TY - JOUR A1 - Singh, Amit Kumar A1 - Mishra, Biswajit A1 - Sinha, Om Prakash T1 - Reduction Kinetics of Fluxed Iron Ore Pellets Made of Coarse Iron Ore Particles N2 - The present work demonstrates a sustainable approach of using relatively coarser iron ore particles for ironmaking. The motivation is to reduce the energy consumption in the milling of the iron ore by utilizing coarser iron ore particles (+0.05 mm) and to select a suitable binder for improving pellet properties. Iron ore fines in the range of 0.05–0.25 mm was selected and classified into three size ranges. Fluxed iron ore pellets were prepared using lime as a binder for the basicity of 0, 1, and 2. Reduction of these pellets with a packed bed of coal fines was performed in the temperature range of 900–1200 °C for a duration of 30–120 min. The direct reduction kinetics of the iron ore pellets were studied by employing diffusion and chemical reaction control models to the experimental data. The results show that pellets made with coarser iron ore particles have improved reduction behavior and kinetics. The reduction reaction is found to be a mixed control. The activation energy for the reduction reaction varies from 44.3 to 74.76 kJ mol−1 as iron ore particle size decreases from 0.25 to 0.05 mm and basicity increases from 0 to 2. KW - Materials Chemistry KW - Metals and Alloys KW - Process Metallurgy KW - Iron making PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598326 DO - https://doi.org/10.1002/srin.202300669 SN - 1611-3683 IS - 2300669 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-59832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jovičević-Klug, Matic A1 - Souza Filho, Isnaldi R. A1 - Springer, Hauke A1 - Adam, Christian A1 - Raabe, Dierk T1 - Green steel from red mud through climate-neutral hydrogen plasma reduction N2 - AbstractRed mud is the waste of bauxite refinement into alumina, the feedstock for aluminium production1. With about 180 million tonnes produced per year1, red mud has amassed to one of the largest environmentally hazardous waste products, with the staggering amount of 4 billion tonnes accumulated on a global scale1. Here we present how this red mud can be turned into valuable and sustainable feedstock for ironmaking using fossil-free hydrogen-plasma-based reduction, thus mitigating a part of the steel-related carbon dioxide emissions by making it available for the production of several hundred million tonnes of green steel. The process proceeds through rapid liquid-state reduction, chemical partitioning, as well as density-driven and viscosity-driven separation between metal and oxides. We show the underlying chemical reactions, pH-neutralization processes and phase transformations during this surprisingly simple and fast reduction method. The approach establishes a sustainable toxic-waste treatment from aluminium production through using red mud as feedstock to mitigate greenhouse gas emissions from steelmaking. KW - Multidisciplinary PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594424 DO - https://doi.org/10.1038/s41586-023-06901-z SN - 0028-0836 VL - 625 IS - 7996 SP - 703 EP - 709 PB - Springer Science and Business Media LLC AN - OPUS4-59442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maulas, Kryzzyl M. A1 - Paredes, Charla S. A1 - Tabelin, Carlito Baltazar A1 - Jose, Mark Anthony A1 - Opiso, Einstine M. A1 - Arima, Takahiko A1 - Park, Ilhwan A1 - Mufalo, Walubita A1 - Ito, Mayumi A1 - Igarashi, Toshifumi A1 - Phengsaart, Theerayut A1 - Villas, Edrhea A1 - Dagondon, Sheila L. A1 - Metillo, Ephrime B. A1 - Uy, Mylene M. A1 - Manua, Al James A. A1 - Villacorte-Tabelin, Mylah T1 - Isolation and Characterization of Indigenous Ureolytic Bacteria from Mindanao, Philippines: Prospects for Microbially Induced Carbonate Precipitation (MICP) N2 - Microbially induced carbonate precipitation (MICP), a widespread phenomenon in nature, is gaining attention as a low-carbon alternative to ordinary Portland cement (OPC) in geotechnical engineering and the construction industry for sustainable development. In the Philippines, however, very few works have been conducted to isolate and identify indigenous, urease-producing (ureolytic) bacteria suitable for MICP. In this study, we isolated seven, ureolytic and potentially useful bacteria for MICP from marine sediments in Iligan City. DNA barcoding using 16s rDNA identified six of them as Pseudomonas stutzeri, Pseudomonas pseudoalcaligenes, Bacillus paralicheniformis, Bacillus altitudinis, Bacillus aryabhattai, and Stutzerimonas stutzeri but the seventh was not identified since it was a bacterial consortium. Bio-cementation assay experiments showed negligible precipitation in the control (without bacteria) at pH 7, 8, and 9. However, precipitates were formed in all seven bacterial isolates, especially between pH 7 and 8 (0.7–4 g). Among the six identified bacterial species, more extensive precipitation (2.3–4 g) and higher final pH were observed in S. stutzeri, and B. aryabhattai, which indicate better urease production and decomposition, higher CO2 generation, and more favorable CaCO3 formation. Characterization of the precipitates by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and attenuated total reflectance Fourier transform spectroscopy (ATR-FTIR) confirmed the formation of three carbonate minerals: calcite, aragonite, and vaterite. Based on these results, all six identified indigenous, ureolytic bacterial species from Iligan City are suitable for MICP provided that the pH is controlled between 7 and 8. To the best of our knowledge, this is the first report of the urease-producing ability and potential for MICP of P. stutzeri, P. pseudoalcaligenes, S. stutzeri, and B. aryabhattai. KW - Calcium carbonate KW - Microbially induced carbonate precipitation (MICP) KW - Ureolytic bacteria PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600888 DO - https://doi.org/10.3390/min14040339 VL - 14 IS - 4 SP - 1 EP - 15 PB - MDPI AN - OPUS4-60088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keshmiri, Hamid A1 - Cikes, Domagoj A1 - Samalova, Marketa A1 - Schindler, Lukas A1 - Appel, Lisa-Marie A1 - Urbanek, Michal A1 - Yudushkin, Ivan A1 - Slade, Dea A1 - Weninger, Wolfgang J. A1 - Peaucelle, Alexis A1 - Penninger, Josef A1 - Elsayad, Kareem T1 - Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells N2 - Maintaining and modulating mechanical anisotropy is essential for biological processes. However, how this is achieved at the microscopic scale in living soft matter is not always clear. Although Brillouin light scattering (BLS) spectroscopy can probe the mechanical properties of materials, spatiotemporal mapping of mechanical anisotropies in living matter with BLS microscopy has been complicated by the need for sequential measurements with tilted excitation and detection angles. Here we introduce Brillouin light scattering anisotropy microscopy (BLAM) for mapping high-frequency viscoelastic anisotropy inside living cells. BLAM employs a radial virtually imaged phased array that enables the collection of angle-resolved dispersion in a single shot, thus enabling us to probe phonon modes in living matter along different directions simultaneously. We demonstrate a precision of 10 MHz in the determination of the Brillouin frequency shift, at a spatial resolution of 2 µm. Following proof-of-principle experiments on muscle myofibres, we apply BLAM to the study of two fundamental biological processes. In plant cell walls, we observe a switch from anisotropic to isotropic wall properties that may lead to asymmetric growth. In mammalian cell nuclei, we uncover a spatiotemporally oscillating elastic anisotropy correlated to chromatin condensation. Our results highlight the role that high-frequency mechanics can play in the regulation of diverse fundamental processes in biological systems. We expect BLAM to find diverse applications in biomedical imaging and material characterization. KW - Optical and Magnetic Materials KW - Atomic and Molecular Physics and Optics KW - Electronic PY - 2024 DO - https://doi.org/10.1038/s41566-023-01368-w SN - 1749-4885 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, Carlos A1 - Montes-Hernández, German A1 - Kochovski, Zdravko A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, Ernesto A1 - Van Driessche, Alexander E.S. T1 - Solution-driven processing of calcium sulfate: The mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Here, we show that calcium sulfate dihydrate (gypsum) can be directly, rapidly and reversibly converted to calcium sulfate hemihydrate (bassanite) in high salinity solutions (brines). The optimum conditions for the efficient production of bassanite in a short time (<5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the better-known behaviour of the bassanite phase in low-salt environments. In low-salinity aqueous solutions, bassanite is considered to be metastable with respect to gypsum and anhydrite, and therefore gypsum-to-bassanite conversion does not occur in pure water. Interestingly, the high-salinity transformation of gypsum-to-bassanite has been reported by many authors and used in practice for several decades, although its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures was inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline phase for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. KW - Industrial and Manufacturing Engineering KW - Strategy and Management KW - General Environmental Science KW - Renewable Energy, Sustainability and the Environment KW - Building and Construction KW - Calcium sulfate KW - Gypsum KW - Bassanite KW - Scattering KW - Raman KW - In situ KW - Synchrotron KW - BESSY KW - MySpot PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594698 UR - https://www.sciencedirect.com/science/article/pii/S0959652624004591#appsec1 DO - https://doi.org/10.1016/j.jclepro.2024.141012 SN - 0959-6526 VL - 440 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-59469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Embedding and cross-sectioning as a sample preparation procedure for accurate and representative size and shape measurement of nanopowders N2 - Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer–Emmet–Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed. KW - Nanopowder KW - Electron microscopy KW - Sample preparation KW - Cross-sectioning KW - Cerium oxide KW - Zinc oxide PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593289 DO - https://doi.org/10.1038/s41598-023-51094-0 SN - 2045-2322 VL - 14 SP - 1 EP - 10 PB - Springer Nature CY - London AN - OPUS4-59328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Stephan, Dietmar A1 - Meng, Birgit A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Hirsch, Tamino A1 - Manninger, Tanja T1 - Effect of gypsum on the hydration of fused cement clinker from basic oxygen furnace slag N2 - Fused cement clinker can be produced from molten basic oxygen furnace slag (BOFS) by way of a reductive thermochemical treatment. During the thermochemical treatment, oxidic iron is reduced to metallic iron and separated. The resulting low-iron slag has a chemical and mineralogical composition similar to ordinary Portland cement (OPC) clinker. In this study, the hydraulic reactivity of the fused clinker from BOFS with and without gypsum was investigated using isothermal calorimetry, differential scanning calorimetry, in situ X-ray diffraction and powder X-ray diffraction. Furthermore, a synthetic fused clinker without foreign ions and fused clinker produced by a mixture of both materials was studied. The hydraulic reaction of the fused clinker from BOFS was considerably slower than that of OPC. However, the reaction can be accelerated by adding gypsum as a sulfate carrier. Furthermore, the results showed an increased reaction rate with decreasing content of foreign ions such as Fe, P or Mn. KW - General Materials Science KW - Building and Construction PY - 2024 DO - https://doi.org/10.1680/jadcr.23.00070 SN - 0951-7197 SP - 1 EP - 19 PB - Telford AN - OPUS4-59391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hamann, Christopher A1 - Piehl, Patrick A1 - Weingart, Eric A1 - Stolle, Dirk A1 - Al-Sabbagh, Dominik A1 - Ostermann, Markus A1 - Auer, Gerhard A1 - Adam, Christian T1 - Selective removal of zinc and lead from electric arc furnace dust by chlorination–evaporation reactions N2 - Re-melting of scrap in an electric arc furnace (EAF) results in the accumulation of filter dust from off-gas treatment that predominantly consists of iron and zinc oxides. Filter dust is classified as hazardous waste due to its high contents of potentially toxic or ecotoxic elements such as Pb, Cr, Cd, and As. A promising processing route for this waste is selective chlorination, in which the non-ferrous metal oxides are chlorinated and selectively evaporated in form of their respective chlorides from the remaining solids via the process gas flow. Here, we investigate stepwise thermochemical treatment of EAF dust with either waste iron(II) chloride solution or hydrochloric acid at 650, 800, and 1100 ◦C. The Zn and Pb contents of the thermochemically processed EAF dust could be lowered from 29.9% and 1.63% to 0.09% and 0.004%, respectively. Stepwise heating allowed high separation between zinc chloride at the 650 ◦C step and sodium-, potassium-, and lead-containing chlorides at higher temperatures. Furthermore, the lab-scale results were transferred to the use of an experimental rotary kiln highlighting the possibilities of upscaling the presented process. Selective chlorination of EAF dust with liquid chlorine donors is, therefore, suggested as a potential recycling method for Zn-enriched steelworks dusts. KW - Electric arc furnace dust KW - Zinc KW - Selective Chlorination KW - Hazardous waste KW - Resource Recovery PY - 2024 DO - https://doi.org/10.1016/j.jhazmat.2023.133421 SN - 0304-3894 VL - 465 SP - 1 EP - 13 PB - Elsevier AN - OPUS4-59345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - He, Zhiming A1 - Dechesne, Arnaud A1 - Schreiber, Frank A1 - Zhu, Yong-Guan A1 - Larsson, Joakim A1 - Smets, Barth T1 - Understanding Stimulation of Conjugal Gene Transfer by Nonantibiotic Compounds: How Far Are We? N2 - A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance. KW - Antibiotic resistance KW - Horizontal gene transfer KW - Conjugation KW - Chemicals PY - 2024 DO - https://doi.org/10.1021/acs.est.3c06060 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-60105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Measurement of sub-4 nm particle emission from FFF-3D printing with the TSI Nano Enhancer and the Airmodus Particle Size Magnifier N2 - The emission of ultrafine particles from small desktop Fused Filament Fabrication (FFF) 3D printers has been frequently investigated in the past years. However, the vast majority of FFF emission and exposure studies have not considered the possible occurrence of particles below the typical detection limit of Condensation Particle Counters and could have systematically underestimated the total particle emission as well as the related exposure risks. Therefore, we comparatively measured particle number concentrations and size distributions of sub-4 nm particles with two commercially available diethylene glycol-based instruments – the TSI 3757 Nano Enhancer and the Airmodus A10 Particle Size Magnifier. Both instruments were evaluated for their suitability of measuring FFF-3D printing emissions in the sub-4 nm size range while operated as a particle counter or as a particle size spectrometer. For particle counting, both instruments match best when the Airmodus system was adjusted to a cut-off of 1.5 nm. For size spectroscopy, both instruments show limitations due to either the fast dynamics or rather low levels of particle emissions from FFF-3D printing in this range. The effects are discussed in detail in this article. The findings could be used to implement sub-4 nm particle measurement in future emission or exposure studies, but also for the development of standard test protocols for FFF-3D printing emissions. KW - Air pollution KW - Ultrafine particles KW - Sub-4nm particles KW - FFF-3D printing KW - Emission testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595952 DO - https://doi.org/10.1080/02786826.2024.2320430 SN - 0278-6826 VL - 58 IS - 6 SP - 644 EP - 656 PB - Taylor & Francis CY - London AN - OPUS4-59595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Schinnen, Andrea A1 - Riedel, Maren A1 - Sommerfeld, Thomas A1 - Sawal, G. A1 - Bandow, N. A1 - Vogel, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Investigation of pH-dependent extraction methods for PFAS in (fluoropolymer-based) consumer products: A comparative study between targeted and sum parameter analysis N2 - Here, we report a comparative study of different sum parameter analysis methods for the extraction of per- and polyfluoroalkyl substances (PFAS) from manufactured consumer products, which can be measured by combustion ion chromatography (CIC). Therefore, a hydrolysis-based extraction method was further developed, which accounts for the addition of hydrolyzable covalently bound polyfluoroalkylated side-chain polymers (SFPs) to the extractable organic fluorine portion of the mass balance proposed as "hydrolyzable organically bound fluorine" (HOF). To test this hypothesis, the method was applied to 39 different consumer products containing fluoropolymers or monomeric PFAS taken from four different categories: outdoor textiles, paper packaging, carpeting, and permanent baking sheets. We also evaluated the method's efficiency by extracting four synthesized fluorotelomer polyacrylate reference compounds. The total fluorine (TF) and extractable organically bound fluorine (EOF) values were measured through CIC using established protocols. The TF values ranged from sub-ppb to %-levels, depending on the compound class. All samples showed results for hydrolyzed organofluorine (HOF) between 0.03 and 76.3 μg/g, while most EOF values were lower (C8 (e.g. 580 µg/kg dw PFOS for Soil1), whereas the consumer product samples showed a more uniform distribution with regard to chain lengths from C4 to C8. Independent from quantified PFAS amounts via target analysis, µ-XRF mapping combined with µ-XANES spectroscopy was successfully applied to detect both point-specific concentration maxima and evenly distributed surface coatings of fluorinated organic contaminants in the corresponding samples. KW - PFAS KW - XRF KW - LC-MS/MS KW - XANES KW - Fluoride KW - Soil PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576109 DO - https://doi.org/10.1039/D3EM00107E SN - 2050-7887 SP - 1 EP - 12 PB - Royal Society of Chemistry AN - OPUS4-57610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Huthwelker, T. A1 - Borca, C. A1 - Simon, Franz-Georg T1 - Levels of per- and polyfluoroalkyl substances (PFAS) in various wastewater-derived fertilizers – analytical investigations from different perspectives N2 - Solid wastewater-based fertilizers were screened for per- and polyfluoroalkyl substances (PFAS) by the extractable organic fluorine (EOF) sum parameter method. The EOF values for ten sewage sludges from Germany and Switzerland range from 154 to 7209 mg kg−1. For thermal treated sewage sludge and struvite the EOF were lower with values up to 121 mg kg−1. Moreover, the application of PFAS targeted and suspect screening analysis of selected sewage sludge samples showed that only a small part of the EOF sum parameter values can be explained by the usually screened legacy PFAS. The hitherto unknown part of EOF sum parameter contains also fluorinated pesticides, pharmaceutical and aromatic compounds. Because these partly fluorinated compounds can degrade to (ultra-)short PFAS in wastewater treatment plants they should be considered as significant sources of organic fluorine in the environment. The combined results of sum parameter analysis and suspect screening reveal the need to update current regulations, such as the German fertilizer ordinance, to focus not solely on a few selected PFAS such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) but consider an additional sum parameter approach as a more holistic alternative. Moreover, diffusion gradient in thin-films (DGT) passive samplers were utilized as an alternative simplified extraction method for PFAS in solid wastewater-based fertilizers and subsequently quantified via combustion ion chromatography. However, the DGT method was less sensitive and only comparable to the EOF values of the fertilizers in samples with >150 mg kg−1, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583429 DO - https://doi.org/10.1039/d3va00178d VL - 2 IS - 10 SP - 1436 EP - 1445 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Kalbe, Ute T1 - Case Study on Secondary Building Materials for a Greener Economy N2 - Half of global material consumption involves mineral material. The circularity is still low so that the enhanced use of secondary building material is required to close loops. Three different secondary building materials are discussed based on exemplary research results: construction and demolition waste (C&D waste), soil-like material, and incineration bottom ash (IBA). Focus was placed on the environmental compatibility of the materials examined mainly by standardized leaching tests. C&D waste was investigated after a wet treatment using a jigging machine, and soil-like material and IBA were characterized with respect to their material composition. Their environmental compatibilities in particular were studied using standard leaching tests (batch tests and column tests). It was concluded that soil-like material can mostly be utilized even when the precautionary limit values set are exceeded by a factor of less than two. For C&D waste, the fine fraction below 2 mm and the content of brick material is problematic. IBA fulfills quality level “HMVA-2” following German regulations. Improved levels of utilization might be achievable with better treatment technologies. KW - Incineration bottom ash KW - Soil-like material KW - Leaching KW - Circular economy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576343 DO - https://doi.org/10.3390/app13106010 SN - 2076-3417 VL - 13 IS - 10 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-57634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kochovski, Z. A1 - Feldmann, Ines A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Ni- and Co-Struvites: Revealing Crystallization Mechanisms and Crystal Engineering toward Applicational Use of Transition Metal Phosphates N2 - Industrial and agricultural waste streams (waste water, sludges, tailings, etc.) which contain high concentrations of NH4+, PO43–, and transition metals are environmentally harmful and toxic pollutants. At the same time, phosphorous and transition metals constitute highly valuable resources. Typically, separate pathways have been considered to extract hazardous transition metals or phosphate independently from each other. Investigations on the simultaneous removal of multiple components have been carried out only to a limited extent. Here, we report the synthesis routes for Ni- and Co-struvites (NH4MPO4·6H2O, M = Ni2+ and Co2+), which allow for P, ammonia, and metal co-precipitation. By evaluating different reaction parameters, the phase and stability of transition metal struvites as well as their crystal morphologies and sizes could be optimized. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P) ratios, whereas Co-struvite only forms at low M/P ratios. Detailed investigations of the precipitation process using ex situ and in situ techniques provided insights into the crystallization mechanisms/crystal engineering of these materials. M-struvites crystallize via intermediate colloidal amorphous nanophases, which subsequently aggregate and condense to final crystals after extended reaction times. However, the exact reaction kinetics of the formation of a final crystalline product varies significantly depending on the involved metal cation in the precipitation process: several seconds (Mg) to minutes (Ni) to hours (Co). The achieved level of control over the morphology and size makes precipitation of transition metal struvites a promising method for direct metal recovery and binding them in the form of valuable phosphate raw materials. Under this paradigm, the crystals can be potentially up-cycled as precursor powders for electrochemical or (electro)catalytic applications, which require transition metal phosphates. KW - Crystallization KW - Struvite KW - Nickel KW - Cobalt KW - Phosphorous recovery KW - Up-cycling KW - Aqueous synthesis PY - 2022 DO - https://doi.org/10.1021/acs.cgd.2c00284 VL - 22 IS - 7 SP - 4305 EP - 4315 PB - ACS Publications CY - Washington D.C. AN - OPUS4-55286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Alexandra A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Counting Small Particles in Electron Microscopy Images — Proposal for Rules and Their Application in Practice N2 - Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials. KW - Nano KW - Particle size distribution KW - Nanoparticle KW - Nanomaterial KW - OECD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551891 DO - https://doi.org/10.3390/nano12132238 SN - 2079-4991 VL - 12 IS - 13 SP - 2238 PB - MDPI CY - Basel AN - OPUS4-55189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieksmeyer, T. A1 - He, S. A1 - Esparza-Mora, M. A. A1 - Jiang, S. A1 - Petrasiunaite, V. A1 - Kuropka, B. A1 - Banasiak, Robert A1 - Julseth, M. J. A1 - Weise, C. A1 - Johnston, P. R. A1 - Rodriguez-Rojas, A. A1 - McMahon, Dino Peter T1 - Eating in a losing cause: Limited benefit of modifed macronutrient consumption following infection in the oriental cockroach Blatta orientalis N2 - Background: Host–pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. Results: We fnd that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches signifcantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited efect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on diferent diets, regardless of infection status. Conclusions: We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide signifcant immune protection in B. orientalis, suggesting that the host’s dietary shift might also result from random rather than directed behaviour. The lack of an apparent beneft of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted. KW - Animal immune system KW - A key interface KW - Host and symbiont ecology KW - Behavioural mechanisms KW - Biotic environment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550022 DO - https://doi.org/10.1186/s12862-022-02007-8 SN - 2730-7182 VL - 22 IS - 1 SP - 1 EP - 14 PB - Springer Nature CY - London, UK AN - OPUS4-55002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Beate A1 - Pfeiffer, F. A1 - Dyall-Smith, M. A1 - Kunte, Hans-Jörg T1 - Genome Sequence of Pseudomonas veronii Strain G2, a Member of a Bacterial Consortium Capable of Polyethylene Degradation N2 - Nine different bacterial isolates were recovered from landfills. Each isolate was obtained in pure culture. As a consortium, the bacteria degrade polyethylene. The complete genome sequence of strain G2 was determined by PacBio sequencing. Using the TYGS server for taxonomic classification, strain G2 was assigned to the species Pseudomonas veronii. KW - Polyethylene KW - Next generation sequencing KW - Pseudomonas veronii PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548973 DO - https://doi.org/10.1128/mra.00365-22 SP - 1 EP - 2 PB - ASM AN - OPUS4-54897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Selina A1 - Rodríguez-Rojas, A. A1 - Rolff, J. A1 - Schreiber, Frank T1 - Biocides used as material preservatives modify rates of de novo mutation and horizontal gene transfer in bacteria N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution and transmission of AMR. Previous studies showed that de-novo mutagenesis and horizontal gene transfer (HGT) by conjugation or transformation – important processes underlying resistance evolution and spread - are affected by antibiotics, metals and pesticides. However, natural microbial communities are also frequently exposed to biocides used as material preservatives, but it is unknown if these substances induce mutagenesis and HGT. Here, we show that active substances used in material preservatives can increase rates of mutation and conjugation in a species- and substance-dependent manner, while rates of transformation are not increased. The bisbiguanide chlorhexidine digluconate, the quaternary ammonium compound didecyldimethylammonium chloride, the metal copper, the pyrethroid-insecticide permethrin, and the azole-fungicide propiconazole increase mutation rates in Escherichia coli, whereas no increases were identified for Bacillus subtilis and Acinetobacter baylyi. Benzalkonium chloride, chlorhexidine and permethrin increased conjugation in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Taken together, our data show the importance of assessing the contribution of material preservatives on AMR evolution and spread. KW - Mutation rate KW - Horizontal gene transfer KW - Biocides PY - 2022 DO - https://doi.org/10.1016/j.jhazmat.2022.129280 SN - 0304-3894 VL - 437 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-55261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazemifard, N. A1 - Dehkohneh, Abolfazl A1 - Baradaran Ghavami, S. T1 - Probiotics and probiotic-based vaccines: A novel approach for improving vaccine efficacy N2 - Vaccination is defined as the stimulation and development of the adaptive immune system by administering specific antigens. Vaccines' efficacy, in inducing immunity, varies in different societies due to economic, social, and biological conditions. One of the influential biological factors is gut microbiota. Cross-talks between gut bacteria and the host immune system are initiated at birth during microbial colonization and directly control the immune responses and protection against pathogen colonization. Imbalances in the gut microbiota composition, termed dysbiosis, can trigger several immune disorders through the activity of the adaptive immune system and impair the adequate response to the vaccination. The bacteria used in probiotics are often members of the gut microbiota, which have health benefits for the host. Probiotics are generally consumed as a component of fermented foods, affect both innate and acquired immune systems, and decrease infections. This review aimed to discuss the gut microbiota's role in regulating immune responses to vaccination and how probiotics can help induce immune responses against pathogens. Finally, probiotic-based oral vaccines and their efficacy have been discussed. KW - Probiotics KW - Gut microbiota KW - Probiotic-based vaccines PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561767 DO - https://doi.org/10.3389/fmed.2022.940454 SN - 2296-858X VL - 9 SP - 1 EP - 15 PB - Frontiers Media CY - Lausanne AN - OPUS4-56176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -