TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Taube, Mareike A1 - Krüger, O. A1 - Baran, R. A1 - Adam, Christian T1 - Uranium and thorium species in phosphate rock and sewage sludge ash based phosphorus fertilizers N2 - Phosphorus (P) is an essential element for all forms of life and is thus often applied as phosphate rock-based P-fertilizers in agriculture to enable continuous farming. However, these P-fertilizers contain also hazardous uranium (U) and thorium (Th), up to 660 and 220 mg/kg, respectively. On the contrary, novel P-fertilizers made from sewage sludge (ash) contain only low mass fractions of U and Th. In addition to the total amount of U and Th in P-fertilizers, their mobility and bioavailability is important, which depends to a large extent on their chemical state, especially oxidation state and chemical bonding. Thus, we analyzed their chemical state in various P-fertilizers by U and Th L3-edge HERFD-XANES spectroscopy. Phosphate rocks and sewage sludge-based P-fertilizers contain mainly U(IV) compounds which have only a low bioavailability. In contrast, acidic treatment of phosphate rock to produce super phosphates lead to an oxidation to U(VI) compounds (including formation of uranium phosphates) with a strongly increased bioavailability. On the contrary, all analyzed P-fertilizers contain Th in form of strongly insoluble phosphates and oxides with a low bioavailability. Additionally performed water extractions and Diffusive Gradients in Thin-films (DGT) experiments support these findings. KW - Phosphorus fertilizer KW - Sewage sludge KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Diffusive Gradients in Thin-films (DGT) KW - Extraction PY - 2020 DO - https://doi.org/10.1016/j.jhazmat.2019.121100 SN - 0304-3894 VL - 382 SP - 121100, 1 EP - 6 AN - OPUS4-48872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brusamarello-Santos, L. C. C. A1 - Alberton, D. A1 - Valdameri, G. A1 - Camilios-Neto, D. A1 - Covre, R. A1 - Lopes, K. d. P. A1 - Zibetti Tadra-Sfeir, M. A1 - Faoro, H. A1 - Adele Monteiro, R. A1 - Barbosa-Silva, A. A1 - Broughton, William John A1 - Oliveira Pedrosa, F. A1 - Wassem, R. A1 - de Souza, E.M. T1 - Modulation of defence and iron homeostasis genes in rice roots by the diazotrophic endophyte Herbaspirillum seropedicae N2 - Rice is staple food of nearly half the world’s population. Rice yields must therefore increase to feed ever larger populations. By colonising rice and other plants, Herbaspirillum spp. stimulate plant growthand productivity. However the molecular factors involved are largely unknown. To further explore this interaction, the transcription profiles of Nipponbare rice roots inoculated with Herbaspirillum seropedicae were determined by RNA-seq. Mapping the 104 million reads against the Oryza sativa cv. Nipponbare genome produced 65 million unique mapped reads that represented 13,840 transcripts each with at least two-times coverage. About 7.4% (1,014) genes were differentially regulated and of these 255 changed expression levels more than two times. Several of the repressed genes encoded proteins related to plant defence (e.g. a putative probenazole inducible protein), plant disease resistance as well as enzymes involved in flavonoid and isoprenoid synthesis. Genes related to the synthesis and efflux of phytosiderophores (PS) and transport of PS-iron complexes were induced by the bacteria. These data suggest that the bacterium represses the rice defence system while concomitantly activating iron uptake. Transcripts of H. seropedicae were also detected amongst which transcripts of genes involved in nitrogen fixation, cell motility and cell wall synthesis were the most expressed. KW - Herbaspirillum seropedicae KW - Pathogen KW - Rice KW - qPCR KW - Genome PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-490122 DO - https://doi.org/10.1038/s41598-019-45866-w SN - 2045-2322 VL - 9 SP - 10573-1 EP - 10573-15 PB - Nature CY - London AN - OPUS4-49012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guterman, R. A1 - Miao, H. A1 - Cataldo, V. A. A1 - Antonietti, M. A1 - Dimke, Thomas A1 - Stephan, Ina T1 - Thioimidazolium salts as a platform for nonvolatile alkylators and degradable antiseptics N2 - ABSTRACT: A collection of thioimidazolium salts were synthesized and used as a new class of nonvolatile alkylating agents. Their nonvolatility prevents exposure during use or handling and are thus drastically safer than conventional alkylating agents. We discovered that thioimidazolium Iodide salts cannot release volatile compounds in the solid state, but instead only decompose when molten. Since decomposition proceeds via alkyl iodide elimination, SN2 of iodide on the thioimidazolium cation is constrained in the solid state, and instead can occur only upon melting when ions are mobile. By smart design of these alkylators, the melting point and thus the decomposition temperature of these salts can be increased from 106 to 169 °C and release negligible volatile organic compounds prior to melting. Thioimidazolium-bis(trifluoromethanesulfonyl)imide (TFSI) ionic liquids act as a completely nonvolatile and air-stable TFSI-based alkylating agent and can be used for high-throughput Synthesis of TFSI ionic liquids without solvent. Alkyl groups from methyl to dodecyl can be transferred to a nucleophile and the product purified by sublimation of the thione byproduct, which can then be recycled. We also found that thioimidazolium salts with a dodecyl chain are bactericidal, yet can hydrolyze in water to form benign neutral products, and thus wont accumulate in the environment. These results demonstrate that thioimidazolium salts are a designable platform for the pursuit of safer and more environmentally friendly alkylating and antiseptic agents. KW - Alkylating agents KW - Decomposition point KW - Melting point KW - Nonvolatile KW - One-step ionic liquids synthesis KW - Antiseptic agents PY - 2018 DO - https://doi.org/10.1021/acssuschemeng.8b03874 SN - 2168-0485 VL - 6 IS - 11 SP - 15434 EP - 15440 PB - American Chemical Society CY - Washington, DC AN - OPUS4-46904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Lombi, E. A1 - Herzel, Hannes A1 - Zuin, L. A1 - Wang, D. A1 - Felix, R. A1 - Adam, Christian T1 - Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils N2 - A wide range of methods are used to estimate the plant-availability of soil phosphorus (P). Published research has shown that the diffusive gradients in thin films (DGT) technique has a superior correlation to plant-available P in soils compared to standard chemical extraction tests. In order to identify the plantavailable soil P species, we combined DGT with infrared and P K- and L2,3-edge X-ray adsorption near edge structure (XANES) spectroscopy. This was achieved by spectroscopically investigating the dried binding layer of DGT devices after soil deployment. All three spectroscopic methods were able to distinguish between different kinds of phosphates (poly-, trimeta-, pyro- and orthophosphate) on the DGT binding layer. However, infrared spectroscopy was most sensitive to distinguish between different types of adsorbed inorganic and organic phosphates. Furthermore, intermediates of the time-resolved hydrolysis of trimetaphosphate in soil could be analyzed. KW - Phosphorus plant-availability KW - X-ray adsorption near-edge structure (XANES) spectroscopy KW - Infrared spectroscopy KW - Diffusive gradients in thin films (DGT) PY - 2019 DO - https://doi.org/10.1016/j.aca.2019.01.037 SN - 0003-2670 VL - 1057 SP - 80 EP - 87 PB - Elsevier AN - OPUS4-47471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Davis, Hannah A1 - Meconcelli, Stefania A1 - Radek, R. A1 - McMahon, Dino Peter T1 - Termites shape their collective behavioural response based on stage of infection N2 - Social insects employ a range of behaviours to protect their colonies against disease, but little is known about how such collective behaviours are orchestrated. This is especially true for the social Blattodea (termites). We developed an experimental approach that allowed us to explore how the social response to disease is co-ordinated by multistep host-pathogen interactions. We infected the eastern subterranean termite Reticulitermes flavipes with the entomopathogenic fungus Metarhizium anisopliae, and then, at different stages of infection, reintroduced them to healthy nestmates and recorded behavioural responses. As expected, termites groomed pathogen-exposed individuals significantly more than controls; however, grooming was significantly elevated after fungal germination than before, demonstrating the importance of fungal status to hygienic behaviour. Significantly, we found that cannibalism became prevalent only after exposed termites became visibly ill, highlighting the importance of host condition as a cue for social hygienic behaviour. Our study reveals the presence of a coordinated social response to disease that depends on stage of infection. Specifically, we show how the host may play a key role in triggering its own sacrifice. Sacrificial self-flagging has been observed in other social insects: our results demonstrate that termites have independently evolved to both recognize and destructively respond to sickness. KW - Social KW - Immunity KW - Cannibalism KW - Entomopathogen PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-463239 DO - https://doi.org/10.1038/s41598-018-32721-7 SN - 2045-2322 VL - 8 SP - 14433, 1 EP - 10 PB - Nature CY - London AN - OPUS4-46323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oprzeska-Zingrebe, E. A. A1 - Meyer, Susann A1 - Roloff, Alexander A1 - Kunte, Hans-Jörg A1 - Smiatek, J. T1 - Influence of compatible solute ectoine on distinct DNA structures: thermodynamic insights into molecular binding mechanisms and destabilization effects N2 - In nature, the cellular environment of DNA includes not only water and ions, but also other components and co-solutes, which can exert both stabilizing and destabilizing effects on particular oligonucleotide conformations. Among them, ectoine, known as an important osmoprotectant organic co-solute in a broad range of pharmaceutical products, turns out to be of particular relevance. In this article, we study the influence of ectoine on a short single-stranded DNA fragment and on double-stranded helical B-DNA in aqueous solution by means of atomistic molecular dynamics (MD) simulations in combination with molecular theories of solution. Our results demonstrate a conformation-dependent binding behavior of ectoine, which favors the unfolded state of DNA by a combination of electrostatic and dispersion interactions. In conjunction with the Kirkwood–Buff theory, we introduce a simple Framework to compute the influence of ectoine on the DNA melting temperature. Our findings reveal a significant linear decrease of the melting temperature with increasing ectoine concentration, which is found to be in qualitative agreement with results from denaturation experiments. The outcomes of our Computer simulations provide a detailed mechanistic rationale for the surprising destabilizing influence of ectoine on distinct DNA structures. KW - Ectoine KW - DNA KW - Thermodynamic KW - Melting temperature PY - 2018 DO - https://doi.org/10.1039/c8cp03543a SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 40 SP - 25861 EP - 25874 PB - Royal Society of Chemistry AN - OPUS4-46327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Urbanczyk, M.M. A1 - Bester, K. A1 - Borho, N. A1 - Schoknecht, Ute A1 - Bollmann, U.E. T1 - Influence of pigments on phototransformation of biocides in paints N2 - Biocides are commonly applied to construction materials such as facade renders and paints in order to protect them from microbial spoilage. These renders and paints are exposed to weathering conditions, e.g., sunlight and rain. Pigments are interacting intensively with the spectrum of the incoming light; thus, an effect of paint pigments on phototransformation rates and reaction pathways of the biocides is hypothesized. In this study, the phototransformation of four commonly used biocides (carbendazim, diuron, octylisothiazolinone (OIT) and terbutryn) in four different paint formulations differing solely in pigments (red and black iron oxides, white titanium dioxide, and one pigment-free formulation) were investigated. Paints surfaces were irradiated under controlled conditions. The results show that biocides degrade most rapidly in the pigment-free formulation. The degradation in the pigment-free formulation followed a first-order kinetic model with the respective photolysis rate constants: kp,Diuron=0.0090 h−1, kp,OIT=0.1205 h−1, kp,Terbutryn=0.0079 h−1. Carbendazim concentrations did not change significantly. The degradation was considerably lower in the pigment-containing paints. The determination of several phototransformation products of terbutryn and octylisothiazolinone showed different transformation product ratios dependent on the pigment. Consequently, pigments not only reflect the incoming light, but also interact with the biocide photodegradation. KW - OIT KW - Terbutryn KW - Indirect photolysis KW - Construction materials PY - 2019 DO - https://doi.org/10.1016/j.jhazmat.2018.10.018 SN - 0304-3894 VL - 364 SP - 125 EP - 133 PB - Elsevier AN - OPUS4-46328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maresca, A. A1 - Krüger, O. A1 - Herzel, Hannes A1 - Adam, Christian A1 - Kalbe, Ute A1 - Astrup, T. F. T1 - Influence of wood ash pre-treatment on leaching behaviour, liming and fertilising potential N2 - In Denmark, increasing amounts of woody biomass are being used for the production of renewable energy, resulting in more wood ashes being generated. While these materials have been mainly landfilled, wood ashes may also be utilised for fertilizing and liming purposes on top of soils. Pre-treatments involving hardening or granulation may be carried out prior to soil application. In this study, two Danish wood ash samples were hardened and/or granulated. Lab-hardening induced rapid changes in the shape of the acid neutralisation capacity curve of the ashes. Up-flow column tests, assuming local equilibrium conditions, were employed to investigate the leaching from pre-treated ashes. Granules and loose ashes demonstrated similar leaching behaviours, indicating that similar geochemical processes were governing their leaching. In comparison with untreated fresh ashes, the hardened ashes demonstrated reduced leaching of Ca, Ba, Pb and Zn with concentration levels generally below or close to the analytical limits of quantification; to the contrary, the leaching of As, P, Sb, Si, V and Mg was enhanced in the hardened ashes. The release of alkalinity was reduced by hardening. In general, all granules were barely breakable by finger-pinching and they could withstand one month of continuous leaching, preserving their overall shape. The solubility of phosphorous in neutral ammonium citrate indicated that about 30–51% of the total P content in the ash samples was released, suggesting that the ashes could be potentially valuable as P-fertiliser if applied onto soil. KW - Wood ash KW - Phoshpor availability KW - Leaching KW - Forest soils PY - 2019 DO - https://doi.org/10.1016/j.wasman.2018.11.003 SN - 0956-053X VL - 83 SP - 113 EP - 122 PB - Elsevier AN - OPUS4-46583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Oesterle, D. A1 - Mayer, R. A1 - Hahn, Oliver A1 - Bretz, S. A1 - Geiger, G. T1 - First insights into Chinese reverse glass paintings gained by non-invasive spectroscopic analysis-tracing a cultural dialogue N2 - This work presents a technical investigation of two Chinese reverse glass paintings from the late 19th and early 20th centuries. A multi-analytical, non-invasive approach (X-ray fluorescence (XRF), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy) was used to identify the pigments and classify the binding media. The results reveal a combined use of traditional Chinese and imported European materials. Several pigments like cinnabar, lead white, orpiment, carbon black and copper-arsenic green (probably emerald green) were found in both paintings; red lead, artificial ultramarine blue, Prussian blue and ochre appear in at least one of the paintings. The proof of limewash (calcite and small amounts of portlandite) as a backing layer in Yingying and Hongniang indicates that clamshell white was also used for reverse glass paintings. Drying oil was classified as a binding media in most areas of both paintings. However, the orange background of The Archer yielded prominent bands of both proteinaceous and fatty binder. KW - Non-invasive analysis KW - Reverse glass painting KW - Pigment identification KW - DRIFTS KW - Raman spectroscopy PY - 2019 DO - https://doi.org/10.1007/s12520-019-00799-3 SN - 1866-9557 SN - 1866-9565 VL - 11 IS - 8 SP - 4025 EP - 4034 PB - Springer AN - OPUS4-47364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Bretz, Simone A1 - Stege, Heike A1 - Hahn, Oliver T1 - Methodological approach for in situ spectroscopic analysis of modern reverse paintings on glass: A case study of Kreuzabnahme (1914/15) - an outstanding example by Carlo Mense N2 - A non-invasive methodological approach has been carried out to identify the pigments and classify the binding media of the reverse painting on glass Kreuzabnahme (1914/15) by Carlo Mense. Mense was a member of the group Rhenish Expressionists around August Macke and got interested in the technique of painting on the reverse side of a glass panel. The studied painting indicates a remarkably painted reverse and front side, which creates a unique visual appearance of the glass. The applied noninvasive, spectroscopic approach includes X-ray fluorescence, VIS spectroscopy, Raman spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy. The measurements revealed inorganic Pigments mixed with drying oil as binder. Together with common pigments, such as lead white, barium sulphate, bone black, cinnabar, chrome yellow, ochre, and viridian, an unusual additional material was found, Strontium white. KW - Reverse glass painting KW - Non-invasive analysis KW - DRIFTS KW - Pigment identification PY - 2019 DO - https://doi.org/10.1140/epjp/i2019-12549-6 SN - 2190-5444 VL - 134 IS - 2 SP - 64, 1 EP - 8 PB - Springer CY - Berlin AN - OPUS4-47365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Redfern, J. A1 - Tucker, J. A1 - Simmons, L. A1 - Askew, P. A1 - Verran, J. A1 - Stephan, Ina T1 - Environmental and experimental factors affecting efficacy testing on nonporous plastic antimicrobial surfaces N2 - Test methods for efficacy assessment of antimicrobial coatings are not modelled on a hospital environment, and instead use high humidity (>90%) high temperature (37 ◦C), and no airflow. Therefore, an inoculum will not dry, resulting in an antimicrobial surface exhibiting prolonged antimicrobial activity, as moisture is critical to activity. Liquids will dry quicker in a hospital ward, resulting in a reduced antimicrobial efficacy compared to the existing test, rendering the test results artificially favourable to the antimicrobial claim of the product. This study aimed to assess how hospital room environmental conditions can affect the drying time of an inoculum, and to use this data to inform test parameters for antimicrobial efficacy testing based on the hospital ward. The drying time of different droplet sizes, in a range of environmental conditions likely found in a hospital ward, were recorded (n = 630), and used to create a model to inform users of the experimental conditions required to provide a drying time similar to what can be expected in the hospital ward. Drying time data demonstrated significant (p < 0.05) variance when humidity, temperature, and airflow were assessed. A mathematical model was created to select environmental conditions for in vitro antimicrobial efficacy testing. Drying time in different environmental conditions demonstrates that experimental set-ups affect the amount of time an inoculum stays wet, which in turn may affect the efficacy of an antimicrobial surface. This should be an important consideration for hospitals and other potential users, whilst future tests predict efficacy in the intended end-use environment. KW - Method development KW - Standardisation KW - Antimicrobial test KW - Environmental conditions KW - Hospital premises PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472699 DO - https://doi.org/10.3390/mps1040036 SN - 2409-9279 VL - 1 IS - 4 SP - 36, 1 EP - 10 PB - MDPI CY - Internet open accsess AN - OPUS4-47269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandow, Nicole A1 - Finkel, M. A1 - Grathwohl, P. A1 - Kalbe, Ute T1 - Influence of flow rate and particle size on local equilibrium in column percolation tests using crushed masonry N2 - Column leaching tests are frequently used and accepted for investigation of release of hazardous substances from solid materials. Independent of differences due to the field of application or national regulations, column tests assume that local equilibrium is established in the experiment which facilitates transfer of results to field conditions. In the process of harmonization and standardization within Europe the question on the influence of flow rate and grain size distribution on the local equilibrium was raised. Thus, a set of experiments using two different masonry materials with varying grain size distribution and flow rate were conducted including stop/flow experiments. Results are compared to a numerical model which takes intraparticle pore diffusion-controlled release of Mo and V into the percolating water into account. Due to the relatively high intraparticle porosity of the materials (24–29%) data and model indicate that initially equilibrium-state conditions prevail followed by rapidly decreasing concentrations. The model fits data for Mo and V reasonably well; however, after the initial decline of concentrations (at L/S > 2) extended tailing is observed especially of elements occurring as oxides, which is not captured by the model. KW - Leaching KW - Porosity KW - Stop/flow experiments model KW - Intraparticle diffusion KW - Vanadium KW - Molybdenum PY - 2019 DO - https://doi.org/10.1007/s10163-019-00827-3 SN - 1438-4957 SN - 1611-8227 VL - 21 IS - 3 SP - 642 EP - 651 PB - Springer Japan AN - OPUS4-47265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trimpert, J. A1 - Groenke, N. A1 - Kunec, D. A1 - Eschke, K. A1 - He, Shulin A1 - McMahon, Dino Peter A1 - Osterrieder, N. T1 - A proofreading-impaired herpesvirus generates populations with quasispecies-like structure N2 - RNA virus populations are composed of highly diverse individuals that form a cloud of related sequences commonly referred to as a ‘quasispecies’1–3. This diversity arises as a consequence of low-fidelity genome replication4,5. By contrast, DNA Virus populations contain more uniform individuals with similar fitness6. Genome diversity is often correlated with increased Fitness in RNA viruses, while DNA viruses are thought to require more faithful genome replication. During DNA replication, erroneously incorporated bases are removed by a 3′-5′ exonuclease, a highly conserved enzymatic function of replicative DNA but not RNA polymerases. This proofreading process enhances replication fidelity and ensures the genome integrity of DNA organisms, including large DNA viruses7. Here, we show that a herpesvirus can tolerate impaired exonucleolytic proofreading, resulting in DNA virus populations, which, as in RNA viruses8, are composed of highly diverse genotypes of variable individual fitness. This indicates that herpesvirus mutant diversity may compensate for individual Fitness loss. Notably, in vivo infection with diverse virus populations results in a marked increase in virulence compared to genetically homogenous parental virus. While we cannot exclude that the increase in virulence is caused by selection of and/or interactions between individual genotypes, our findings are consistent with quasispecies dynamics. Our results contrast with traditional views of DNA virus replication and evolution, and indicate that a substantial increase in population diversity can lead to higher virulence. KW - Marek's virus KW - Virulence KW - Quasispecies KW - Evolution PY - 2019 DO - https://doi.org/10.1038/s41564-019-0547-x SN - 2058-5276 N1 - Corrigendum: Nature Microbiology 4 (2019) 2025 VL - 4 SP - 2175 EP - 2183 PB - Nature Publishing Group CY - London AN - OPUS4-48896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Hutzler, C. A1 - Wilke, Olaf A1 - Luch, A. T1 - Emissions of volatile organic compounds from polymer-based consumer products: comparison of three emission chamber sizes N2 - The ISO 16000 standard series provide guidelines for emission measurements of volatile organic compounds (VOCs) from building materials. However, polymer-based consumer products such as toys may also release harmful substances into indoor air. In such cases, the existing standard procedures are unsuitable for official control laboratories due to high costs for large emission testing chambers. This paper aims at developing and comparing alternative and more competitive methods for the emission testing of consumer products. The influence of the emission chamber size was investigated as smaller chambers are more suited to the common size of consumer products and may help to reduce the costs of testing. Comparison of the performance of a 203 l emission test chamber with two smaller chambers with the capacity of 24 l and 44 ml, respectively, was carried out by using a polyurethane reference material spiked with 14 VOCs during the course of 28 days. The area-specific emission rates obtained in the small chambers were always similar to those of the 203 l reference chamber after a few hours. This implies that smaller chambers can provide at least useful numbers on the extent of polymer-based consumer product emissions into indoor air, thereby supporting meaningful exposure assessments. KW - Comparison KW - Consumer products KW - Emission chamber KW - Reference material KW - Volatile organic compounds PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493697 DO - https://doi.org/10.1111/ina.12605 VL - 30 IS - 1 SP - 40 EP - 48 PB - Wiley VCH-Verlag AN - OPUS4-49369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pokharel, R. A1 - Gerrits, Ruben A1 - Schuessler, J. A1 - von Blanckenburg, F. T1 - Mechanisms of olivine dissolution by rock-inhabiting fungi explored using magnesium stable isotopes N2 - To unravel the dissolution mechanisms of olivine by a rock-inhabiting fungus we determined the stable isotope ratios of Mg on solutions released in a laboratory experiment. We found that in the presence of the fungus Knufia petricola the olivine dissolution rates were about seven-fold higher (1.04×10−15 mol cm−2 s−1) than those in the abiotic experiments (1.43×10−16 mol cm−2 s−1) conducted under the same experimental condition (pH 6, 25 °C, 94 days). Measured element concentrations and Mg isotope ratios in the supernatant solutions in both the biotic and the abiotic experiment followed a dissolution trend in the initial phase of the experiment, characterized by non-stoichiometric release of Mg and Si and preferential release of 24Mg over 26Mg. In a later phase, the data indicates stoichiometric release of Mg and Si, as well as isotopically congruent Mg release. We Attribute the initial non-stoichiometric phase to the rapid replacement of Mg2+ in the olivine with H+ along with simultaneous polymerization of Si tetrahedra, resulting in high dissolution rates, and the stoichiometric phase to be influenced by the accumulation of a Si-rich amorphous layer that slowed olivine dissolution. We attribute the accelerated dissolution of olivine during the biotic experiment to physical attachment of K. petricola to the Si-richamorphous layer of olivine which potentially results in ist direct exposure to protons released by the fungal cells. These additional protons can diffuse through the Si-rich amorphous layer into the crystalline olivine. Our results also indicate the ability of K. petricola to dissolve Fe precipitates in the Si-rich amorphous layer either by protonation, or by Fe(III) chelation with siderophores. Such dissolution of Fe precipitates increases the porosity of the Si-rich amorphous layer and hence enhances olivine dissolution. The acceleration of mineral dissolution in the presence of a rock-dissolving fungus further suggests that its presence in surficial CO2 sequestration plants may aid to accelerate CO2 binding. KW - Olivine KW - Magnesium KW - Isotopes KW - Fungus PY - 2019 DO - https://doi.org/10.1016/j.chemgeo.2019.07.001 SN - 0009-2541 SN - 1872-6836 VL - 525 SP - 18 EP - 27 PB - Elsevier AN - OPUS4-48824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Anggriawan, R. A1 - Auliyati, M. A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Karlovsky, P. A1 - Maul, Ronald T1 - Formation of Zearalenone Metabolites in Tempeh Fermentation N2 - Tempeh is a common food in Indonesia, produced by fungal fermentation of soybeans using Rhizopus sp., as well as Aspergillus oryzae, for inoculation. Analogously, for economic reasons, mixtures of maize and soybeans are used for the production of so-called tempeh-like products. For maize, a contamination with the mycoestrogen zearalenone (ZEN) has been frequently reported. ZEN is a mycotoxin which is known to be metabolized by Rhizopus and Aspergillus species. Consequently, this study focused on the ZEN transformation during tempeh fermentation. Five fungal strains of the genera Rhizopus and Aspergillus, isolated from fresh Indonesian tempeh and authentic Indonesian inocula, were utilized for tempeh manufacturing from a maize/soybean mixture (30:70) at laboratory-scale. Furthermore, comparable tempeh-like products obtained from Indonesian markets were analyzed. Results from the HPLC-MS/MS analyses show that ZEN is intensely transformed into its metabolites alpha-zearalenol (alpha-ZEL), ZEN-14-sulfate, alpha-ZEL-sulfate, ZEN-14-glucoside, and ZEN-16-glucoside in tempeh production. alpha-ZEL, being significantly more toxic than ZEN, was the main metabolite in most of the Rhizopus incubations, while in Aspergillus oryzae fermentations ZEN-14-sulfate was predominantly formed. Additionally, two of the 14 authentic samples were contaminated with ZEN, alpha-ZEL and ZEN-14-sulfate, and in two further samples, ZEN and alpha-ZEL, were determined. Consequently, tempeh fermentation of ZEN-contaminated maize/soybean mixture may lead to toxification of the food item by formation of the reductive ZEN metabolite, alpha-ZEL, under model as well as authentic conditions. KW - Modified mycotoxins KW - Zearalenone sulfate KW - a-zearalenol KW - Food fermentation KW - Rhizopus and Aspergillus oryzae PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491126 DO - https://doi.org/10.3390/molecules24152697 VL - 24 IS - 15 SP - 2697 PB - MDPI AN - OPUS4-49112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Donskyi, Ievgen A1 - Cuellar-Camacho, J. L. A1 - Cheng, C. A1 - Schwibbert, Karin A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Gorbushina, Anna A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene–pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed “trapping” and “nano-knives” mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of “trapping” and “nano-knives” mechanisms for the antibacterial activity of graphene sheets. KW - XPS KW - Graphene KW - Graphene–bacteria interaction PY - 2018 DO - https://doi.org/10.1039/c8nr01347k SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 20 SP - 9525 EP - 9537 PB - RSC CY - London AN - OPUS4-45084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Steffens, D. T1 - Medium-scale Plant Experiment of Sewage Sludge based Phosphorus Fertilizers from Large-scale Thermal Processing N2 - Phosphorus (P) recycling from sewage sludge for agricultural needs has to meet requirements for agricultural implementation, such as short and long-term P-plant-availability under field conditions. Field experiments often bring no evaluable results, because agricultural soils got a high potential of P-supply even if they are classified as low in P-supply according to the CAL extraction method. The present study presents a possible way to investigate the P-plant-availability of P-recycling-fertilizers under field-like conditions. The plant experiments are firstly performed in small Mitscherlich pots in growth chambers and subsequently in containers with a high soil volume of 170 kg under greenhouse conditions, in which plants can grow until ripening. The tested P-recycling fertilizers were produced from sewage sludge in a large-scale thermal process. It was a two-step treatment process performed with a pyrolysis of sewage sludge at 550°C (SSC-550) and a subsequent thermochemical post-treatment at 950°C with Na2SO4 (SSA-Na) and HCl + Na2SO4 (SSA-HCl/Na) as additives. The results show, that the P-recycling-products from pyrolysis got an adequate long-term but a 65% lower short-term P-plant-availability compared to triple superphosphate. SSA-Na and SSA-HCl/Na show both a high short and longterm P-plant-availability comparable to triple-superphosphate. This can be explained by their highly plant-available P-compound CaNaPO4. KW - Fertilzer KW - Sewage sludge KW - Plant Experiment KW - Thermal treatment PY - 2019 DO - https://doi.org/10.1080/00103624.2019.1667373 VL - 50 IS - 19 SP - 2469 EP - 2481 PB - Taylor & Francis AN - OPUS4-49143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Menzel, F. A1 - Epperlein, N. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Bacterial adhesion on femtosecond laser-modified polyethylene N2 - In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced. KW - Bacterial adhesion KW - Laser-modified surface KW - Polyethylene KW - Laser-induced nanostructures KW - Biofilm PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492280 DO - https://doi.org/10.3390/ma12193107 VL - 12 IS - 19 SP - 3107 PB - MDPI CY - Basel, Schweiz AN - OPUS4-49228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haustein, T. A1 - Busweiler, Sabine A1 - Haustein, V. A1 - von Laar, C. A1 - Plarre, Rüdiger T1 - Laboratory breeding of Korynetes caeruleus (Coleoptera: Cleridae) for the biological of Anobium punctatum) (Coleoptera, Ptinidae) N2 - Larvae and adults of Korynetes caeruleus (de Geer 1775) (Coleoptera: Cleridae) were collected from old churches and reared in the laboratory on Anobium punctatum (de Geer 1774) (Coleoptera: Ptinidae). Breeding success of K. caeruleus was low, but basic parameters of this species’ developmental cycle were identifi ed. At 21°C and 75% relative humidity and a fourmonth cold period at 4°C, the development of K. caeruleus from egg to adult appearance lasted 2 years. The pupal stage may be reached and completed after one and a half years. Feeding on larvae of A. punctatum by larvae of K. caeruleus was observed and consisted of a combination of sucking haemolymph and consuming body parts. The sickle-like mandibles of larvae of K. caeruleus penetrate the cuticle of prey larvae; this is followed by pumping and sucking body movements. Adult beetles of A. punctatum were not attacked by K. caeruleus larvae. Feeding behaviour of adult K. caeruleus was not investigated. KW - Cultural heritage KW - Coleoptera KW - Korynetes caeruleus KW - Cleridae KW - Ptinidae KW - Anobium punctatum KW - Biological pest control KW - Life history data KW - Laboratory breeding KW - Wood protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494999 DO - https://doi.org/10.14411/eje.2019.038 SN - 1802-8829 VL - 116 SP - 362 EP - 371 PB - České Budějovice AN - OPUS4-49499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schütz, R. A1 - Maragh, J. A1 - Weaver, J. A1 - Rabin, Ira A1 - Masic, A. T1 - The Temple Scroll: Reconstructing an ancient manufacturing practice N2 - The miraculously preserved 2000-year-old Dead Sea Scrolls, ancient texts of invaluable historical significance, were discovered in the mid-20th century in the caves of the Judean desert. The texts were mainly written on parchment and exhibit vast diversity in their states of preservation. One particular scroll, the 8-m-long Temple Scroll is especially notable because of its exceptional thinness and bright ivory color. The parchment has a layered structure, consisting of a collagenous base material and an atypical inorganic overlayer. We analyzed the chemistry of the inorganic layer using x-ray and Raman spectroscopies and discovered a variety of evaporitic sulfate salts. This points toward a unique ancient production technology in which the parchment was modified through the addition of the inorganic layer as a writing surface. Furthermore, understanding the properties of these minerals is particularly critical for the development of suitable conservation methods for the preservation of these invaluable historical documents. KW - Temple Scroll KW - Dead Sea Scrolls PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-495314 DO - https://doi.org/10.1126/sciadv.aaw7494 VL - 5 IS - 9 SP - 1 EP - 9 PB - AAAS AN - OPUS4-49531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Ramstedt, M. A1 - Schwibbert, Karin A1 - Dietrich, P. M A1 - Unger, Wolfgang T1 - Comparative Study of NAP-XPS and Cryo-XPS for the Investigation of Surface Chemistry of the Bacterial Cell-Envelope N2 - Bacteria generally interact with the environment via processes involving their cell-envelope. Thus, techniques that may shed light on their surface chemistry are attractive tools for providing an understanding of bacterial interactions. One of these tools is Al Kα-excited photoelectron spectroscopy (XPS) with its estimated information depth of <10 nm. XPS-analyses of bacteria have been performed for several decades on freeze-dried specimens in order to be compatible with the vacuum in the analysis chamber of the spectrometer. A limitation of these studies has been that the freeze-drying method may collapse cell structure as well as introduce surface contaminants. However, recent developments in XPS allow for analysis of biological samples at near ambient pressure (NAP-XPS) or as frozen hydrated specimens (cryo-XPS) in vacuum. In this work, we have analyzed bacterial samples from a reference strain of the Gram-negative bacterium Pseudomonas fluorescens using both techniques. We compare the results obtained and, in general, observe good agreement between the two techniques. Furthermore, we discuss advantages and disadvantages with the two analysis approaches and the output data they provide. XPS reference data from the bacterial strain are provided, and we propose that planktonic cells of this strain (DSM 50090) are used as a reference material for surface chemical analysis of bacterial systems. KW - P. Fluorescens KW - Cryo XPS KW - NAP-XPS KW - DSM 5009 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525640 DO - https://doi.org/10.3389/fchem.2021.666161 VL - 9 SP - Article 666161 PB - Frontiers CY - Switzerland AN - OPUS4-52564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - Sequential Extraction of Incineration Bottom Ash: Conclusions Regarding Ecotoxicity N2 - The classification of incineration bottom ash (IBA) as hazardous or non-hazardous according to ecotoxic hazard property HP14 is still under debate. In this context, only the compounds of Zn and Cu with the hazard statement code H410 are of relevance. With an approach based on the grouping of substances, it was shown that such substances are either readily water-soluble or slightly and sparingly soluble. The concentrations of readily soluble Cu and Zn compounds in IBA are far below the cut-off value of 0.1%. Slightly and sparingly soluble Zn and Cu compounds could be quantified in the first fraction of a four-step sequential extraction procedure. With the results from the complete sequence, the dimensionless synthesis toxicity index (STI) was calculated and was in the range of 494 to 1218 for the four investigated IBA samples. It was concluded that IBA can usually be classified as non-hazardous. KW - Incineration bottom ash KW - Hazard properties KW - Ecotoxicity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605262 DO - https://doi.org/10.3390/app14135541 SN - 2076-3417 VL - 14 IS - 13 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-60526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of Escherichia coli under various conditions by near-ambient pressure XPS N2 - Bacteria are inherently in a hydrated state and therefore not compatible to ultra-high vacuum techniques such as XPS without prior sample preparation involving freeze drying or fast freezing. This has changed with the development of near-ambient pressure (NAP)-XPS, which makes it possible to characterise the bacterial surface with minimal sample preparation. This paper presents NAP-XPS measurements of Escherichia coli under various NAP conditions: at 11 mbar in a humid environment, at 2 mbar after drying in the chamber, pre-dried at 4 mbar, and at 1 mbar after overnight pumping at 10^−4 mbar. The high-resolution spectra of carbon, nitrogen, and oxygen are presented and found to be in general agreement with XPS measurements from freeze-dried and fast-frozen bacteria. However, it was found that the amount of carbon components associated with polysaccharides increases relative to aliphatic carbon during drying and increases further after overnight pumping. This implies that drying has an impact on the bacterial surface. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2018 KW - Bacteria KW - E. coli KW - NAP-XPS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454047 DO - https://doi.org/10.1002/sia.6480 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 996 EP - 1000 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-45404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P.M. A1 - Unger, Wolfgang T1 - NAP-XPS spectra of the bacterial cell-envelope of Pseudomonas fluorescens bacteria N2 - Pseudomonas fluorescens (Gram-negative) bacteria purchased from Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures were analyzed using high-resolution x-ray photoelectron spectroscopy at near ambient pressure conditions (NAP-XPS), 1500 Pa water vapor atmosphere. Fresh layers of P. fluorescence bacteria were grown on Luria Broth agar plates. Bacteria were taken from the agar plate with a sterile spatula and gently spread on a Si-wafer piece for NAP-XPS analysis. The NAP-XPS spectra of the bacterial envelope of P. fluorescence were obtained using monochromatic Al Kα radiation and include a survey scan and high-resolution spectra of C 1s, N 1s, P 2p, and O 1s as well. The presentation of the C 1s high-resolution spectrum includes the results of peak fitting analysis. KW - Pseudomonas fluorescens KW - Cell-envelope KW - Water atmosphere KW - Near ambient x-ray photoelectron spectroscopy KW - NAP-XPS PY - 2022 DO - https://doi.org/10.1116/6.0001543 SN - 1055-5269 VL - 29 IS - 1 SP - 014008-1 PB - AVS AN - OPUS4-54464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dopffel, N. A1 - An Stepec, Biwen Annie A1 - de Rezende, J. A1 - Machado de Sousa, D. A1 - Koerdt, Andrea T1 - Microbiology of Underground Hydrogen Storage N2 - Climate change is becoming one of the greatest challenges facing our society, particularly due to the continued use of fossil fuels. The steadily increasing demand for energy and the continuously growing world population will further intensify these challenges. The development of renewable energies is therefore of central importance. The 2020 EU Energy Roadmap aims to increase the share of renewable energies (gross energy consumption) to 55% by 2050. Hydrogen (H2) has the highest potential to become the primary renewable energy source. It is envisioned that by 2050 up to 24% of the total energy demand of Europe is to be ensured by H2. However, a decisive disadvantage of the climate friendly alternatives is the massive containment demand, which needs to be highly secure, cost efficient and easily extractable. Underground geological formations (UGF) represent a seemingly optimal alternative to meet the rapidly increasing storage demand. In this context, many studies are currently underway to determine the feasibility and risks of UGF. However, little or no consideration is being given to microbiology. Therefore, in this Research Topic we will focus on achieving a greater understanding of the impact microorganisms exert on UGF, with a particular emphasis on interdisciplinary studies. As many subsurface microbial communities can use H2 as an electron donor, production of seemingly undesirable metabolic byproducts, such as hydrogen sulfide, methane, and acids, are also to be expected. However, the rate of the H2 conversion by the microorganisms, how their metabolic activities impact the UGF on a short-term and long-term scale, the extent of damages microorganisms exert on the infrastructure, or potential use of microorganisms to enhance UGF are just a few questions that require urgent research to assess the role of microorganisms in this new anthropogenic use of the subsurface environment. These and many questions can be addressed in this article collection. In particular, understanding microbial community changes and activity rates will help assess operational and environmental risks, develop mitigation strategies and provide new insights on life under extreme conditions (i.e., pressure, salinity). In this Research Topic, the editorial team particularly welcomes Original Research, Hypothesis and Theory, Method, and Review manuscripts that deal with the latest advances in microbiology in formations that are planned or currently prepared for hydrogen storage, from both fundamental and practical points of view. The ultimate objective is to promote a deeper understanding into the sustainability of UGF and generate interdisciplinary research involving microbiologists, reservoir engineers, geologists, chemists, physicists. The topics of interest include, but are not limited to: • Microbial diversity in different underground hydrogen storage sites or formations currently being considered for hydrogen storage • Mechanism and impact of microbial growth under high H2 pressure • Potential role of microorganisms in the short-term and long-term storage of hydrogen • Potential influences of microorganisms on the hydrogen storage infrastructure systems, e.g., microbiologically influenced corrosion, biofilm growth • Hydrogen-solid-microorganism interactions, including the influence of microbial growth on UGF geological parameters • Mechanism and modelling of microbial impact on hydrogen storage UGF relevant for this Research Topic include porous media, salt caverns, deep aquifers, hard rock caverns and depleted oil/gas reservoirs. KW - Biodeterioration and biodegradation KW - Geology KW - Anaerobic pathways KW - Microbial simulation, KW - Hydrogen storage PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579042 DO - https://doi.org/10.3389/fenrg.2023.1242619 SN - 2296-598X VL - 11 SP - 1 EP - 3 PB - Frontiers CY - Frontiers in Energy Research AN - OPUS4-57904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jovičević-Klug, Matic A1 - Souza Filho, Isnaldi R. A1 - Springer, Hauke A1 - Adam, Christian A1 - Raabe, Dierk T1 - Green steel from red mud through climate-neutral hydrogen plasma reduction N2 - AbstractRed mud is the waste of bauxite refinement into alumina, the feedstock for aluminium production1. With about 180 million tonnes produced per year1, red mud has amassed to one of the largest environmentally hazardous waste products, with the staggering amount of 4 billion tonnes accumulated on a global scale1. Here we present how this red mud can be turned into valuable and sustainable feedstock for ironmaking using fossil-free hydrogen-plasma-based reduction, thus mitigating a part of the steel-related carbon dioxide emissions by making it available for the production of several hundred million tonnes of green steel. The process proceeds through rapid liquid-state reduction, chemical partitioning, as well as density-driven and viscosity-driven separation between metal and oxides. We show the underlying chemical reactions, pH-neutralization processes and phase transformations during this surprisingly simple and fast reduction method. The approach establishes a sustainable toxic-waste treatment from aluminium production through using red mud as feedstock to mitigate greenhouse gas emissions from steelmaking. KW - Multidisciplinary PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594424 DO - https://doi.org/10.1038/s41586-023-06901-z SN - 0028-0836 VL - 625 IS - 7996 SP - 703 EP - 709 PB - Springer Science and Business Media LLC AN - OPUS4-59442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hamann, Christopher A1 - Piehl, Patrick A1 - Weingart, Eric A1 - Stolle, Dirk A1 - Al-Sabbagh, Dominik A1 - Ostermann, Markus A1 - Auer, Gerhard A1 - Adam, Christian T1 - Selective removal of zinc and lead from electric arc furnace dust by chlorination–evaporation reactions N2 - Re-melting of scrap in an electric arc furnace (EAF) results in the accumulation of filter dust from off-gas treatment that predominantly consists of iron and zinc oxides. Filter dust is classified as hazardous waste due to its high contents of potentially toxic or ecotoxic elements such as Pb, Cr, Cd, and As. A promising processing route for this waste is selective chlorination, in which the non-ferrous metal oxides are chlorinated and selectively evaporated in form of their respective chlorides from the remaining solids via the process gas flow. Here, we investigate stepwise thermochemical treatment of EAF dust with either waste iron(II) chloride solution or hydrochloric acid at 650, 800, and 1100 ◦C. The Zn and Pb contents of the thermochemically processed EAF dust could be lowered from 29.9% and 1.63% to 0.09% and 0.004%, respectively. Stepwise heating allowed high separation between zinc chloride at the 650 ◦C step and sodium-, potassium-, and lead-containing chlorides at higher temperatures. Furthermore, the lab-scale results were transferred to the use of an experimental rotary kiln highlighting the possibilities of upscaling the presented process. Selective chlorination of EAF dust with liquid chlorine donors is, therefore, suggested as a potential recycling method for Zn-enriched steelworks dusts. KW - Electric arc furnace dust KW - Zinc KW - Selective Chlorination KW - Hazardous waste KW - Resource Recovery PY - 2024 DO - https://doi.org/10.1016/j.jhazmat.2023.133421 SN - 0304-3894 VL - 465 SP - 1 EP - 13 PB - Elsevier AN - OPUS4-59345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Machado Ferreira de Araujo, F. A1 - Duarte-Ruiz, D. A1 - Saßnick, H.-D. A1 - Gentzmann, Marie C. A1 - Huthwelker, T. A1 - Cocchi, C. T1 - Electronic Structure and Core Spectroscopy of Scandium Fluoride Polymorphs N2 - Microscopic knowledge of the structural, energetic, and electronic properties of scandium fluoride is still incomplete despite the relevance of this material as an intermediate for the manufacturing of Al−Sc alloys. In a work based on first-principles calculations and X-ray spectroscopy, we assess the stability and electronic structure of six computationally predicted ScF3 polymorphs, two of which correspond to experimentally resolved single-crystal phases. In the theoretical analysis based on density functional theory (DFT), we identify similarities among the polymorphs based on their formation energies, chargedensity distribution, and electronic properties (band gaps and density of states). We find striking analogies between the results obtained for the ow- and high-temperature phases of the material, indirectly confirming that the transition occurring between them mainly consists of a rigid rotation of the lattice. With this knowledge, we examine the X-ray absorption spectra from the Sc and F K-edge contrasting firstprinciples results obtained from the solution of the Bethe−Salpeter equation on top of all-electron DFT with high-energy-resolution fluorescence detection measurements. Analysis of the computational results sheds light on the electronic origin of the absorption maxima and provides information on the prominent excitonic effects that characterize all spectra. A comparison with measurements confirms that the sample is mainly composed of the high- and low-temperature polymorphs of ScF3. However, some fine details in the experimental results suggest that the probed powder sample may contain defects and/or residual traces of metastable polymorphs. KW - Scandium KW - X-ray spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570727 DO - https://doi.org/10.1021/acs.inorgchem.2c04357 SN - 0020-1669 VL - 62 IS - 10 SP - 4238 EP - 4247 PB - ACS Publications CY - Washington DC AN - OPUS4-57072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knisz, J. A1 - Eckert, R. A1 - Gieg, L. A1 - Koerdt, Andrea A1 - Lee, J. A1 - Silva, E. A1 - Skovhus, T. L. A1 - An Stepec, Biwen Annie A1 - Wade, S. A. T1 - Microbiologically Influenced Corrosion - More than just Microorganisms N2 - Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern which affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines is limited. A truly interdisciplinary approach, that would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods and approaches to help solve MIC related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field. KW - MIC KW - Biodeterioration KW - Biocorrosion KW - Interdisciplinarity KW - Multiple lines of evidence PY - 2023 DO - https://doi.org/10.1093/femsre/fuad041 SN - 0168-6445 VL - 47 IS - 5 SP - 1 EP - 70 PB - FEMS Microbiology Reviews AN - OPUS4-58066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hermann, P. A1 - Kästner, B. A1 - Adamczyk, Burkart A1 - Hoehl, A. A1 - Ulm, G. A1 - Adam, Christian T1 - Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectroscopy N2 - The present study shows the potential of high-resolution imaging and nano-Fourier-transform infrared (nano-FTIR) spectroscopy for corrosion science. The protective oxidation layers of different chlorine-gas treated silicon carbides (SiCs) were characterized with these techniques. A nitrified SiC showed the highest resistant strength against chlorine corrosion at 1000 °C compared to the other SiCs. Nano-FTIR spectroscopy with a lateral resolution below 40 nm detected differences in the crystallinity of the bulk-SiC and in the transitional region to the protective layer. Furthermore, high-resolution imaging provides deep insight in the interfacial layer between bulk-SiC and the protective oxidation layer on sub-micrometer scale. KW - Nano-Fourier-transform infrared spectroscopy KW - Scattering-type scanning near-field optical microscopy (s-SNOM) KW - Synchrotron radiation KW - Corrosion KW - Silicon carbide KW - Chlorine PY - 2018 DO - https://doi.org/10.1016/j.corsci.2017.12.002 SN - 0010-938X VL - 131 SP - 324 EP - 329 PB - Elsevier AN - OPUS4-43648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dombinov, V. A1 - Herzel, Hannes A1 - Meiller, M. A1 - Müller, F. A1 - Willbold, S. A1 - Zang, J. W. A1 - da Fonseca-Zang, W. A. A1 - Adam, Christian A1 - Klose, H. A1 - Poorter, H. A1 - Jablonowski, N. D. A1 - Schrey, S. D. T1 - Sugarcane bagasse ash as fertilizer for soybeans: Effects of added residues on ash composition, mineralogy, phosphorus extractability and plant availability N2 - Sugarcane bagasse is commonly combusted to generate energy. Unfortunately, recycling strategies rarely consider the resulting ash as a potential fertilizer. To evaluate this recycling strategy for a sustainable circular economy, we characterized bagasse ash as a fertilizer and measured the effects of co-gasification and co-combustion of bagasse with either chicken manure or sewage sludge: on the phosphorus (P) mass fraction, P-extractability, and mineral P phases. Furthermore, we investigated the ashes as fertilizer for soybeans under greenhouse conditions. All methods in combination are reliable indicators helping to assess and predict P availability from ashes to soybeans. The fertilizer efficiency of pure bagasse ash increased with the ash amount supplied to the substrate. Nevertheless, it was not as effective as fertilization with triple-superphosphate and K2SO4, which we attributed to lower P availability. Co-gasification and co-combustion increased the P mass fraction in all bagasse-based ashes, but its extractability and availability to soybeans increased only when co-processed with chicken manure, because it enabled the formation of readily available Ca-alkali phosphates. Therefore, we recommend co-combusting biomass with alkali-rich residues to increase the availability of P from the ash to plants. KW - Combustion and gasification KW - Phosphate extractability and availability KW - X-ray diffraction (XRD) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567632 DO - https://doi.org/10.3389/fpls.2022.1041924 SN - 1664-462X VL - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Eileen A. A1 - Brandhorst, Antonia K. M. A1 - Gorbushina, Anna A. A1 - Schumacher, Julia T1 - The Tet‑on system for controllable gene expression in the rock‑inhabiting black fungus Knufia petricola N2 - Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis(melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes. KW - Microcolonial fungi KW - Inducible promoter KW - Bimolecular fluorescence complementation KW - 2A peptide KW - CRISPR/ Cas9-mediated genome editing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607672 DO - https://doi.org/10.1007/s00792-024-01354-2 VL - 28 IS - 38 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-60767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -