TY - JOUR A1 - Schoknecht, Ute A1 - Tietje, O. A1 - Borho, N. A1 - Burkhardt, M. A1 - Rohr, M. A1 - Vollpracht, A. A1 - Weiler, L. T1 - Environmental impact of construction products on aquatic systems - Principles of an integrated source-path-target concept JF - Water N2 - Buildings exposed to water can release undesirable substances which, once transported to environmental compartments, may cause unwanted effects. These exposure pathways need to be investigated and included in risk assessments to safeguard water quality and promote the sustainability of construction materials. The applied materials, exposure conditions, distribution routes and resilience of receiving compartments vary considerably. This demonstrates the need for a consistent concept that integrates knowledge of emission sources, leaching processes, transport pathways, and effects on targets. Such a consistent concept can serve as the basis for environmental risk assessment for several scenarios using experimentally determined emissions. Typically, a source–path–target concept integrates data from standardized leaching tests and models to describe leaching processes, the distribution of substances in the environment and the occurrence of substances at different points of compliance. This article presents an integrated concept for assessing the environmental impact of construction products on aquatic systems and unravels currently existing gaps and necessary actions. This manuscript outlines a source–path–target concept applicable to a large variety of construction products. It is intended to highlight key elements of a holistic evaluation concept that could assist authorities in developing procedures for environmental risk assessments and mitigation measures and identifying knowledge gaps. KW - Construction products KW - Environmental impact KW - Assessment KW - Concept PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542175 DO - https://doi.org/10.3390/w14020228 SN - 2073-4441 VL - 14 IS - 2 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Urbanczyk, M.M. A1 - Bester, K. A1 - Borho, N. A1 - Schoknecht, Ute A1 - Bollmann, U.E. T1 - Influence of pigments on phototransformation of biocides in paints JF - Journal of Hazardous Materials N2 - Biocides are commonly applied to construction materials such as facade renders and paints in order to protect them from microbial spoilage. These renders and paints are exposed to weathering conditions, e.g., sunlight and rain. Pigments are interacting intensively with the spectrum of the incoming light; thus, an effect of paint pigments on phototransformation rates and reaction pathways of the biocides is hypothesized. In this study, the phototransformation of four commonly used biocides (carbendazim, diuron, octylisothiazolinone (OIT) and terbutryn) in four different paint formulations differing solely in pigments (red and black iron oxides, white titanium dioxide, and one pigment-free formulation) were investigated. Paints surfaces were irradiated under controlled conditions. The results show that biocides degrade most rapidly in the pigment-free formulation. The degradation in the pigment-free formulation followed a first-order kinetic model with the respective photolysis rate constants: kp,Diuron=0.0090 h−1, kp,OIT=0.1205 h−1, kp,Terbutryn=0.0079 h−1. Carbendazim concentrations did not change significantly. The degradation was considerably lower in the pigment-containing paints. The determination of several phototransformation products of terbutryn and octylisothiazolinone showed different transformation product ratios dependent on the pigment. Consequently, pigments not only reflect the incoming light, but also interact with the biocide photodegradation. KW - OIT KW - Terbutryn KW - Indirect photolysis KW - Construction materials PY - 2019 DO - https://doi.org/10.1016/j.jhazmat.2018.10.018 SN - 0304-3894 VL - 364 SP - 125 EP - 133 PB - Elsevier AN - OPUS4-46328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -