TY - CONF A1 - Pienkoß, Fabian A1 - Simon, Franz-Georg T1 - Wet treatments of fine bottom ash for the recovery of metals N2 - In Europe, nearly 19 Mt/y of bottom ash (BA) are produced. Of this quota, only 46 %wt. was treated, often in poorly performing plants, leaving behind 10 Mt of untreated and unrecovered BA, destined to landfill. The resulting 2.14 Mt loss of valuable materials included 1 Mt mineral fraction and 0.97 Mt ferrous metals, mostly from untreated BA, and 0.18 Mt non-ferrous metals, mostly from unrecovered BA. For the coarser fractions, the main obstacle to BA being used as recycling aggregate is the content of salts and potential toxic elements (PTEs), concentrated in a layer that coats BA particles. For the fine BA fractions, usually underexploited and landfilled, it is estimated that up to 0.95 Mt/y of ferrous and non-ferrous metals are not recovered in Europe. During the workshop, the key results of BASH Treat project will be presented: the results of 2 industrial tests performed in BA treatment plants in Germany and Sweden; a novel dry treatment for the removal of salts and PTEs from BA coarse particles; a wet process for the recovery of heavy metal compounds from the fine fraction; a technical-economic assessment of the EU potential for the optimization of BA management. T2 - Crete 2021, 7th International Conference on Industrial & Hazardous Waste Management CY - Online meeting DA - 27.07.2021 KW - Bottom ash KW - Recovery KW - Design of experiments PY - 2021 AN - OPUS4-53030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pienkoß, Fabian A1 - Abis, M. A1 - Bruno, M. A1 - Grönholm, R. A1 - Hoppe, M. A1 - Kuchta, K. A1 - Fiore, S. A1 - Simon, Franz-Georg T1 - Heavy metal recovery from the fine fraction of solid waste incineration bottom ash by wet density separation N2 - This work is aimed at exploring the recovery of heavy metals from the fine fraction of solid waste incineration bottom ash. For this study, wet-discharged bottom ash fine-fraction samples from full-scale treatment plants in Germany and Sweden were analyzed. The potential for the recovery of heavy metal compounds was investigated through wet density-separation with a shaking table. The feed materials were processed without any pre-treatment and the optimum processing conditions were determined by means of design of experiments. Tilt angle and stroke frequency were identified as the most relevant parameters, and the optimum settings were − 7.5° and 266 rpm, respectively. The obtained balanced copper enrichments (and yields) were 4.4 (41%), 6.2 (28%) and 2.4 (23%). A maximum copper enrichment of 14.5 with 2% yield was achieved, providing a concentrate containing 35.9 wt.% relevant heavy metal elements. This included 26.3 wt.% iron, 4.3 wt.% zinc and 3.8 wt.% copper. In conclusion, density separation with shaking tables can recover heavy metals from bottom ash fine fractions. Medium levels of heavy metal enrichment (e.g., for Cu 2.7–4.4) and yield (Cu: 26–41%) can be reached simultaneously. However, the separation performance also depends on the individual bottom ash sample. KW - Bottom ash KW - Density separation KW - Circular economy KW - Design of experiments PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538569 SN - 1438-4957 SN - 1611-8227 VL - 24 SP - 364 EP - 377 PB - Springer Nature CY - Heidelberg AN - OPUS4-53856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -