TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp T1 - Analytical Challenges for PFAS in Environmental Samples - Methods, Approaches and Applicability N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include up to 1.7 M compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. Several long-chain PFAS species, and their respective salts are considered as persistent organic pollutants by the United Nations Stockholm Convention. These pollutants have been linked to altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. A significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) alternatives was observed in response to recently intensified regulations and restrictions on the use of long-chain (≥C8) PFAS. PFAS analysis in environmental samples is currently mainly done by liquid chromatography tandem mass spectrometry (LC-MS/MS). This efficient method is conducted in a targeted fashion analyzing a small subset of PFAS. The US EPA method for analysis of PFAS using LC-MS/MS for example currently lists 40 PFAS (≥C4). However, to get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Moreover, non-target and suspect screening mass spectrometry can be used to identify novel emerging PFAS and partly unknown fluorinated compounds in environmental samples. Furthermore, to analyze ultrashort PFAS (C1-C3), supercritical fluid chromatography (SFC), hydrophilic interaction chromatography (HILIC) and gas chromatography-mass spectrometry (GC-MS) are available, but further research is needed to develop reliable and accurate methods to quantify several ultrashort PFAS in environmental samples. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES)spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy PY - 2022 AN - OPUS4-55741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp T1 - PFAS Sum Parameter and Structural Analysis N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms (see Figure 1) and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. To get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. Therefore, an overview is given on various analytical techniques for PFAS in environmental samples and their application possibilities discussed for different kind of PFAS compounds T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy KW - Soil PY - 2022 AN - OPUS4-55743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Adam, Christian T1 - Effect of Nitrification Inhibitor on Nitrogen Forms in Soil analyzed by Nitrogen K edge micro XANES Spectroscopy N2 - Specific co-fertilization of nutrients can enhance their plant-availability and thus the yield of plants. To investigate this effect, we performed a pot experiment with three different P-fertilizers and ammonium nitrate sulfate as a co-fertilizer, without and with a nitrification inhibitor (NI), and analyzed the form of nitrogen (N) in the soil via novel X-ray spectroscopic method. The application of NI with the N fertilizer led to a higher dry matter yield of maize. Novel N K-edge micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy identified that the application of a NI promotes the temporary formation of a non-exchangeable N in detectable hot-spots in the soil. The subsequent slow release and prolonged availability of N during plant growth leads to higher yield. It can be concluded that NIs lead to a temporary fixation of ammonium-N in a pool that can be accessed by plant roots. Those types of available nutrient pools meet the idea of so-called “next generation fertilizers” as plants have access to nutrients according to their current demand. T2 - Workshop for X-ray and neutron imaging applications in soil sciences CY - Lund, Sweden DA - 17.06.2019 KW - Nitrogen KW - Phosphorus recycling KW - Fertilizer KW - XANES spectroscopy KW - Pot experiment PY - 2019 AN - OPUS4-48237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Krüger, O. A1 - Hoffmann, Marie A1 - Adam, Christian T1 - Determination of chromium(VI) in phosphorus fertilizers made from recycled materials by DGT N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizer can also contain toxic pollutants e.g. chromium (Cr) in the hexavalent state (Cr(VI)), which is regulated with low limit values in agricultural products (German fertilizer ordinance limit: 2 mg/kg Cr(VI)). The determination of Cr(VI) in these novel fertilizer matrices can be hampered by redox processes that lead to false results with the standard wet chemical extraction method (German norm DIN EN 15192). Therefore, we analyzed Cr(VI) in various P-fertilizers with the DGT technique. DGT devices equipped with a APA (polyacrylamide) diffusion layer and Cr(VI) selective N-methyl-D-glucamine (NMDG) binding layer were used for the study. After a 24 h conditioning period of the fertilizer at 60% of the water holding capacity (WHC), the fertilizers were brought to 100% WHC, transferred onto the DGT devices and deployed for 24 h at 25°C. The extraction of Cr from the DGT binding layer was carried out with 1 M HNO3 for 24 h. The Cr-concentrations of the extract were determined by means of ICP-MS. We found a good correlation between the standard wet chemical extraction and the DGT method for the whole range of P-fertilizers. However, partly soluble Cr(VI) compounds cannot be detected in full extent by the DGT method that is best suited for mobile Cr(VI). Furthermore, Cr K-edge XANES spectroscopy showed that the Cr(VI)-selective DGT binding layer also adsorbs mobile Cr(III) compounds from acid treatment of phosphates which can therefore cause an overestimation of Cr(VI). The DGT method was very sensitive and in most cases selective for the analysis of Cr(VI) in P-fertilizers made from recycled materials. However, the results of certain types of P-fertilizers containing mobile Cr(III) or partly immobile Cr(VI) show that still some optimization of the method is required to avoid over- or underestimation of Cr(VI). T2 - 6th Conference on Diffusive Gradients in Thin Films CY - Vienna, Austria DA - 17.09.2019 KW - Fertilzer KW - Pollutant KW - Chromium KW - Diffusive gradients in thin films (DGT) KW - XANES spectroscopy PY - 2019 AN - OPUS4-49058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Helfenstein, J. A1 - Massey, M. A1 - Sekine, R. A1 - Kretzschmar, R. A1 - Beiping, L. A1 - Peter, T. A1 - Chadwick, O. A1 - Tamburini, F. A1 - Rivard, C. A1 - Herzel, Hannes A1 - Adam, Christian A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Zuin, L. A1 - Wang, D. A1 - Félix, R. A1 - Lassalle-Kaiser, B. A1 - Frossard, E. T1 - Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils N2 - Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic Gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to co-location with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. KW - Phosphorus KW - soil KW - microspectroscopy KW - Raman spectroscopy KW - XANES spectroscopy KW - x-ray diffraction PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511522 SN - 0166-0918 SN - 1872-6259 VL - 381 SP - 114681-1 EP - 114681-11 PB - Elsevier CY - Amsterdam AN - OPUS4-51152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Hoffmann, Marie A1 - Krüger, O. A1 - Murzin, V. A1 - Caliebe, W. A1 - Adam, Christian T1 - Chromium (VI) in phosphorus fertilizers determined with the diffusive gradients in thin-films (DGT) technique N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants such as chromium in its hexavalent state (Cr(VI)). This hazardous form of chromium is therefore regulated with low limit values for agricultural products even though the correct determination of Cr(VI) in these fertilizers may be hampered by redox processes, leading to false results. Thus, we applied the novel diffusive gradients in thin-films (DGT) technique for Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray Absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and for most tested materials selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) so that Cr(VI) values are overestimated. Since certain types of the P fertilizers contain mobile Cr(III) or partly immobile Cr(VI), it is necessary to optimize the DGT binding layers to avoid aforementioned over- or underestimation. Furthermore, our investigations showed that the Cr K-edge XANES spectroscopy technique is unsuitable to determine small amounts of Cr(VI) in fertilizers (below approx. 1% of Cr(VI) in relation to total Cr). KW - Phosphorus fertilizer KW - Sewage sludge ash KW - Diffusive Gradients in thin films (DGT) KW - Chemical extraction KW - XANES spectroscopy PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509578 SN - 0944-1344 VL - 27 SP - 24320 EP - 24328 PB - Springer AN - OPUS4-50957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Huang, J. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Adam, Christian T1 - Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize N2 - Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammoniumcan enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and anammoniumsulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammoniumin the soil resulted in a high amount of plant available Ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammoniumuptake, whichmobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. KW - Fertilzer KW - Phosphorus recovery KW - Ammonium KW - Nitrification inhibitor KW - XANES spectroscopy KW - Diffusive gradients in thin films (DGT) PY - 2020 U6 - https://doi.org/10.1016/j.scitotenv.2020.136895 SN - 1879-1026 VL - 715 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-50477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - PFAS analytics and their relation to PFAS remediation N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of more than 10,000 anionic, cationic, zwitterionic or neutral organofluorine surfactants. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. While liquid chromatography tandem mass spectrometry (LC-MS/MS) is commonly used technique to characterize targeted PFAS in environmental samples, there are more than 10,000 different PFAS known, which have various headgroups and properties. Therefore, several analytical techniques are available to analyse various groups or pools of PFAS or “all” PFAS as a sum parameter. Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well es the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - International workshop of CAR-PFAS (Consortium for analysis and remediation of per- and polyfluoroalkyl substances) Japan CY - Tokyo, Japan DA - 17.10.2023 KW - Mechanochemical treatment KW - Per- and Polyfluoroalkyl substances (PFAS) KW - XANES spectroscopy KW - Soil PY - 2023 AN - OPUS4-58609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Scholz, Philipp A1 - Kalbe, Ute A1 - Caliebe, W. A1 - Tayal, A. A1 - Vasala, S. J. A1 - Simon, Franz-Georg T1 - Speciation of antimony and vanadium in municipal solid waste incineration ashes analyzed by XANES spectroscopy N2 - The use of ashes from municipal solid waste incineration as secondary building materials is an important pillar for the circular economy in Germany. However, leaching of potential toxic elements from these materials must be at environmentally acceptable levels. Normally, a three-month ageing period immobilizes most hazardous heavy metals, but antimony (Sb) and vanadium (V) showed previously unusual leaching. In order to clarify the mechanisms, we analyzed the Sb and V species in various bottom and fly ashes from municipal waste incineration by XANES spectroscopy. Antimony oxidizes from Sb(+ III) species used as flame retardants in plastics to Sb(+ V) compounds during waste incineration. However, owing to the similarity of different Sb(+ V) compound in the Sb K- and L-edge XANES spectra, it was not possible to accurately identify an exact Sb(+ V) species. Moreover, V is mainly present as oxidation state + V compound in the analyzed ashes. However, the coarse and magnetic fraction of the bottom ashes contain larger amounts of V(+ III) and V(+ IV) compounds which might enter the waste incineration from vanadium carbide containing steel tools. Thus, Sb and V could be critical potential toxic elements in secondary building materials and long-term monitoring of the release should be taken into account in the future. KW - Müllverbrennung KW - XANES spectroscopy PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-599841 SP - 1 EP - 7 PB - Springer Science and Business Media LLC AN - OPUS4-59984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Wittwer, Philipp A1 - Roesch, Philipp A1 - Simon, Franz-Georg T1 - Per- and polyfluoroalkyl substances (PFAS) in sewage sludge and wastewater-based fertilizers and future PFAS remediation N2 - Per- and polyfluoroalkyl substances (PFAS) are a group of anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. As a result of the perpetual use of PFAS containing products, effluents and sewage sludge from wastewater treatment plants (WWTPs) have been observed to be an important pathway for PFAS into the environment. In Germany, phosphorus and other nutrients from sewage sludge and wastewater should be recycled in WWTPs of cities with a large population. However, it is not clear if PFAS contamination from wastewater and sewage sludge end up in novel wastewater-based fertilizers. Normally, PFAS are analyzed using PFAS protocols typically with liquid chromatography tandem mass spectrometry (LC-MS/MS) quantification. To get a better overview of the amount of “total PFAS,” we applied sum parameter methods based on combustion ion chromatography (CIC) to screen the PFAS contaminations in various sewage sludge and wastewater-based fertilizers. Furthermore, current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. T2 - Seminar of Ben-Gurion University CY - Midreshet Ben-Gurion, Israel DA - 02.11.2022 KW - PFAS KW - Sewage sludge KW - XANES spectroscopy PY - 2022 AN - OPUS4-56166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Ludwig, S. A1 - Roesch, Philipp A1 - Vigelahn, L. A1 - Wittwer, Philipp A1 - Birke, V. A1 - Simon, Franz-Georg T1 - Mechanochemical Remediation of Per- and Polyfluoroalkyl Substanzes (PFAS) in Soils N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of anionic, cationic, or zwitterionic organofluorine surfactants used in the formulations of thousands of products and consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment. Because PFAS have been extensively used in a variety of AFFF products they can be found in soils from industrial and military installations. Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GCMS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well es the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Mechanochemical treatment KW - XANES spectroscopy PY - 2022 AN - OPUS4-55742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -