fungi are able (i) to adhere to dry atmosphere-exposed surfaces, (ii) to survive multiple stresses and (iii) to change the underlying substrates including rocks. T2 - International Symposium on Fungal Stress (ISFUS) CY - São José dos Campos, Brazil DA - 19.05.2019 KW - Subaerial biofilm KW - Melanins KW - Carotenoids KW - Knufia KW - Mineral weathering PY - 2019 AN - OPUS4-50200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - The story of how black fungi survive harsh conditions on sun-exposed desert rocks and material surfaces is fascinating. In the presentation examples of how knowledge of these organisms can be of practical value (e.g., in biodeterioration studies, such as on stone markers in cemeteries) would be given. Among other stories, the example of how roof tiles amended with a titanium oxide layers as a biocide actually selected for the black fungi will be told. A hypothesis about how these organisms would likely be found on solar panels and some early BAM work in that area will be presented. This then brings the connection to a study ripe for investigation in North Carolina. The talk presents the development of a study aiming at deciphering the influence of microbial biofilm formation on the energy conversion efficiency of solar photovoltaic panels or modules at two facilities (one facility under the impact of high intensity of animal agriculture and high deposition of ammonia from atmosphere and the other with low animal agriculture and lower atmospheric ammonia deposition) in North Carolina. The main hypothesis of the study is that microbial biofilm formation on solar photovoltaic panels will lead to significant decreases in energy conversion efficiency of solar photovoltaic modules and biofilm formation will also be accelerated by high ammonia concentration in the ambient atmosphere and high nitrogen deposition. T2 - Dr. Michael D. Aitken Symposium CY - Chapel Hill, NC, USA DA - 08.11.2019 KW - Black fungi KW - Solar panel KW - Biofilm PY - 2019 AN - OPUS4-50125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A Genetic Toolbox for Exploring the Life Style of the Rock-inhabiting Black Fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish sub-aerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of black yeasts such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis. For this environmental strain we developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence is paving the way for studying interactions of K. petricola and other black yeasts with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - VAAM symposium 'Molecular Biology of Fungi' CY - Göttingen, Germany DA - 19.09.2019 KW - Knufia petricola KW - Rock-inhabiting fungus KW - Genetics KW - Crispr-Cas9 PY - 2019 AN - OPUS4-49634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Schumacher, Julia A1 - Abdallah, Khaled T1 - Black fungi on technosphere surfaces: new niches for roof-inhabiting cousins N2 - Human-made systems, also called “build environment” or “technosphere”, sustain human comfort as well as our industrial activities. These systems have become particularly widespread since the Industrial Revolution, i.e., since the 17th century. At the same time, these technical systems – buildings, monuments, energy production, transformation and transmission, water purification and supply systems - serve as new habitats for living organisms. Life is ubiquitously present on our planet since a very long time: the Earth is 4.54 billion years old and microbial communities have played a key role on our planet for 3.7 billion years. Once human-made system appeared, microorganisms became an integral part of all types of technosphere infrastructure as well. Here we will illustrate biosphere-technosphere interactions using a specific example of the black fungi and their impact on the efficiency of solar (photovoltaic) panels. This expanding renewable infrastructure for electricity generation is growing on all continents - and create a specific, arid habitat for stress-tolerant black fungi. Black fungi were once discovered in hot and cold natural deserts – and now belong to the persistent colonisers of human-made deserts of solar parks. This new niche is evolving an impressive biodiversity. So far more than 60 isolates of black fungi belonging to Arthoniomycetes, Eurotiomycetes and Dothideomycetes were obtained from solar panels in Europe and Americas. Here we will present the analysis of this emerging anthropogenic biodiversity. Opportunities for future research in the field include quantification of the microbial load on technosphere surfaces – along with characterisation of the corresponding microbial diversity. The strategy of precise measurement and characterisation will enable us to reliably determine the beneficial and harmful functions that living microorganisms play in the functioning of energy-generating systems – and technosphere in general. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2923 KW - Biosphere-technosphere interaction KW - Microbial communities KW - Solar parks PY - 2023 AN - OPUS4-58451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Knabe, Nicole A1 - Gorbushina, Anna ED - Gurtler, V. ED - Trevors, J. T. T1 - Territories of rock-inhabiting fungi: Survival on and alteration of solid air-exposed surfaces N2 - Subaerial biofilms that are omnipresent at the interface between all solid substrates and the atmosphere are composed of a unique and widespread group of ascomycetes called rock-inhabiting fungi or microcolonial fungi (MCF), typically in communities with other microorganisms. While subaerial biofilms in toto have important roles in mineral weathering and biodeterioration of materials, methodological approaches to subaerial biofilm communities are diverse and frequently focussed on MCF. Here, we review the historical development of the research methods applied in the field and consider perspectives to increase our understanding of the biofilm-induced changes of solid substrate surfaces. KW - Biologically induced mineral weathering KW - Geobiology KW - Microcolonial fungi KW - Subaerial biofilm KW - Symbiosis PY - 2018 UR - https://linkinghub.elsevier.com/retrieve/pii/S0580951718300047 SN - 9780128146040 U6 - https://doi.org/10.1016/bs.mim.2018.06.001 VL - 45 SP - Chapter 6, 145 EP - 169 PB - Elsevier AN - OPUS4-47181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koester, M. A1 - Stock, S. C. A1 - Nájera, F. A1 - Abdallah, Khaled A1 - Gorbushina, Anna A1 - Prietzel, J. A1 - Matus, F. A1 - Klysubun, W. A1 - Boy, J. A1 - Kuzyakov, Y. A1 - Dippold, M. A. A1 - Spielvogel, S. T1 - From rock eating to vegetarian ecosystems — Disentangling processes of phosphorus acquisition across biomes N2 - Low-molecular-weight organic acids (LMWOAs) are crucial for the mobilization and acquisition of mineral phosphorus by plants. However, the role of LMWOAs in mobilizing organic phosphorus, which is the predominant phosphorus form in at least half of the world’s ecosystems, especially in humid climates, is unclear. The mechanisms of phosphorus mobilization by LMWOAs depend on climate, mainly precipitation, and shape the phosphorus nutrition strategies of plants. We disentangled the impact of roots and associated microorganisms on mechanisms of phosphorus cycling mediated by LMWOAs by studying soils along an ecosystem-sequence (ecosequence) from arid shrubland (~70 mm yr-1), and Mediterranean woodland (~370 mm yr-1) to humid-temperate forest (~1470 mm yr-1). Phosphorus speciation in soil was examined by X-ray absorption near edge structure analysis (XANES). LMWOAs were quantified as biological rock-weathering and organic phosphorus mobilization agents and compared to kinetics of acid phosphatase as a proxy for organic phosphorus mineralization. Calcium-bound phosphorus in topsoils decreased from 126 mg kg-1 in the arid shrubland, to 19 mg kg-1 in the Mediterranean woodland and was undetectable in the humid-temperate forest. In contrast, organic phosphorus in topsoils in close root proximity (0–2 mm distance to roots) was absent in the arid shrubland but raised to 220 mg kg-1 in the Mediterranean woodland and to 291 mg kg-1 in the humid-temperate forest. The organic phosphorus content in topsoils was 1.6 to 2.4 times higher in close root proximity (0–2 mm distance to roots) compared to bulk soil (4–6 mm distance to roots) in the Mediterranean woodland and humid-temperate forest, showing intensive phosphorus bioaccumulation in the rhizosphere. Redundancy analysis (RDA) revealed that LMWOAs were explained by the content of hydroxyapatite and variscite phosphorus-species in the arid shrubland, indicating that LMWOAs contribute to mineral weathering in this soil. LMWOA contents, phosphatase activity, and microbial biomass carbon correlated strongly with organic phosphorus in the humid-temperate forest soil, which implies a high relevance of LMWOAs for organic phosphorus recycling. In the Mediterranean woodland soil, however, oxalic acid correlated with organic phosphorus in the topsoil (suggesting phosphorus recycling), whereas in the subsoil malic and citric acid were correlated with primary and secondary phosphorus minerals (implying mineral weathering). We conclude that phosphorus acquisition and cycling depend strongly on climate and that the functions of LMWOAs in the rhizosphere change fundamentally along the precipitation gradient. In the arid shrubland LMWOAs facilitate biochemical weathering (rock eating), while in the humid-temperate forest their functions change towards supporting organic phosphorus recycling (vegetarian). KW - Rhizosphere processes KW - Phosphorus K-edge-XANES spectroscopy KW - Low-molecular-weight organic substances KW - Organic phosphorus breakdown KW - Biogenic weathering KW - Climate gradient PY - 2020 U6 - https://doi.org/10.1016/j.geoderma.2020.114827 VL - 388 SP - 114827 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-51931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Lessovaia, S.N. A1 - Gerrits, Ruben A1 - Gorbushina, Anna A1 - Polekhovsky, Y.S. A1 - Dultz, S. A1 - Kopitsa, G.G. ED - Frank-Kamenetskaya, O.V. ED - Vlasov, D. ED - Panova, E.G. ED - Lessovaia, S.N. T1 - Modeling Biogenic Weathering of Rocks from Soils of Cold Environments N2 - Morphologically simple and microbially dominated ecosystems termed “biofilms” have existed on Earth for a long period of biosphere evolution. A model biofilm combining one heterotroph and one phototroph component was used in a laboratory experiment to simulate biogenic weathering with two different specimens of basic rock samples from the soil profiles. The rocks fragments from the regions of cold environments of Eurasia,where abiotic physical processes, including rock disintegration initiated by freezing–thawing cycles, represent the most probable Scenario of rock weathering, were subjected to biological colonization. The rock Fragments were represented by dolerite and metagabbro amphibolites. Polished sections of the rock samples were inoculated with the model microbiological consortium of the oligotrophic fungus and the phototrophic cyanobacteria (biofilm). After 3 month runtime of the experiment the progress of rock weathering was derived from the growth of the biofilm on the rock surfaces. The model biofilm visualization on the rock surface of polished sections illustrated their stronger development namely on dolerite in comparison with metagabbro amphibolite. The findings confirmed the higher sensitivity of dolerite to biogenic weathering due to (i) mineral association, in which quartz was absent and (ii) porosity providing higher specific surface area for biotic—abiotic interaction influenced by the occurrence of micro-porosity in the rock. KW - Biogenic weathering KW - Rock leaching KW - Fractal structure KW - Biofilm formation KW - Internal pores PY - 2020 U6 - https://doi.org/10.1007/978-3-030-21614-6_27 SP - 501 EP - 515 PB - Springer AN - OPUS4-51442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gebhardt, Christopher A1 - Toepel, Jörg A1 - Barry, J. A1 - Munzke, N. A1 - Günster, Jens A1 - Gorbushina, Anna T1 - Monitoring microbial soiling in photovoltaic systems: A qPCR-based approach N2 - Soiling of photovoltaic (PV) systems compromises their performance causing a significant power loss and demanding periodical cleaning actions. This phenomenon raises great concerns in the solar energy field, thus leading to notable research efforts over the last decades. Soiling is caused by a dual action of dust deposition and biofouling. However, surprisingly, the microbiological contribution to PV soiling is often overlooked or underestimated. In this study, a variety of qPCR-based methods have been developed to quantify the microbial load of fungi, bacteria and phototrophs on PV panels. These protocols were evaluated by comparison with culturedependent methods, and were implemented with real solar plants for two years. The results show that the developed molecular methods are highly sensitive and reliable to monitor the microbial component of the soiling. Fungal biomass was clearly dominant in all analysed PV modules, while bacteria and phototrophs showed much lower abundance. Light microscopy and qPCR results revealed that melanised microcolonial fungi and phototrophs are the main biofilm-forming microorganisms on the studied solar panels. In particular, the fungal qPCR protocol is proposed as a useful tool for monitoring of PV soiling, and investigating the microbial contribution to specific soiling cases. KW - Solar panels KW - PV modules KW - Real-time qPCR KW - Bacteria KW - Fungi KW - Phototrophs PY - 2018 U6 - https://doi.org/10.1016/j.ibiod.2017.12.008 SN - 0964-8305 VL - 129 SP - 13 EP - 22 PB - Elsevier Science AN - OPUS4-43892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521517 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pokharel, R. A1 - Gerrits, Ruben A1 - Schuessler, J. A. A1 - Frings, P. J. A1 - Sobotka, R. A1 - Gorbushina, Anna A1 - von Blanckenburg, F. T1 - Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants N2 - In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is −0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (−2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (−0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants. KW - Cyanobacteria KW - Black fungi KW - Nostoc punctiforme KW - Knufia petricola KW - Magnesium PY - 2018 U6 - https://doi.org/10.1021/acs.est.8b02238 SN - 1520-5851 SN - 0013-936X VL - 52 IS - 21 SP - 12216 EP - 12224 PB - ACS Publications AN - OPUS4-46832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez-Martin, Pedro A1 - Becker, Roland A1 - Toepel, J. A1 - Gorbushina, Anna T1 - An improved test for the evaluation of hydrocarbon degradation capacities of diesel-contaminating microorganisms N2 - The development of a test to evaluate the degradation of semi-volatile fuels as diesel by microorganisms is presented. This method is based on the principles described in the CEC-L-103 Standard procedure that is exclusively meant for testing the biodegradability of non-volatile lubricants. Therefore, significant modifications involve aseptic conditions for testing specific microorganisms and conducting the test in closed vessels avoiding evaporation losses, while fuel quantification using gas chromatography-flame ionization detection (GC-FID) is retained. It is suggested that the modified procedure should enable routine application for semi-volatile hydrocarbon-based fuels. GC-FID provides additionally valuable information on the alteration of fuel component patterns during biodegradation. The procedure was successfully tested using two bacteria (Pseudomonas aeruginosa and Sphingomonas sp.) and two yeasts (Moesziomyces sp. and Candida sp.) isolated from real diesel contamination cases. All tested microorganisms caused a significant degradation of diesel fuel achieving hydrocarbon degradation percentages ranging from 23% to 35%. Specific aspects on the test modification and prospects for further modification regarding targeted investigations in the field of fuel contamination by microorganisms are briefly discussed. KW - Biofouling KW - Bacteria KW - Fungi KW - CEC-L-103 KW - GC-FID KW - Reference organisms PY - 2018 U6 - https://doi.org/10.1016/j.ibiod.2018.01.009 SN - 0964-8305 VL - 129 SP - 89 EP - 94 PB - Elsevier AN - OPUS4-44524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Schwarze Pilze – Wüstenbesiedler finden neue Lebensräume N2 - Schwarze mikrokoloniale Pilze besiedeln zunehmend von Menschen geschaffene Habitate, wie schadstoffbelastete Böden, Statuen, Gebäudefassaden und Dächer. Sie verfärben und zersetzen die Oberflächen von anfälligen Materialien oder reduzieren die Lichtausbeute von Solaranlagen. Die Biologie dieser Pilze und ihre Relevanz für die Materialforschung stehen im Fokus unserer Studien an der Bundesanstalt für Materialforschung und -prüfung (BAM). Mit einer Kollektion schwarzer Pilze, die von Solaranlagen isoliert wurden, bringen wir klima- und materialrelevante Biodiversität in den Stammbaum des Lebens. Die Überlebensstrategien dieser Organismen versuchen wir mit molekularbiologischen und genetischen Untersuchungsansätzen zu entschlüsseln. KW - Pilze KW - Genetik KW - Diversität PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-541037 VL - 27 IS - 6 SP - 665 EP - 666 PB - Springer AN - OPUS4-54103 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Light sensing in plant- and rock-associated black fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. But to cope with sunlight-associated stresses [e.g. high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses] it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black [dihydroxynaphthalene (DHN) melanin-containing] fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers ofPRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for fungi that receive nutrients through cooperation with phototrophs. Genetic tools for manipulating K. petricola exist and will be used to test this idea. KW - Botrytis cinerea KW - DHN melanin KW - Knufia petricola KW - Phyllosphere KW - Rock biofilm PY - 2020 U6 - https://doi.org/10.1016/j.funbio.2020.01.004 VL - 124 IS - 5 SP - 407 EP - 417 AN - OPUS4-50786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Selbmann, L. A1 - Benkő, Z. A1 - Coleine, C. A1 - de Hoog, S. A1 - Donati, C. A1 - Druzhinina, I. A1 - Emri, T. A1 - Ettinger, C. L. A1 - Gladfelter, A. S. A1 - Gorbushina, Anna A1 - Grigoriev, I. V. A1 - Grube, M. A1 - Gunde-Cimerman, N. A1 - Karányi, Z. A. A1 - Kocsis, B. A1 - Kubressoian, T. A1 - Miklós, I. A1 - Miskei, M. A1 - Muggia, L. A1 - Northen, T. A1 - Novak-Babič, M. A1 - Pennacchio, C. A1 - Pfliegler, W. P. A1 - Pòcsi, I. A1 - Prigione, V. A1 - Riquelme, M. A1 - Segata, N. A1 - Schumacher, Julia A1 - Shelest, E. A1 - Sterflinger, K. A1 - Tesei, D. A1 - U’Ren, J. M. A1 - Varese, G. C. A1 - Vázquez-Campos, X. A1 - Vicente, V. A. A1 - Souza, E. M. A1 - Zalar, P. A1 - Walker, A. K. A1 - Stajich, J. E. T1 - Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES N2 - The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the “Shed light in The daRk lineagES of the fungal tree of life” (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments. KW - Adaptation KW - Black fungi KW - Dothideomycetes KW - Eurotiomycetes KW - Extremophiles KW - Genomics KW - Metabolomics KW - Secondary metabolites KW - Stress conditions KW - Transcriptomics PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519328 VL - 10 IS - 12 SP - 362 PB - MDPI CY - Basel AN - OPUS4-51932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Koester, M. A1 - Boy, J. A1 - Godoy, R. A1 - Nájera, F. A1 - Matus, F.J. A1 - Merino, C. A1 - Abdallah, Khaled A1 - Leuschner, C. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. A1 - Dippold, M. A. T1 - Plant carbon investment infine roots and arbuscular mycorrhizal fungi: Across-biome study on nutrient acquisition strategies N2 - Plant resource acquisition strategies were ecosystem-specific with distinct mutualism with arbuscular mycorrhizal (AM) fungi. Root traits indicated conservative resource economics in the arid shrubland, but an acquisitive and self-sufficient (“do-it-yourself”) acquisition strategy in the semiarid coastal matorral, resulting in large carbon (C) investments (green). Forest plants with conservative root traits seem to intensively outsource their acquisition to AM fungi, compensating for lower uptake capacities of conservative roots (red line). High allocations of freshly assimilated C into AM fungal storage compounds illustrated the relevance of AM fungi as C sink, especially in the semiarid matorral. KW - Natural ecosystems KW - Temperate rain forest KW - Arbuscular mycorrhiza KW - Plant economic spectrum KW - Root economics space KW - 13CO2 pulse labeling PY - 2021 U6 - https://doi.org/10.1016/j.scitotenv.2021.146748 VL - 781 SP - 146748 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Koester, M. A1 - Nájera, F. A1 - Boy, J. A1 - Matus, F. A1 - Merino, C. A1 - Abdallah, K. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Dippold, M. A. A1 - Kuzyakov, Y. ED - Nunan, Naoise T1 - Vegetation strategies for nitrogen and potassium acquisition along a climate and vegetation gradient: From semi-desert to temperate rainforest N2 - Nutrient acquisition strategies of plants regulate water flow and mass transport within ecosystems, shaping earth surface processes. Understanding plant strategies under current conditions is important to assess and predict responses of natural ecosystems to future climate and environmental changes. Nitrogen (N) and potassium (K) (re-)utilization from topsoil and their acquisition from subsoil and saprolite were evaluated in a continental transect, encompassing three study sites – an arid shrubland, a mediterranean woodland, and a temperate rainforest – on similar granitoid parent material in the Chilean Coastal Cordillera. The short-term (<1 year) plant N and K acquisition was traced with 15N and the K analogs rubidium and cesium. To do so, the tracers were either injected into topsoil, subsoil, or saprolite, in the immediate vicinity of eight individual plants per study site and injection depth. The long-term (>decades) K uplift by plants was investigated by the vertical distribution of exchangeable K+ and Na+. Recoveries of 15N and K analogs by arid shrubland plants were similar from topsoil, subsoil, and saprolite. Mediterranean woodland shrubs recovered the tracers primarily from topsoil (i.e., 89 % of recovered 15N and 84 % of recovered K analogs). Forest plants recovered the tracers from topsoil (15N = 49 %, K analogs = 57 %) and partially from greater depth: 38 % of recovered 15N and 43 % of recovered K analogs were acquired from subsoil and saprolite, respectively. Low nutrient accessibility in the topsoil (e.g., because of frequent droughts) drives shrubland plants to expand their N and K uptake to deeper and moister soil and saprolite. Woodland and forest plants dominantly recycled nutrients from topsoil. In the forest, this strategy was complemented by short-term uplift of N and K from depth. The vertical distribution of exchangeable K indicated long-term uplift of K by roots in all three sites. This highlighted that long-term K uplift from depth complements the nutrient budget across the continental transect. KW - Subsoil nutrient tracing KW - N and K analog tracer KW - Nutrient uplift and recyclin KW - Nutrient cycles KW - (Semi)arid to humid-temperate natural ecosys KW - Tems KW - Chilean Coastal Cordillera PY - 2022 U6 - https://doi.org/10.1016/j.geoderma.2022.116077 SN - 0016-7061 VL - 425 SP - 2 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-56129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Köster, M. A1 - Dippold, M. A. A1 - Nájera, F. A1 - Matus, F. A1 - Merino, C. A1 - Boy, J. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. T1 - Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale N2 - Microbial activity and functioning in soils are strongly limited by carbon (C) availability, of which a great proportion is released by living roots. Rhizodeposition and especially root exudates stimulate microbial activity and growth, and may shift the stoichiometric balance between C, N, and P. Thereby, exudates heighten microbial nutrient demand and acquisition of N and P from organic matter, leading to an increase in enzyme production. Aim of this study was to determine environmental controls of extracellular enzyme production, and hence on potential enzyme activities (Vmax) and substrate affinities (Km). To determine the controlling factors, we worked on four spatial scales from the microscale (i.e. rhizosphere) through the mesoscale (i.e. soil depth) and landscape scale (relief positions), and finally to the continental scale (1200 km transect within the Coastal Cordillera of Chile). Kinetics of seven hydrolyzing enzymes of the C, N, and P cycles (cellobiohydrolase, β‑glucosidase, β‑xylosidase, β‑N‑acetylglucosaminidase, leucine‑aminopeptidase, tyrosine‑aminopeptidase, and acid phosphatase) were related to soil texture, C and N contents, pH, and soil moisture via redundancy analysis (RDA). Potential activities of C, N, and P acquiring enzymes increased up to 7-times on the continental scale with rising humidity of sites and C and N contents, while substrate affinities simultaneously declined. On the landscape scale, neither Vmax nor Km of any enzyme differed between north and south slopes. From top- to subsoil (down to 120 cm depth) potential activities decreased (strongest of aminopeptidases under humid temperate conditions with up to 90%). Substrate affinities, however, increased with soil depth only for N and P acquiring enzymes. Affinities of cellobiohydrolase and β‑xylosidase, on the contrary, were 1.5- to 3-times higher in top- than in subsoil. Potential activities of N and P acquiring enzymes and β‑glucosidase increased form bulk to roots. Simultaneously, substrate affinities of N and P acquiring enzymes declined, whereas affinities of β‑glucosidase increased. These trends of activities and affinities in the rhizosphere were significant only for acid phosphatase. The RDA displayed a strong relation of potential activities of C and P acquiring enzymes and β‑N‑acetylglucosaminidase to C and N contents in soil as well as to the silt and clay contents. Aminopeptidase activity was mainly dependent on soil moisture and pH. We conclude that substrate availability for microorganisms mainly determined enzyme activity patterns on the continental scale by the humidity gradient. Patterns on the meso- and microscale are primarily controlled by nutrient limitation, which is induced by a shift of the stoichiometric balance due to input of easily available C by roots in the rhizosphere. KW - Extracellular enzymes KW - Stoichiometric homeostasis KW - Rhizosphere effect KW - Nutrient acquisition KW - Multi-scale study PY - 2018 U6 - https://doi.org/10.1016/j.geoderma.2018.10.030 SN - 0016-7061 SN - 1872-6259 VL - 2019 IS - 337 SP - 973 EP - 982 PB - Elsevier B.V. AN - OPUS4-46829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stohl, Leonie A1 - Manninger, Tanja A1 - von Werder, Julia A1 - Dehn, F. A1 - Gorbushina, Anna A1 - Meng, Birgit T1 - Bioreceptivity of concrete - A review N2 - Materials that support natural biodiversity on their surfaces can compensate for human activities that have a negative impact on nature and thus contribute to a carbon-neutral and nature-positive world. Specifically designing bioreceptive materials which favor the growth of biofilms on their surface is an approach complementing conventional, macroscopic green façades. But what exactly characterizes a bioreceptive substrate and how do biofilm and substrate interact? How and why does a spontaneous colonization and the formation of biofilms take place? What are biofilms and how can they be established in a laboratory setting? How can this existing knowledge be transferred to the artificial stone concrete so that this material can be tuned to increase (or decrease) its bioreceptivity? This review paper aims at summarizing the existing state of knowledge on bioreceptive concrete and pointing out inconsistencies and contradictions which can only be removed by more interdisciplinary research in the field. KW - Bioreceptivity KW - Biofilm KW - Green facades KW - Developing building materials KW - Surface interactions KW - Concrete PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-581685 SN - 2352-7102 VL - 76 SP - 1 EP - 17 PB - Elsevier AN - OPUS4-58168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Donskyi, Ievgen A1 - Cuellar-Camacho, J. L. A1 - Cheng, C. A1 - Schwibbert, Karin A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Gorbushina, Anna A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene–pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed “trapping” and “nano-knives” mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of “trapping” and “nano-knives” mechanisms for the antibacterial activity of graphene sheets. KW - XPS KW - Graphene KW - Graphene–bacteria interaction PY - 2018 U6 - https://doi.org/10.1039/c8nr01347k SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 20 SP - 9525 EP - 9537 PB - RSC CY - London AN - OPUS4-45084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tonon, C. A1 - Breitenbach, Romy A1 - Voigt, Oliver A1 - Turci, F. A1 - Gorbushina, Anna A1 - Favero-Longo, S. E. T1 - Hyphal morphology and substrate porosity -rather than melanization- drive penetration of black fungi into carbonate substrates N2 - Due to their ability to penetrate, deteriorate and discolour stone surfaces, rock-inhabiting black fungi represent a remarkable issue for cultural heritage conservation. Black microcolonial fungi (MCF) can also adapt to different environmental conditions, by converting from yeast-like morphology to a peculiar meristematic development with swollen cells (torulose hyphae, TH), to extremely thin structures (filamentous hyphae, FH). Furthermore, black MCF produce protective pigments: melanin, dark pigment particularly evident on light stone surfaces, and carotenoids. Black fungi produce melanin in critical, oligotrophic conditions as well as constitutively. Melanin function is mostly related to stress resistance and the ability of fungi to generate appressorial turgor to actively penetrate plant cells in pathogenic species. An involvement of melanins in stone surface penetration has been suggested, but not experimentally proved. In this work, we tested the role of hyphal melanisation in penetration mechanisms on the model black fungus Knufia petricola A95 in lab conditions. The wild-type and three mutants with introduced targeted mutations of polyketide-synthases (melanin production) and/or phytoene dehydrogenase (carotenoid synthesis) were inoculated on artificial carbonate pellets (pressed Carrara marble powder) of different porosity. After 5, 10, 17 and 27 weeks, hyphal penetration depth and spread were quantified on periodic acid Schiff-stained cross-sections of the pellets, collecting measurements separately for TH and FH. Droplet assay of the mutants on different media were conducted to determine the role of nutrients in the development of different fungal morphologies. In our in vitro study, the hyphal penetration depth, never exceeding 200 μm, was proven to be consistent with observed penetration patterns on stone heritage carbonate substrates. Pellet porosity affected penetration patterns of TH, which developed in voids of the more porous pellets, instead than actively opening new passageways. Oppositely, the thin diameter of FH allowed their penetration independently of substrate porosity. Instead, the long-hypothesized crucial role of melanin in black MCF hyphal penetration should be rejected. TH were developed within the pellets also by melanin deficient strains, and melanized strains showed an endolithic component of non-melanized TH. FH were non-melanized for all the strains, but deeply penetrated all pellet types, with higher penetration depth probably related to their potential exploratory (nutrient-seeking) role, while TH may be more related to a resistance to surface stress factors. In the melanin deficient strains, the absence of melanin caused an increased penetration rate of FH, hypothetically related to an earlier necessity to search for organic nutrients. KW - Biodeterioration KW - Bioreceptivity KW - Black microcolonial fungi KW - Marble KW - Stone cultural heritage KW - Stress tolerance PY - 2020 U6 - https://doi.org/10.1016/j.culher.2020.11.003 VL - 48 SP - 244 EP - 253 PB - Elsevier Masson SAS CY - Paris, Amsterdam AN - OPUS4-51933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Oliver A1 - Knabe, Nicole A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - An advanced genetic toolkit for exploring the biology of the rock‑inhabiting black fungus Knufia petricola N2 - Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast-like growth and constitutive melanin formation. They dominate a range of hostile natural and man-made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. A cell biological approach was taken by generating K. petricola strains expressing green or red fluorescent protein variants. By applying: (1) traditional gene replacement; (2) gene editing and replacement via plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9, and (3) silencing by RNA interference (RNAi), we constructed mutants in the pathways leading to melanin, carotenoids, uracil and adenine. Stable single and double mutants were generated with homologous recombination (HR) rates up to 100%. Efficient, partially cloning-free strategies to mutate multiple genes with or without resistance cassettes were developed. This state-of-the-art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi. KW - Subaerial biofilms KW - Biodeterioration KW - Fluorescent microscopy KW - CRISPR/Cas9 KW - RNA interference PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-518601 VL - 10 IS - 1 SP - 22021 PB - Springer Nature AN - OPUS4-51860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -