TY - JOUR A1 - Vogel, Christian A1 - Rivard, C. A1 - Wilken, V. A1 - Muskolus, A. A1 - Adam, Christian T1 - Performance of secondary P-fertilizers in pot experiments analyzed by phosphorus X-ray absorption near-edge structure (XANES) spectroscopy JF - Ambio N2 - A pot experiment was carried out with maize to determine the phosphorus (P) plant-availability of different secondary P-fertilizers derived from wastewater. We analyzed the respective soils by P K-edge X-ray absorption near-edge structure (XANES) spectroscopy to determine the P chemical forms that were present and determine the transformation processes. Macro- and micro-XANES spectroscopy were used to determine the chemical state of the overall soil P and identify P compounds in P-rich spots. Mainly organic P and/or P adsorbed on organic matter or other substrates were detected in unfertilized and fertilized soils. In addition, there were indications for the formation of ammonium phosphates in some fertilized soils. However, this effect was not seen in the maize yield of all P-fertilizers. The observed reactions between phosphate from secondary P-fertilizers and cofertilized nitrogen compounds should be further investigated. Formation of highly plant-available compounds such as ammonium phosphates could make secondary P-fertilizers more competitive to commercial phosphate rock-based fertilizers with positive effects on resources conservation. KW - Phosphorus KW - Pot experiments KW - Secondary P-fertilizer KW - Sewage sludge ash KW - Soil KW - X-ray absorption near-edge structure (XANES) spectroscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-433782 DO - https://doi.org/10.1007/s13280-017-0973-z SN - 0044-7447 VL - 47 IS - 1 SP - 62 EP - 72 PB - Springer AN - OPUS4-43378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hermann, P. A1 - Kästner, B. A1 - Adamczyk, Burkart A1 - Hoehl, A. A1 - Ulm, G. A1 - Adam, Christian T1 - Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectroscopy JF - Corrosion Science N2 - The present study shows the potential of high-resolution imaging and nano-Fourier-transform infrared (nano-FTIR) spectroscopy for corrosion science. The protective oxidation layers of different chlorine-gas treated silicon carbides (SiCs) were characterized with these techniques. A nitrified SiC showed the highest resistant strength against chlorine corrosion at 1000 °C compared to the other SiCs. Nano-FTIR spectroscopy with a lateral resolution below 40 nm detected differences in the crystallinity of the bulk-SiC and in the transitional region to the protective layer. Furthermore, high-resolution imaging provides deep insight in the interfacial layer between bulk-SiC and the protective oxidation layer on sub-micrometer scale. KW - Nano-Fourier-transform infrared spectroscopy KW - Scattering-type scanning near-field optical microscopy (s-SNOM) KW - Synchrotron radiation KW - Corrosion KW - Silicon carbide KW - Chlorine PY - 2018 DO - https://doi.org/10.1016/j.corsci.2017.12.002 SN - 0010-938X VL - 131 SP - 324 EP - 329 PB - Elsevier AN - OPUS4-43648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, K. H. A1 - Sattari, S. A1 - Donskyi, Ievgen A1 - Cuellar-Camacho, J. L. A1 - Cheng, C. A1 - Schwibbert, Karin A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Gorbushina, Anna A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions JF - Nanoscale N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene–pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed “trapping” and “nano-knives” mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of “trapping” and “nano-knives” mechanisms for the antibacterial activity of graphene sheets. KW - XPS KW - Graphene KW - Graphene–bacteria interaction PY - 2018 DO - https://doi.org/10.1039/c8nr01347k SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 20 SP - 9525 EP - 9537 PB - RSC CY - London AN - OPUS4-45084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Köster, M. A1 - Dippold, M. A. A1 - Nájera, F. A1 - Matus, F. A1 - Merino, C. A1 - Boy, J. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. T1 - Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale JF - Geoderma N2 - Microbial activity and functioning in soils are strongly limited by carbon (C) availability, of which a great proportion is released by living roots. Rhizodeposition and especially root exudates stimulate microbial activity and growth, and may shift the stoichiometric balance between C, N, and P. Thereby, exudates heighten microbial nutrient demand and acquisition of N and P from organic matter, leading to an increase in enzyme production. Aim of this study was to determine environmental controls of extracellular enzyme production, and hence on potential enzyme activities (Vmax) and substrate affinities (Km). To determine the controlling factors, we worked on four spatial scales from the microscale (i.e. rhizosphere) through the mesoscale (i.e. soil depth) and landscape scale (relief positions), and finally to the continental scale (1200 km transect within the Coastal Cordillera of Chile). Kinetics of seven hydrolyzing enzymes of the C, N, and P cycles (cellobiohydrolase, β‑glucosidase, β‑xylosidase, β‑N‑acetylglucosaminidase, leucine‑aminopeptidase, tyrosine‑aminopeptidase, and acid phosphatase) were related to soil texture, C and N contents, pH, and soil moisture via redundancy analysis (RDA). Potential activities of C, N, and P acquiring enzymes increased up to 7-times on the continental scale with rising humidity of sites and C and N contents, while substrate affinities simultaneously declined. On the landscape scale, neither Vmax nor Km of any enzyme differed between north and south slopes. From top- to subsoil (down to 120 cm depth) potential activities decreased (strongest of aminopeptidases under humid temperate conditions with up to 90%). Substrate affinities, however, increased with soil depth only for N and P acquiring enzymes. Affinities of cellobiohydrolase and β‑xylosidase, on the contrary, were 1.5- to 3-times higher in top- than in subsoil. Potential activities of N and P acquiring enzymes and β‑glucosidase increased form bulk to roots. Simultaneously, substrate affinities of N and P acquiring enzymes declined, whereas affinities of β‑glucosidase increased. These trends of activities and affinities in the rhizosphere were significant only for acid phosphatase. The RDA displayed a strong relation of potential activities of C and P acquiring enzymes and β‑N‑acetylglucosaminidase to C and N contents in soil as well as to the silt and clay contents. Aminopeptidase activity was mainly dependent on soil moisture and pH. We conclude that substrate availability for microorganisms mainly determined enzyme activity patterns on the continental scale by the humidity gradient. Patterns on the meso- and microscale are primarily controlled by nutrient limitation, which is induced by a shift of the stoichiometric balance due to input of easily available C by roots in the rhizosphere. KW - Extracellular enzymes KW - Stoichiometric homeostasis KW - Rhizosphere effect KW - Nutrient acquisition KW - Multi-scale study PY - 2018 DO - https://doi.org/10.1016/j.geoderma.2018.10.030 SN - 0016-7061 SN - 1872-6259 VL - 2019 IS - 337 SP - 973 EP - 982 PB - Elsevier B.V. AN - OPUS4-46829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Stege, H. A1 - Bretz, S. A1 - Hahn, Oliver T1 - Capabilities and limitations of handheld Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass JF - Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy N2 - A non-invasivemethod has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings “Zwei Frauen am Tisch” (1920–22), “Bäume” (1946) (both by Heinrich Campendonk), “Lofoten” (1933) (Edith Campendonk-van Leckwyck) and “Ohne Titel” (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra fromthe paintingswith spectra frompure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts.We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings. KW - DRIFTS KW - Painting KW - Non-invasive KW - Pigment PY - 2018 DO - https://doi.org/10.1016/j.saa.2018.01.057 SN - 1873-3557 VL - 195 SP - 103 EP - 112 PB - Elsevier B.V. AN - OPUS4-44023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Böhm, L. A1 - Heyde, B. A1 - Adam, Christian T1 - Fate of heavy metals and polycyclic aromatic hydrocarbons (PAH) in sewage sludge carbonisates and ashes – A risk assessment to a thermochemical phosphorus-recycling process JF - Waste Management N2 - In the near future, phosphorus (P) recycling will gain importance in terms of decreasing primary resources. Sewage sludge (SSL) is an adequate secondary P-resource for P-fertilizer production but it is also a sink for heavy metals and organic pollutants. The present study is an investigation on thermochemical P-recycling of SSL. Various temperatures and amendments were tested regarding their performance to remove heavy metals and polycyclic aromatic hydrocarbons (PAH) and simultaneous increase of the plant-availability of P. The investigations were carried out on two types of SSL originating from wastewater treatment plants with chemical P-precipitation and enhanced biological P-removal, respectively. The results show that thermochemical treatment with chlorine donors is suitable to remove the majority of heavy metals and that a combination of a gaseous chlorine donor (HCl) and sodium additives leads to both high heavy metal removal and high plant availability of P. Furthermore, plant experiments Show that almost all investigated thermochemical treatments can significantly reduce the bioavailability and plant uptake of heavy metals. Furthermore, PAHs are secondarily formed during low-temperature treatments (400–500 ° ), but can be significantly reduced by using sodium carbonate as an additive. KW - Fertilzer KW - Pollutant KW - Phosphorus PY - 2018 DO - https://doi.org/10.1016/j.wasman.2018.06.027 SN - 0956-053X VL - 78 SP - 576 EP - 587 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-45341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg T1 - Exergie und Rohstoffgewinnung T1 - From Ore to Metal Exergy and Raw Material Extraction JF - Chemie in unserer Zeit N2 - Rohstoffe sind knapp. Hinzu kommt, dass auf dem Weg vom Erz zum Metall viel Energie benötigt wird, mechanische Energie beim Zerkleinern, thermische Energie beim Schmelzen oder elektrische Energie bei der Elektrolyse. Ausgedrückt als Exergie kann man die Verbräuche gut vergleichen. Die meisten technischen Prozesse sind aber vom berechneten thermodynamischen Optimum weit entfernt. KW - Exergie KW - Rostasche KW - Kupfer PY - 2018 UR - https://onlinelibrary.wiley.com/doi/10.1002/ciuz.201800872 DO - https://doi.org/10.1002/ciuz.201800872 SN - 1521-3781 VL - 52 IS - 5 SP - 282 EP - 283 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46256 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seeger, Stefan A1 - Brödner, Doris A1 - Jacobi, T. A1 - Rasch, Fabian A1 - Rothhardt, Monika A1 - Wilke, Olaf T1 - Emissions of fine and ultrafine particles and volatile organic compounds from different filament materials operated on a low-cost 3D printer T1 - Emissionen feiner und ultrafeiner Partikel sowie flüchtiger organischer Verbindungen beim Einsatz verschiedener Filamentmaterialien in einem „low-cost“-3D-Drucker JF - Gefahrstoffe - Reinhaltung der Luft N2 - 3D-printing or additive manufacturing has many promising and unique advantages. Especially low cost molten polymer Deposition Printers are increasingly populär in the private and educational sector. Their environmental friendliness can be questioned due to recently reported ultrafine particle and suspected VOC emissions, To further investigate 3D-printing as a potential indoor air pollution source we characterized fine and ultrafine particle emissions from a molten polymer deposition printer producing a 3D object with ten marketable polymer filament materials under controlled conditions in a test chamber. VOC emissions from the filaments have also been compared. Using a straightforward emission model time dependent and averaged particle emission rates were determined. The results indicate that under comparable conditions some filament materials produce mainly ultrafine particles up to an average rate of 1013 per minute. This value is in the upper ränge of typical indoor ultrafine particle sources (e.g. Smoking, frying, candle light, laser printer). The observed material-specific rates differ by five Orders of magnitude. Filament-specific gaseous emissions of organic compounds such as bisphenol A, styrene and others were also detected. Our results suggest a detailed evaluation of related risks and considering protective measures such as housing and filtering. N2 - 3D-Druck oder additive Herstellungsverfahren haben eine Menge vielversprechender und einzigartiger Vorteile. Insbesondere günstige 3D-Drucker für Polymere werden im privaten und ausbildenden Bereich zunehmend beliebter. Ihre Umweltfreundlichkeit kann aufgrund jüngst berichteter Emissionen ultrafeiner Partikel und vermuteter VOC-Emissionen infrage gestellt werden. Um 3D-Drucker für Polymere als mögliche Quelle von Innenraumluftverunreinigungen weiter zu untersuchen, charakterisierten wir die Emissionen feiner und ultrafeiner Partikel bei der Herstellung eines 3D-Objekts unter Verwendung zehn marktgängiger Polymerfilamente unter kontrollierten Bedingungen in einer Emissionsprüfkammer. Die VOC-Emissionen der verschiedenen Filamente wurden ebenfalls verglichen. Die zeitabhängigen und gemittelten Partikelemissionsraten wurden durch Anwendung eines einfachen Emissionsmodells bestimmt. Die Ergebnisse zeigen, dass unter vergleichbaren Bedingungen einige Filamente mit einer mittleren Rate von 10 KW - Emission KW - Ultrafine particles KW - VOC KW - 3D printer PY - 2018 SN - 0949-8036 SN - 0039-0771 VL - 78 IS - 3 SP - 79 EP - 87 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-44954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiber, Frank A1 - Zimmermann, M. A1 - Escrig, S. A1 - Lavik, G. A1 - Kuypers, M.M.M. A1 - Meibom, A. A1 - Ackermann, M. T1 - Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium JF - Environmental Microbiology Reports N2 - Populations of genetically identical cells can display marked variation in phenotypic traits; such variation is termed phenotypic heterogeneity. Here, we investigate the effect of substrate and electron donor limitation on phenotypic heterogeneity in N2 and CO2 fixation in the green sulphur bacterium Chlorobium phaeobacteroides. We grew populations in chemostats and batch cultures and used stable isotope labelling combined with nanometer‐scale secondary ion mass spectrometry (NanoSIMS) to quantify phenotypic heterogeneity. Experiments in H2S (i.e. electron donor) limited chemostats show that varying levels of NH4+ limitation induce heterogeneity in N2 fixation. Comparison of phenotypic heterogeneity between chemostats and batch (unlimited for H2S) populations indicates that electron donor limitation drives heterogeneity in N2 and CO2 fixation. Our results demonstrate that phenotypic heterogeneity in a certain metabolic activity can be driven by different modes of limitation and that heterogeneity can emerge in different metabolic processes upon the same mode of limitation. In conclusion, our data suggest that limitation is a general driver of phenotypic heterogeneity in microbial populations. KW - NanoSIMS KW - Phenotypic heterogeneity PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1111/1758-2229.12616 DO - https://doi.org/10.1111/1758-2229.12616 SN - 1758-2229 VL - 10 IS - 2 SP - 179 EP - 183 PB - John Wiley & Sons Ltd AN - OPUS4-44596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez-Martin, Pedro A1 - Becker, Roland A1 - Toepel, J. A1 - Gorbushina, Anna T1 - An improved test for the evaluation of hydrocarbon degradation capacities of diesel-contaminating microorganisms JF - International Biodeterioration & Biodegradation N2 - The development of a test to evaluate the degradation of semi-volatile fuels as diesel by microorganisms is presented. This method is based on the principles described in the CEC-L-103 Standard procedure that is exclusively meant for testing the biodegradability of non-volatile lubricants. Therefore, significant modifications involve aseptic conditions for testing specific microorganisms and conducting the test in closed vessels avoiding evaporation losses, while fuel quantification using gas chromatography-flame ionization detection (GC-FID) is retained. It is suggested that the modified procedure should enable routine application for semi-volatile hydrocarbon-based fuels. GC-FID provides additionally valuable information on the alteration of fuel component patterns during biodegradation. The procedure was successfully tested using two bacteria (Pseudomonas aeruginosa and Sphingomonas sp.) and two yeasts (Moesziomyces sp. and Candida sp.) isolated from real diesel contamination cases. All tested microorganisms caused a significant degradation of diesel fuel achieving hydrocarbon degradation percentages ranging from 23% to 35%. Specific aspects on the test modification and prospects for further modification regarding targeted investigations in the field of fuel contamination by microorganisms are briefly discussed. KW - Biofouling KW - Bacteria KW - Fungi KW - CEC-L-103 KW - GC-FID KW - Reference organisms PY - 2018 DO - https://doi.org/10.1016/j.ibiod.2018.01.009 SN - 0964-8305 VL - 129 SP - 89 EP - 94 PB - Elsevier AN - OPUS4-44524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Redfern, J. A1 - Tucker, J. A1 - Simmons, L. A1 - Askew, P. A1 - Verran, J. A1 - Stephan, Ina T1 - Environmental and experimental factors affecting efficacy testing on nonporous plastic antimicrobial surfaces JF - Methods and Protocols N2 - Test methods for efficacy assessment of antimicrobial coatings are not modelled on a hospital environment, and instead use high humidity (>90%) high temperature (37 ◦C), and no airflow. Therefore, an inoculum will not dry, resulting in an antimicrobial surface exhibiting prolonged antimicrobial activity, as moisture is critical to activity. Liquids will dry quicker in a hospital ward, resulting in a reduced antimicrobial efficacy compared to the existing test, rendering the test results artificially favourable to the antimicrobial claim of the product. This study aimed to assess how hospital room environmental conditions can affect the drying time of an inoculum, and to use this data to inform test parameters for antimicrobial efficacy testing based on the hospital ward. The drying time of different droplet sizes, in a range of environmental conditions likely found in a hospital ward, were recorded (n = 630), and used to create a model to inform users of the experimental conditions required to provide a drying time similar to what can be expected in the hospital ward. Drying time data demonstrated significant (p < 0.05) variance when humidity, temperature, and airflow were assessed. A mathematical model was created to select environmental conditions for in vitro antimicrobial efficacy testing. Drying time in different environmental conditions demonstrates that experimental set-ups affect the amount of time an inoculum stays wet, which in turn may affect the efficacy of an antimicrobial surface. This should be an important consideration for hospitals and other potential users, whilst future tests predict efficacy in the intended end-use environment. KW - Method development KW - Standardisation KW - Antimicrobial test KW - Environmental conditions KW - Hospital premises PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472699 DO - https://doi.org/10.3390/mps1040036 SN - 2409-9279 VL - 1 IS - 4 SP - 36, 1 EP - 10 PB - MDPI CY - Internet open accsess AN - OPUS4-47269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pokharel, R. A1 - Gerrits, Ruben A1 - Schuessler, J. A. A1 - Frings, P. J. A1 - Sobotka, R. A1 - Gorbushina, Anna A1 - von Blanckenburg, F. T1 - Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants JF - Environmental Science & Technology N2 - In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is −0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (−2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (−0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants. KW - Cyanobacteria KW - Black fungi KW - Nostoc punctiforme KW - Knufia petricola KW - Magnesium PY - 2018 DO - https://doi.org/10.1021/acs.est.8b02238 SN - 1520-5851 SN - 0013-936X VL - 52 IS - 21 SP - 12216 EP - 12224 PB - ACS Publications AN - OPUS4-46832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palma-Onetto, V. A1 - Hoskova, K. A1 - Krizkova, B. A1 - Krejcirova, R. A1 - Pflegerova, J. A1 - Bubenickova, F. A1 - Plarre, Rüdiger A1 - Dahlsjo, C. A. L. A1 - Dahlsjo, J. A1 - Bourguignon, T. A1 - Sillam-Dusses, D. A1 - Sobotnik, J. T1 - The labral gland in termites: evolution and function JF - Biological journal of the Linnean Society N2 - The evolutionary success of termites has been driven largely by a complex communication system operated by a rich set of exocrine glands. As many as 20 different exocrine organs are known in termites. While some of these organs are relatively well known, only anecdotal observations exist for others. One of the exocrine organs that has received negligible attention so far is the labral gland. In this study, we examined the structure and ultrastructure of the Labrum in soldiers of 28 termite species. We confirm that the labral gland is present in all termite species, and comprises two secretory regions located on the ventral side of the labrum and the dorso-apical part of the hypopharynx. The Labrum of Neoisoptera has a hyaline tip, which was secondarily lost in Nasutitermitinae, Microcerotermes and species with snapping soldiers. The epithelium of the gland generally consists of class 1 secretory cells, with an addition of class 3 secretory cells in some species. A common feature of the secretory cells is the abundance of smooth endoplasmic reticulum, an organelle known to produce lipidic and often volatile secretions. Our observations suggest that the labral gland is involved in communication rather than defence as previously suggested. Our study is the first to provide a comprehensive picture of the structure of the labral gland in soldiers across all Termite taxa. KW - Exocrine gland KW - Hypopharynx KW - Labrum KW - Termitoidae KW - Ultrastructure KW - Isoptera PY - 2018 DO - https://doi.org/10.1093/biolinnean/blx162 SN - 0024-4066 SN - 1095-8312 VL - 126 IS - 3 SP - 587 EP - 597 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-44666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oprzeska-Zingrebe, E. A. A1 - Meyer, Susann A1 - Roloff, Alexander A1 - Kunte, Hans-Jörg A1 - Smiatek, J. T1 - Influence of compatible solute ectoine on distinct DNA structures: thermodynamic insights into molecular binding mechanisms and destabilization effects JF - Phys.Chem.Chem.Phys. N2 - In nature, the cellular environment of DNA includes not only water and ions, but also other components and co-solutes, which can exert both stabilizing and destabilizing effects on particular oligonucleotide conformations. Among them, ectoine, known as an important osmoprotectant organic co-solute in a broad range of pharmaceutical products, turns out to be of particular relevance. In this article, we study the influence of ectoine on a short single-stranded DNA fragment and on double-stranded helical B-DNA in aqueous solution by means of atomistic molecular dynamics (MD) simulations in combination with molecular theories of solution. Our results demonstrate a conformation-dependent binding behavior of ectoine, which favors the unfolded state of DNA by a combination of electrostatic and dispersion interactions. In conjunction with the Kirkwood–Buff theory, we introduce a simple Framework to compute the influence of ectoine on the DNA melting temperature. Our findings reveal a significant linear decrease of the melting temperature with increasing ectoine concentration, which is found to be in qualitative agreement with results from denaturation experiments. The outcomes of our Computer simulations provide a detailed mechanistic rationale for the surprising destabilizing influence of ectoine on distinct DNA structures. KW - Ectoine KW - DNA KW - Thermodynamic KW - Melting temperature PY - 2018 DO - https://doi.org/10.1039/c8cp03543a SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 40 SP - 25861 EP - 25874 PB - Royal Society of Chemistry AN - OPUS4-46327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nilsson, R. H. A1 - Taylor, A. F. S. A1 - Adams, R. I. A1 - Baschien, C. A1 - Bengtsson-Palme, J. A1 - Cangren, P. A1 - Coleine, C. A1 - Iršėnaitė, R. A1 - Martin-Sanchez, Pedro Maria A1 - Meyer, W. A1 - Oh, S.-Y. A1 - Sampaio, J. P. A1 - Seifert, K. A. A1 - Sklenář, F. A1 - Stubbe, D. A1 - Suh, S.-O. A1 - Summerbell, R. A1 - Svantesson, S. A1 - Unterseher, M. A1 - Visagie, C. M. A1 - Weiss, M. A1 - Woudenberg, J. HC. A1 - Wurzbacher, C. A1 - Van den Wyngaert, S. A1 - Yilmaz, N. A1 - Yurkov, A. A1 - Kõljalg, U. A1 - Abarenkov, K. A1 - Daniel, H.-M. A1 - Glassman, S. I. A1 - Hirooka, H. A1 - Irinyi, L. T1 - Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10–11, 2017 workshop (Aberdeen, UK) JF - MycoKeys N2 - Recent DNA-based studies have shown that the built environment is surprisingly rich in fungi. These indoor fungi – whether transient visitors or more persistent residents – may hold clues to the rising levels of human allergies and other medical and building-related health problems observed globally. The taxo¬nomic identity of these fungi is crucial in such pursuits. Molecular identification of the built mycobiome is no trivial undertaking, however, given the large number of unidentified, misidentified, and technically compromised fungal sequences in public sequence databases. In addition, the sequence metadata required to make informed taxonomic decisions – such as country and host/substrate of collection – are often lacking even from reference and ex-type sequences. Here we report on a taxonomic annotation workshop (April 10–11, 2017) organized at the James Hutton Institute/University of Aberdeen (UK) to facilitate reproducible studies of the built mycobiome. The 32 participants went through public fungal ITS bar¬code sequences related to the built mycobiome for taxonomic and nomenclatural correctness, technical quality, and metadata availability. A total of 19,508 changes – including 4,783 name changes, 14,121 metadata annotations, and the removal of 99 technically compromised sequences – were implemented in the UNITE database for molecular identification of fungi (https://unite.ut.ee/) and shared with a range of other databases and downstream resources. Among the genera that saw the largest number of changes were Penicillium, Talaromyces, Cladosporium, Acremonium, and Alternaria, all of them of significant importance in both culture-based and culture-independent surveys of the built environment. KW - Indoor mycobiome KW - Built environment KW - Molecular identification KW - Fungi KW - Taxonomy KW - Systematics KW - Sequence annotation KW - Metadata KW - Open data PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438949 DO - https://doi.org/10.3897/mycokeys.28.20887 SN - 1314-4049 SN - 1314-4057 VL - 28 SP - 65 EP - 82 PB - Pensoft Publishers CY - Washington, DC AN - OPUS4-43894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mueller, Axel A1 - Becker, Roland A1 - Dorgerloh, Ute A1 - Simon, Franz-Georg A1 - Braun, Ulrike T1 - The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics JF - Environmental Pollution N2 - Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy. Pellets were exposed to water containing BTEX and the ethers at 130-190 mg/L for up to two weeks. Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's Kow and was significant for BTEX and marginal for the ethers. Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer. KW - BTEX KW - Polypropylene KW - Polystyrene KW - Sorption KW - Degradation PY - 2018 DO - https://doi.org/10.1016/j.envpol.2018.04.127 SN - 0269-7491 VL - 240 SP - 639 EP - 646 PB - Elsevier CY - Amsterdam AN - OPUS4-44990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - McMahon, Dino Peter A1 - Wilfert, L. A1 - Paxton, R.J. A1 - Brown, M.J.F. T1 - Emerging viruses in bees: From molecules to ecology T2 - Advances in Virus Research N2 - Emerging infectious diseases arise as a result of novel interactions between populations of hosts and pathogens, and can threaten the health and wellbeing of the entire spectrum of biodiversity. Bees andtheir viruses area case in point. However, detailed knowledge of the ecological factors and evolutionary forces that drive disease emergence in bees and other host–pathogen communities is surprisingly lacking. In this review, we build on the fundamental insight that viruses evolve and adapt over timescales that overlap with host ecology. At the same time, we integrate the role of host community ecology, including community structure and composition, biodiversity loss, and human driven disturbance, all of which represent significant factors in bee virus ecology. Both of these evolutionary and ecological perspectives represent major advances but, in most cases, it remains unclear how evolutionary forces actually operate across different biological scales (e.g., from cell to ecosystem). We present a molecule-to-ecology framework to help address these issues, emphasizing the role of molecular mechanisms as keybottom-up drivers of change at higher ecological scales. We consider the bee–virus system to be an ideal one in which to apply this framework. Unlike many other animal models, bees constitute a well characterized and accessible multispecies assemblage, whose populations and interspecific interactions can be experimentally manipulated and monitored in high resolution across space and time to provide robust tests of prevailing theory. KW - Emerging KW - Virus KW - Pathogen KW - Bee KW - Disease PY - 2018 DO - https://doi.org/10.1016/bs.aivir.2018.02.008 SN - 0065-3527 VL - 101 SP - 251 EP - 291 AN - OPUS4-46324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gebhardt, Christopher A1 - Toepel, Jörg A1 - Barry, J. A1 - Munzke, N. A1 - Günster, Jens A1 - Gorbushina, Anna T1 - Monitoring microbial soiling in photovoltaic systems: A qPCR-based approach JF - International Biodeterioration & Biodegradation N2 - Soiling of photovoltaic (PV) systems compromises their performance causing a significant power loss and demanding periodical cleaning actions. This phenomenon raises great concerns in the solar energy field, thus leading to notable research efforts over the last decades. Soiling is caused by a dual action of dust deposition and biofouling. However, surprisingly, the microbiological contribution to PV soiling is often overlooked or underestimated. In this study, a variety of qPCR-based methods have been developed to quantify the microbial load of fungi, bacteria and phototrophs on PV panels. These protocols were evaluated by comparison with culturedependent methods, and were implemented with real solar plants for two years. The results show that the developed molecular methods are highly sensitive and reliable to monitor the microbial component of the soiling. Fungal biomass was clearly dominant in all analysed PV modules, while bacteria and phototrophs showed much lower abundance. Light microscopy and qPCR results revealed that melanised microcolonial fungi and phototrophs are the main biofilm-forming microorganisms on the studied solar panels. In particular, the fungal qPCR protocol is proposed as a useful tool for monitoring of PV soiling, and investigating the microbial contribution to specific soiling cases. KW - Solar panels KW - PV modules KW - Real-time qPCR KW - Bacteria KW - Fungi KW - Phototrophs PY - 2018 DO - https://doi.org/10.1016/j.ibiod.2017.12.008 SN - 0964-8305 VL - 129 SP - 13 EP - 22 PB - Elsevier Science AN - OPUS4-43892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marchant, H. K. A1 - Tegetmeyer, H. E. A1 - Ahmerkamp, S. A1 - Holtappels, M. A1 - Lavik, G. A1 - Graf, J. A1 - Schreiber, Frank A1 - Mussmann, M. A1 - Strous, M. A1 - Kuypers, M. M. M. T1 - Metabolic specialization of denitrifiers in permeable sediments controls N2O emissions JF - Environmental Microbiology N2 - Coastal oceans receive large amounts of anthropogenic fixed nitrogen (N), most of which is denitrified in the sediment before reaching the open ocean. Sandy sediments, which are common in coastal regions, seem to play an important role in catalysing this N‐loss. Permeable sediments are characterized by advective porewater transport, which supplies high fluxes of organic matter into the sediment, but also leads to fluctuations in oxygen and nitrate concentrations. Little is known about how the denitrifying communities in these sediments are adapted to such fluctuations. Our combined results indicate that denitrification in eutrophied sandy sediments from the world's largest tidal flat system, the Wadden Sea, is carried out by different groups of microorganisms. This segregation leads to the formation of N2O which is advectively transported to the overlying waters and thereby emitted to the atmosphere. At the same time, the production of N2O within the sediment supports a subset of Flavobacteriia which appear to be specialized on N2O reduction. If the mechanisms shown here are active in other coastal zones, then denitrification in eutrophied sandy sediments may substantially contribute to current marine N2O emissions. KW - Nitrous oxide KW - Denitrification KW - Cross-feeding PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-463061 UR - https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.14385 DO - https://doi.org/10.1111/1462-2920.14385 SN - 1462-2920 SN - 1462-2912 VL - 20 IS - 12 SP - 4486 EP - 4502 PB - John Wiley & Sons Ltd AN - OPUS4-46306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Knabe, Nicole A1 - Gorbushina, Anna ED - Gurtler, V. ED - Trevors, J. T. T1 - Territories of rock-inhabiting fungi: Survival on and alteration of solid air-exposed surfaces T2 - Microbiology of Atypical Environments N2 - Subaerial biofilms that are omnipresent at the interface between all solid substrates and the atmosphere are composed of a unique and widespread group of ascomycetes called rock-inhabiting fungi or microcolonial fungi (MCF), typically in communities with other microorganisms. While subaerial biofilms in toto have important roles in mineral weathering and biodeterioration of materials, methodological approaches to subaerial biofilm communities are diverse and frequently focussed on MCF. Here, we review the historical development of the research methods applied in the field and consider perspectives to increase our understanding of the biofilm-induced changes of solid substrate surfaces. KW - Biologically induced mineral weathering KW - Geobiology KW - Microcolonial fungi KW - Subaerial biofilm KW - Symbiosis PY - 2018 UR - https://linkinghub.elsevier.com/retrieve/pii/S0580951718300047 SN - 9780128146040 DO - https://doi.org/10.1016/bs.mim.2018.06.001 VL - 45 SP - Chapter 6, 145 EP - 169 PB - Elsevier AN - OPUS4-47181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of Escherichia coli under various conditions by near-ambient pressure XPS JF - Surface and Interface Analysis N2 - Bacteria are inherently in a hydrated state and therefore not compatible to ultra-high vacuum techniques such as XPS without prior sample preparation involving freeze drying or fast freezing. This has changed with the development of near-ambient pressure (NAP)-XPS, which makes it possible to characterise the bacterial surface with minimal sample preparation. This paper presents NAP-XPS measurements of Escherichia coli under various NAP conditions: at 11 mbar in a humid environment, at 2 mbar after drying in the chamber, pre-dried at 4 mbar, and at 1 mbar after overnight pumping at 10^−4 mbar. The high-resolution spectra of carbon, nitrogen, and oxygen are presented and found to be in general agreement with XPS measurements from freeze-dried and fast-frozen bacteria. However, it was found that the amount of carbon components associated with polysaccharides increases relative to aliphatic carbon during drying and increases further after overnight pumping. This implies that drying has an impact on the bacterial surface. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2018 KW - Bacteria KW - E. coli KW - NAP-XPS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454047 DO - https://doi.org/10.1002/sia.6480 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 996 EP - 1000 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-45404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ibrahim, B. A1 - McMahon, Dino Peter A1 - Hufsky, F. A1 - Beer, M. A1 - Ding, L. A1 - Le Mercier, P. A1 - Palmarini, M. A1 - Thiel, V. A1 - Marz, M. T1 - A new era of virus bioinformatics JF - Virus research N2 - Despite the recognized excellence of virology and bioinformatics, these two communities have interacted surprisingly sporadically, aside from some pioneering work on HIV-1 and influenza. Bringing together the Expertise of bioinformaticians and virologists is crucial, since very specific but fundamental computational approaches are required for virus research, particularly in an era of big data. Collaboration between virologists and bioinformaticians is necessary to improve existing analytical tools, cloud-based systems, computational resources, data sharing approaches, new diagnostic tools, and bioinformatic training. Here, we highlight current progress and discuss potential avenues for future developments in this promising era of virus bioinformatics. We end by presenting an overview of current technologies, and by outlining some of the Major challenges and Advantages that bioinformatics will bring to the field of virology. KW - Bioinformatics virology viruses software PY - 2018 DO - https://doi.org/10.1016/j.virusres.2018.05.009 SN - 0168-1702 SN - 1872-7492 VL - 251 SP - 86 EP - 90 PB - Elsevier CY - Amsterdam AN - OPUS4-45880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ibrahim, B. A1 - Arkhipova, K. A1 - Andeweg, A.C. A1 - Posada-Céspedes, S. A1 - Enault, F. A1 - Gruber, A. A1 - Koonin, E.V. A1 - Kupczok, A. A1 - Lemey, P. A1 - McHardy, A.C. A1 - McMahon, Dino Peter A1 - Pickett, B.E. A1 - Robertson, D.L. A1 - Scheuermann, R.H. A1 - Zhernakova, A. A1 - Zwart, M.P. A1 - Schönhuth, A. A1 - Dutilh, B.E. A1 - Marz, M. T1 - Bioinformatics meets virology: The European virus bioinformatics center's second annual meeting JF - Viruses N2 - The Second Annual Meeting of the European Virus Bioinformatics Center (EVBC), held in Utrecht, Netherlands, focused on computational approaches in virology, with topics including (but not limited to) virus discovery, diagnostics, (meta-)genomics, modeling, epidemiology, molecular structure, evolution, and viral ecology. The goals of the Second Annual Meeting were threefold: (i) to bring together virologists and bioinformaticians from across the academic, industrial, professional, and training sectors to share best practice; (ii) to provide a meaningful and interactive scientific environment to promote discussion and collaboration between students, postdoctoral fellows, and both new and established investigators; (iii) to inspire and suggest new research directions and questions. Approximately 120 researchers from around the world attended the Second Annual Meeting of the EVBC this year, including 15 renowned international speakers. This report presents an overview of new developments and novel research findings that emerged during the meeting. KW - Bioinformatics KW - Software KW - Virology KW - Viruses PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458814 DO - https://doi.org/10.3390/v10050256 SN - 1999-4915 VL - 10 IS - 5 SP - 256, 1 EP - 19 PB - MDPI AN - OPUS4-45881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hufsky, F. A1 - Ibrahim, B. A1 - Beer, M. A1 - Deng, L. A1 - Le Mercier, P. A1 - McMahon, Dino Peter A1 - Palmarini, M. A1 - Thiel, V. A1 - Marz, M. T1 - Virologists—Heroes need weapons JF - Plos Pathogens N2 - Virologists. You might know a couple of them, but unless you are a virologist yourself, the probability that you have collaborated with one in the past is low. The community is relatively small, but they pack a heavy punch and are expected to play a leading role in the research into pathogens that lies ahead. You may ask why we think virologists are our future. Suffice it to say that it is not just because they have invented technologies that belong to the space age, including use of viruses as vehicles to shuttle genes into cells[1], organic nanoparticles with specific tools attached to their surfaces to get inside target cells[2], and using genetically modified viruses as therapies to fight against cancer[3]. Did you know that virologists currently only know of about 3,200 viral species but that more than 320,000 mammal-associated viruses[4] are thought to await discovery? Just think about the viruses hidden in the Arctic ice[5] or in the insects and other animals from once cut-off regions in the world, which now face ever-increasing human exposure[6]. But a heroic (as well as an apocalyptic) role for virologists may also be on the horizon, as the adoption of phage therapy may, in the future, be used to control harmful bacteria when antibiotics fail KW - Virology KW - Bioinformatics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-442402 DO - https://doi.org/10.1371/journal.ppat.1006771 SN - 1553-7366 SN - 1553-7374 VL - 14 IS - 2 SP - Article e1006771, 1 EP - 3 PB - Public Library of Science CY - Lawrence, Kan. AN - OPUS4-44240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huber, F. A1 - Herzel, Hannes A1 - Adam, Christian A1 - Mallow, O. A1 - Blasenbauer, D. A1 - Fellner, J. T1 - Combined disc pelletisation and thermal treatment of MSWI fly ash JF - Waste Management N2 - An environmentally friendly and cost efficient way for the management of municipal solid waste incineration (MSWI) fly ash represents its thermal co-treatment together with combustible waste. However, the safe introduction and storage of MSWI fly ash in the waste bunker is challenging and associated with severe problems (e.g. dust emissions, generation of undefined lumps and heat in case of moistened MSWI fly ash). Therefore, the aim of this study is to investigate the suitability of pelletisation as a pretreatment of MSWI fly ash. In particular, MSWI fly ash was characterised after sampling, pelletisation and thermal treatment and the transfer of constituents to secondary fly ash and flue gas was investigated. For this purpose, MSWI fly ash pellets with a water content of about 0.15 kg/kg and a diameter of about 8 mm have been produced by disc pelletiser and treated in an electrically heated pilot-scale rotary kiln at different temperatures, ranging from 450°C to 1050°C. The total contents of selected elements in the MSWI fly ash before and after thermal treatment and in the generated secondary fly ash have been analysed in order to understand the fate of each element. Furthermore, leachable contents of selected elements and total content of persistent organic pollutants of the thermally treated MSWI fly ash were determined. Due to the low total content of Hg (0.7 mg/kg) and the low leachate content of Pb (<0.36 mg/kg), even at the lowest treatment temperature of 450°C, thermally treated MSWI fly ash pellets can be classified as nonhazardous waste. However, temperatures of at least 650°C are necessary to decrease the toxic equivalency of PCDD/F and DL-PCB. The removal of toxic heavy metals like Cd and Pb is significantly improved at temperatures of 850°C, 950°C or even 1050°C. The observed metal removal led to relatively high contents of e.g. Cu (up to 11,000 mg/kg), Pb (up to 91,000 mg/kg) and Zn (up to 21,000 mg/kg) in the secondary fly ash. This metal enriched secondary fly ash might represent a potential raw material for metal recovery (e.g. via acidic leaching). Due to the high content of total dissolved solids observed in the leachate of thermally treated MSWI fly ash pellets, a wet extraction procedure is suggested to enable its safe disposal at non-hazardous waste landfills. KW - MSWI fly ash KW - Thermal treatment PY - 2018 DO - https://doi.org/10.1016/j.wasman.2017.12.020 SN - 0956-053X VL - 73 SP - 381 EP - 391 PB - Elsevier Ltd. CY - Rotterdam AN - OPUS4-44481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoyer, C. A1 - Pfütze, C. A1 - Plarre, Rüdiger A1 - Trommler, U. A1 - Steinbach, S. A1 - Klutzny, Kerstin A1 - Holzer, F. A1 - Rabe, C. A1 - Höhlig, B. A1 - Schmidt, S. A1 - Roland, U. T1 - Chemical-free pest control by dielectric heating with radio waves and microwaves: Thermal effects JF - Chemical engineering and technology N2 - Thermal pest control with hot air is widely accepted as an alternative to chemical methods. However, it requires relatively long treatment times owing to the low thermal conductivity of wood. Direct dielectric heating that applies radio waves or microwaves has the advantage of more homogeneous heating. However, Sound experimental data on this technique are currently rare. Therefore, the thermal treatment of wood-destroying insects with radio waves and microwaves was studied with two model pests, Anobium punctatum and Hylotrupes bajulus, and with Tenebrio molitor as a reference. The secure elimination of pests was achieved, and the corresponding treatment time was in the range of a few minutes. Temperature profiles were more homogeneous when applying radio waves. KW - Dielectric heating KW - Microwaves KW - Pest control KW - Radio waves KW - Wood protection PY - 2018 DO - https://doi.org/10.1002/ceat.201600712 SN - 1521-4125 SN - 0930-7516 VL - 41 IS - 1 SP - 108 EP - 115 PB - Wiley-VCH CY - Weinheim AN - OPUS4-43527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herbig, B. A1 - Jörres, R. A. A1 - Schierl, R. A1 - Simon, M. A1 - Langner, Jeanette A1 - Seeger, Stefan A1 - Nowak, D. A1 - Karrasch, S. T1 - Psychological and cognitive effects of laser printer emissions: A controlled exposure study JF - Indoor Air N2 - The possible impact of ultrafine particles from laser printers on human health is controversially discussed although there are persons reporting substantial symptoms in relation to these emissions. A randomized, single-blinded, cross-over experimental design with two exposure conditions (high-level and low-level exposure) was conducted with 23 healthy subjects, 14 subjects with mild asthma, and 15 persons reporting symptoms associated with laser printer emissions. To separate physiological and psychological effects, a secondary physiologically based categorization of susceptibility to particle effects was used. In line with results from physiological and biochemical assessments, we found no coherent, differential, or clinically relevant effects of different exposure conditions on subjective complaints and cognitive performance in terms of attention, short-term memory, and psychomotor performance. However, results regarding the psychological characteristics of participants and their situational perception confirm differences between the participants groups: Subjects reporting symptoms associated with laser printer emissions showed a higher psychological susceptibility for adverse reactions in line with previous results on persons with multiple chemical sensitivity or idiopathic environmental intolerance. In conclusion, acute psychological and cognitive effects of laser printer emissions were small and could be attributed only to different participant groups but not to differences in exposure conditions in terms of particle number concentrations. KW - Cognitive performance KW - Exposure KW - Idiopathic environmental intolerance KW - Laser printer emission KW - Multiple chemical sensitivity KW - Subjective complaints PY - 2018 DO - https://doi.org/10.1111/ina.12429 SN - 1600-0668 SN - 0905-6947 VL - 28 IS - 1 SP - 112 EP - 124 PB - John Wiley & Sons, Inc. CY - 111 RIVER ST, HOBOKEN 07030-5774, NJ USA AN - OPUS4-43945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - He, Shulin A1 - Johnston, P. R. A1 - Kuropka, B. A1 - Lokatis, S. A1 - Weise, C. A1 - Plarre, Rüdiger A1 - Kunte, Hans-Jörg A1 - McMahon, Dino Peter T1 - Termite soldiers contribute to social immunity by synthesizing potent oral secretions JF - Insect Molecular Biology N2 - The importance of soldiers to termite Society defence has long been recognized, but the contribution of soldiers to other societal functions, such as colony immunity, is less well understood. We explore this issue by examining the role of soldiers in protecting nestmates against pathogen infection. Even though they are unable to engage in grooming behaviour, we find that the presence of soldiers of the Darwin termite, Mastotermes darwiniensis, significantly improves the survival of nestmates following entomopathogenic infection. We also show that the copious exocrine oral secretions produced by Darwin termite soldiers contain a high concentration of Proteins involved in digestion, chemical biosynthesis, and immunity. The oral secretions produced by soldiers are sufficient to protect nestmates against infection, and they have potent inhibitory activity against a broad spectrum of microbes. Our findings support the view that soldiers may play an important role in colony immunity, and broaden our understanding of the possible function of soldiers during the origin of soldier-first societies. KW - External KW - Social KW - Immunity KW - Soldier KW - Antimicrobial KW - Proteome PY - 2018 DO - https://doi.org/10.1111/imb.12499 SN - 1365-2583 SN - 0962-1075 VL - 27 IS - 5 SP - 564 EP - 576 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-45726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guterman, R. A1 - Miao, H. A1 - Cataldo, V. A. A1 - Antonietti, M. A1 - Dimke, Thomas A1 - Stephan, Ina T1 - Thioimidazolium salts as a platform for nonvolatile alkylators and degradable antiseptics JF - ACS sustainable chemistry and engineering N2 - ABSTRACT: A collection of thioimidazolium salts were synthesized and used as a new class of nonvolatile alkylating agents. Their nonvolatility prevents exposure during use or handling and are thus drastically safer than conventional alkylating agents. We discovered that thioimidazolium Iodide salts cannot release volatile compounds in the solid state, but instead only decompose when molten. Since decomposition proceeds via alkyl iodide elimination, SN2 of iodide on the thioimidazolium cation is constrained in the solid state, and instead can occur only upon melting when ions are mobile. By smart design of these alkylators, the melting point and thus the decomposition temperature of these salts can be increased from 106 to 169 °C and release negligible volatile organic compounds prior to melting. Thioimidazolium-bis(trifluoromethanesulfonyl)imide (TFSI) ionic liquids act as a completely nonvolatile and air-stable TFSI-based alkylating agent and can be used for high-throughput Synthesis of TFSI ionic liquids without solvent. Alkyl groups from methyl to dodecyl can be transferred to a nucleophile and the product purified by sublimation of the thione byproduct, which can then be recycled. We also found that thioimidazolium salts with a dodecyl chain are bactericidal, yet can hydrolyze in water to form benign neutral products, and thus wont accumulate in the environment. These results demonstrate that thioimidazolium salts are a designable platform for the pursuit of safer and more environmentally friendly alkylating and antiseptic agents. KW - Alkylating agents KW - Decomposition point KW - Melting point KW - Nonvolatile KW - One-step ionic liquids synthesis KW - Antiseptic agents PY - 2018 DO - https://doi.org/10.1021/acssuschemeng.8b03874 SN - 2168-0485 VL - 6 IS - 11 SP - 15434 EP - 15440 PB - American Chemical Society CY - Washington, DC AN - OPUS4-46904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Esiukova, Elena A1 - Chubarenko, Boris A1 - Simon, Franz-Georg T1 - Debris of geosynthetic materials on the shore of South-Eastern Baltic (Kaliningrad Oblast, Russian Federation) T2 - 2018 IEEE/OES Baltic International Symposium (BALTIC) N2 - Geosynthetics are widely used in hydraulic engineering and within coastal protection constructions at the Baltic Sea shore, such as walls, promenades, and gabions walls. Storms influence leads to deformation of some of the protection structures and cause the release of geotextiles onto the beach. Fragments of geotextile migrate along the shore, experiencing additional degradation and destruction down to macro-, meso-, and micro-particles. During October 2017 - March 2018, the Baltic Sea shore along the Sambia Peninsula (Kaliningrad Oblast of the Russian Federation) was monitored to establish the contamination of sandy beaches by geotextiles that had degraded. Several local sources of pollution of beaches by geosynthetic materials were established. T2 - 7th IEEE/OES Baltic Symposium "Clean and Safe Baltic Sea and Energy Security for the Baltic countries" CY - Klaipeda, Lithuania DA - 12.06.2018 KW - Baltic Sea KW - Geotextiles KW - Geosynthetics KW - Degradation KW - Coastal protection PY - 2018 SN - 978-1-5386-4467-6 DO - https://doi.org/10.1109/BALTIC.2018.8634842 SN - 2150-6035 SP - 1 EP - 6 PB - IEEE Xplore Digital Library CY - New York AN - OPUS4-47760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Davis, Hannah A1 - Meconcelli, Stefania A1 - Radek, R. A1 - McMahon, Dino Peter T1 - Termites shape their collective behavioural response based on stage of infection JF - Scientific reports N2 - Social insects employ a range of behaviours to protect their colonies against disease, but little is known about how such collective behaviours are orchestrated. This is especially true for the social Blattodea (termites). We developed an experimental approach that allowed us to explore how the social response to disease is co-ordinated by multistep host-pathogen interactions. We infected the eastern subterranean termite Reticulitermes flavipes with the entomopathogenic fungus Metarhizium anisopliae, and then, at different stages of infection, reintroduced them to healthy nestmates and recorded behavioural responses. As expected, termites groomed pathogen-exposed individuals significantly more than controls; however, grooming was significantly elevated after fungal germination than before, demonstrating the importance of fungal status to hygienic behaviour. Significantly, we found that cannibalism became prevalent only after exposed termites became visibly ill, highlighting the importance of host condition as a cue for social hygienic behaviour. Our study reveals the presence of a coordinated social response to disease that depends on stage of infection. Specifically, we show how the host may play a key role in triggering its own sacrifice. Sacrificial self-flagging has been observed in other social insects: our results demonstrate that termites have independently evolved to both recognize and destructively respond to sickness. KW - Social KW - Immunity KW - Cannibalism KW - Entomopathogen PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-463239 DO - https://doi.org/10.1038/s41598-018-32721-7 SN - 2045-2322 VL - 8 SP - 14433, 1 EP - 10 PB - Nature CY - London AN - OPUS4-46323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Drewitz, T. A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, R. T1 - Biosynthesis and characterization of zearalenone-14-sulfate, zearalenone-14-glucoside and zearalenone-16-glucoside using common fungal strains JF - Toxins N2 - Zearalenone (ZEN) and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49%) is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67%) and ZEN-16-glucoside (yield: 39%) are formed by Rhizopus oryzae and Rhizopus oligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by 1H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates. KW - Mycotoxin KW - Zearalenone KW - Conjugate KW - Biosynthesis KW - Fusarium KW - Aspergillus KW - Rhizopus PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444246 DO - https://doi.org/10.3390/toxins10030104 SN - 2072-6651 VL - 10 IS - 3 SP - Article 104, 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-44424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Sebastian A1 - Schürmann, Robin A1 - Feldmann, Ines A1 - Blocki, A. A1 - Bald, Ilko A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Maintaining Stable Zeolitic Imidazolate Framework (ZIF) Templates during Polyelectrolyte Multilayer Coating JF - Colloid and Interface Science Communications N2 - Equipping ZIF particles with a polyelectrolyte membrane provides functional groups at their interface, enabling further conjugations necessary for applications such as targeted drug delivery. Previous approaches to coat ZIF particles with polyelectrolytes led to surface corrosion of the template material. This work overcomes previous limitations by performing a Layer-by-Layer (LbL) polyelectrolyte coating onto ZIF-8 and ZIF-67 particles in nonaqueous environment. Using the 2-methylimidazolium salt of polystyrensulfonic acid instead of the acid itself and polyethyleneimine in methanol led to intact ZIF particles after polyelectrolyte coating. This was verified by electron microscopy. Further, zetapotential and atomic force microscopy measurements confirmed a continuous polyelectrolyte multilayer built up. The here reported adaption to the well-studied (LbL) polyelectrolyte selfassembly process provides a facile method to equip ZIF particles with a nanometer thin polyelectrolyte multilayer membrane. KW - Zeolithe KW - Molecular Organic Frameworks KW - MOF KW - ZIF KW - Layer-by-Layer KW - Beschichtung KW - Polyelektrolyt PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447729 DO - https://doi.org/10.1016/j.colcom.2017.11.004 SN - 2215-0382 VL - 22 SP - 14 EP - 17 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-44772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bastuck, M. A1 - Baur, T. A1 - Richter, Matthias A1 - Mull, B. A1 - Schütze, A. A1 - Sauerwald, T. T1 - Comparison of ppb-level gas measurements with a metal-oxide semiconductor gas sensor in two independent laboratories JF - Sensors and Actuators B: Chemical N2 - In this work, we use a gas sensor system consisting of a commercially available gas sensor in temperature cycled operation. It is trained with an extensive gas profile for detection and quantification of hazardous volatile organic compounds (VOC) in the ppb range independent of a varying background of other, less harmful VOCs and inorganic interfering gases like humidity or hydrogen. This training was then validated using a different gas mixture generation apparatus at an independent lab providing analytical methods as reference. While the varying background impedes selective detection of benzene and naphthalene at the low concentrations supplied, both formaldehyde and total VOC can well be quantified, after calibration transfer, by models trained with data from one system and evaluated with data from the other system. The lowest achievable root mean squared errors of prediction were 49 ppb for formaldehyde (in a concentration range of 20–200 ppb) and 150 μg/m³ (in a concentration range of 25–450 μg/m³) for total VOC. The latter uncertainty improves to 13 μg/m³ with a more confined model range of 220–320 μg/m³. The data from the second lab indicate an interfering gas which cannot be detected analytically but strongly influences the sensor signal. This demonstrates the need to take into account all sensor relevant gases, like, e.g., hydrogen and carbon monoxide, in analytical reference measurements. KW - Indoor air quality KW - Volatile organic compounds KW - Calibration transfer KW - Selective quantification KW - Inter-lab comparison PY - 2018 DO - https://doi.org/10.1016/j.snb.2018.06.097 SN - 0925-4005 VL - 273 SP - 1037 EP - 1046 PB - Elsevier B.V. AN - OPUS4-45609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandow, Nicole A1 - Gartiser, S. A1 - Ilvonen, O. A1 - Schoknecht, Ute T1 - Evaluation of the impact of construction products on the environment by leaching of possibly hazardous substances JF - Environmental Sciences Europe N2 - Construction products are in contact with water (e.g., rain, seepage water) during their service lifetime and may release potentially harmful compounds by leaching processes. Monitoring studies showed that compounds attributed to construction products are found in storm water and the receiving bodies of water and that the release of biocides in urban areas can be comparable to the input of pesticides from agricultural uses. Therefore, a prospective risk assessment of such products is necessary. Laboratory leaching tests have been developed by the Technical Committee CEN/TC 351 and are ready to use. One major task in the future will be the evaluation of the leaching test results, as concentrations found in laboratory experiments are not directly comparable to the field situations. Another Task will be the selection of compounds to be considered for construction products, which are often a complex mixture and contain additives, pigments, stabilization agents, etc. The formulations of the products may serve as a starting point, but total content is a poor predictor for leachability, and analysis of the eluates is necessary. In some cases, nontargeted approaches might be required to identify compounds in the eluates. In the identification process, plausibility checks referring to available information should be included. Ecotoxicological tests are a complementary method to test eluates, and the combined effects of all compounds—including Degradation products—are included. A bio test battery has been applied in a round robin test and was published in a guidance document. Published studies on the ecotoxicity of construction products show the tests’ suitability to distinguish between products with small and larger effects on the environment. KW - Prospective risk assessment KW - Groundwater KW - Surface water KW - Soil KW - Ecotoxicological tests KW - Targeted and nontargeted PY - 2018 DO - https://doi.org/10.1186/s12302-018-0144-2 SN - 2190-4715 SN - 2190-4707 VL - 30 SP - Article 14, 1 EP - 12 PB - SpringerOpen CY - London AN - OPUS4-44914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -