TY - CONF A1 - Schumacher, Julia T1 - How light determines the life of the plant pathogen Botrytis cinerea N2 - The rotation of the Earth causes a day/night cycle that is characterized by changing light and temperature conditions. Fungi actively sense the environmental light conditions to induce protective mechanisms against the light-associated stresses and to regulate development. Since fungi adapted to habitats with different light regimes, the complexities of their ‘visual’ systems and photoresponses may vary significantly. Fungi that are associated with plants experience a special light regime because the host seeks optimum light conditions for photosynthesis – and the fungus must cope with them. Moreover, fungi living under the canopy are confronted with an altered spectrum enriched for green and far-red light. Plants sense light to coordinate growth and morphogenesis: a low red:far-red ratio indicates the presence of competitors (shading by other plants) and triggers the shade avoidance response which is accompanied by increased susceptibility to nectrophic pathogens. Botrytis cinerea, the causal agent of gray mold diseases on many plant species in moderate climate zones (high humidity, temperatures around 20°C, seasons), exhibits striking photoresponses accompanied by a broad action spectrum and a high number of photoreceptors. Light is the most important factor controlling morphogenesis: it induces conidiation for disease spreading (summer cycle) and represses sclerotial development for survival and/or sexual recombination (winter cycle). In the past years, we identified several cellular components involved in photoperception and regulation of photomorphogenesis and virulence indicating that the same signaling pathways are of relevance for both processes, propagation and infection. Notably, we recognized the role of the phytochromes (red/far-red light sensors) for coordinated responses to light and elevated temperatures (photo-/thermomorphogenesis) – similar to the function of Arabidopsis PhyB. BcPHY2-like thermosensors are likely restricted to the Leotiomycetes, which include several plant pathogens of the moderate climate zones. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - fungus KW - light KW - plant pathogen KW - signaling KW - virulence PY - 2019 AN - OPUS4-48128 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Many-sided DHN melanin – spotlight on its function in microcolonial black fungi N2 - Dihydroxynaphthalene (DHN) melanin is produced by different Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g. in melanized reproduction, survival and/or infection structures. Remarkable is the regulation of the DHN melanogenesis in the foliar plant pathogen Botrytis cinerea: it involves two differently expressed PKSs providing the precursor in conidia and sclerotia, respectively (Schumacher 2016, Mol Microbiol). In contrast, a polyphyletic group of Ascomycetes (microcolonial fungi/ black yeast) dwelling in hostile habitats such as bare rock surfaces in hot and cold deserts, exhibits constitutive melanogenesis. Here, DHN melanin builds a protective layer around all vegetative cells thus contributing to the survival of diverse environmental stresses even without specialized reproduction structures. As part of our continuing research on microcolonial rock-inhabiting fungi, we chose the genetically amenable Knufia petricola strain A95 (Nai et al. 2013, Fungal Genet Biol; Noack-Schönmann et al. 2014, AMB Express) for detailed studies. DHN-deficient mutants generated by targeted mutation of biosynthetic genes were studied with regard to the architecture of the cell wall and the EPS (extracellular polymeric substances) matrix, attachment to and weathering of olivine, as well as the tolerance to abiotic and biotic stresses. We will discuss the critical role of the outer cell surface (DHN melanin and EPS) in adhesion to the substrate and subsequent damage of the colonized surface. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - fungus KW - melanin KW - pigmentation PY - 2020 AN - OPUS4-50591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -