TY - JOUR A1 - Borzekowski, Antje A1 - Anggriawan, R. A1 - Auliyati, M. A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Karlovsky, P. A1 - Maul, Ronald T1 - Formation of Zearalenone Metabolites in Tempeh Fermentation JF - Molecules N2 - Tempeh is a common food in Indonesia, produced by fungal fermentation of soybeans using Rhizopus sp., as well as Aspergillus oryzae, for inoculation. Analogously, for economic reasons, mixtures of maize and soybeans are used for the production of so-called tempeh-like products. For maize, a contamination with the mycoestrogen zearalenone (ZEN) has been frequently reported. ZEN is a mycotoxin which is known to be metabolized by Rhizopus and Aspergillus species. Consequently, this study focused on the ZEN transformation during tempeh fermentation. Five fungal strains of the genera Rhizopus and Aspergillus, isolated from fresh Indonesian tempeh and authentic Indonesian inocula, were utilized for tempeh manufacturing from a maize/soybean mixture (30:70) at laboratory-scale. Furthermore, comparable tempeh-like products obtained from Indonesian markets were analyzed. Results from the HPLC-MS/MS analyses show that ZEN is intensely transformed into its metabolites alpha-zearalenol (alpha-ZEL), ZEN-14-sulfate, alpha-ZEL-sulfate, ZEN-14-glucoside, and ZEN-16-glucoside in tempeh production. alpha-ZEL, being significantly more toxic than ZEN, was the main metabolite in most of the Rhizopus incubations, while in Aspergillus oryzae fermentations ZEN-14-sulfate was predominantly formed. Additionally, two of the 14 authentic samples were contaminated with ZEN, alpha-ZEL and ZEN-14-sulfate, and in two further samples, ZEN and alpha-ZEL, were determined. Consequently, tempeh fermentation of ZEN-contaminated maize/soybean mixture may lead to toxification of the food item by formation of the reductive ZEN metabolite, alpha-ZEL, under model as well as authentic conditions. KW - Modified mycotoxins KW - Zearalenone sulfate KW - a-zearalenol KW - Food fermentation KW - Rhizopus and Aspergillus oryzae PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491126 DO - https://doi.org/10.3390/molecules24152697 VL - 24 IS - 15 SP - 2697 PB - MDPI AN - OPUS4-49112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Lehnik-Habrink, Petra A1 - Bandow, Nicole A1 - Sauer, Andreas T1 - Validation of European horizontal methods for the analysis of PAH, PCB and dioxins in sludge, treated biowaste and soil JF - Environmental Science Europe N2 - Draft standards for the determination of organic pollutants in the solid matter of environmental matrices such as sludge, treated biowaste and soil have been basically developed in the framework of the European standardization project HORIZONTAL. A research project financed by the German Federal Environment Agency was initiated to finalize some of these CEN standard drafts, since fully validated standard procedures are crucial for the evaluation of their reliability in the context of implementation in legislation on environmental health. Approach: Appropriate test materials (< 2mm particle size) were prepared and homogenized from contaminated soils, sludge and treated biowaste containing polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), dioxins, furans and dioxin-like-PCB and served, along with reference solutions, as the basis for international interlaboratory comparisons. Performance data of three analytical standard procedures were obtained by the statistical evaluation of results received from 11 to 29 participants per test material. Results: The overall variation coefficients of reproducibility (between-lab standard deviations) for the sum parameters were roughly between 10 and 35 %. The variation coefficients of repeatability (within-lab standard deviations) range between 3 % and 8 % and show no trend considering the substance groups or matrices. The highest coefficients of reproducibility were found for the analysis of PAHs, which were between 26 and 35 %, depending on the matrix, whereas 7-17 % reproducibility was observed for toxicity equivalents (TEQ) comprising dioxins, furans and dl-PCB. Conclusions: Overall, the results confirm that the procedures described in the Technical Specifications are fit for purpose for all three matrices and that the feasibility of the HORIZONTAL approach, to cover several matrices with one standard per analyte, was thereby proven. KW - Standardization KW - Analytical methods KW - Organic contaminants KW - Validation trial KW - Interlaboratory comparison PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479914 DO - https://doi.org/10.1186/s12302-019-0211-3 SN - 2190-4715 VL - 31 SP - 29, 1 EP - 10 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-47991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -