TY - CONF A1 - Schuehle, Florian A1 - Richter, Matthias T1 - Quality assured uptake rates for passive sampling of indoor air VOCs N2 - Generation of experimental uptake rates (UR) for > 70 VOCs (7d /100 μg m-3) Application in German Environmental Survey – VOC exposure assessment Assurance of transparency concerning UR generation and uncertainty creates basis for decision making and comparability of measurement results. Exemplarily the uncertainty u(UR) of toluene UR was modelled and determined statistically with own laboratory data (relative standard deviation of actively sampled test gas atmosphere – RSDa and n = 5 exposed passive samplers – RSDp) in line with EN 838 as well as from variation of literature UR – RSD UR,lit. T2 - Airmon 2022, 10th International Symposium on modern principles of air monitoring and biomonitoring CY - Bristol, UK DA - 06.11.2022 KW - IAQ KW - VOC KW - Diffusive sampling KW - Uptake rate PY - 2022 AN - OPUS4-56583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira T1 - XRF Ink analysis of selected fragments from the Herculaneum collection N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P). T2 - International Symposium on Archaeometry CY - Online meeting DA - 16.05.2022 KW - XRF KW - Ink KW - Herculaneum KW - Papyrus PY - 2022 AN - OPUS4-54892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - Development of a methodical approach for in-situ analysis of modern reverse paintings on glass N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the early 20th century and gained great popularity, especially in Germany. In contrast to other paint techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession starting with the foremost paint layer and ending with the primer (backmost layer). The paintings are viewed in reflected light, thus revealing an impressive gloss, luminosity and depth of colour. Scientific investigation of the material provides important information for appropriate conservation concepts. Transport of the precious and fragile objects to the lab is often not feasible. Therefore, in-situ, non-invasive analysis is necessary to analyse colorants and binders. However, some analytical problems need to be considered: due to the reverse paint stratigraphy in reverse paintings on glass, the measured layer is always the backmost one. The analytical possibilities are extremely reduced, when the back is covered by a metal foil (or by paper, carton etc.). However, measurements through the glass (using Raman and VIS) can still yield information on the colourants of the front layer. When the paint layer is accessible, we start our procedure using X-ray fluorescence (Tracer III-SD, Bruker AXS Microanalysis GmbH, 40 kV, 15 μA) and VIS reflectance spectroscopy (SPM 100, Gretag-Imaging AG). Both techniques provide first information on the inorganic colourants. Raman measurements (i-Raman®Plus, Bwtek inc., 785 nm, 50× objective, resolution 4 cm-1) are then carried out to clarify uncertain XRF measurements and to identify synthetic organic pigments (SOP). Diffuse Reflection-Infrared-Fourier-Transform Spectroscopy (DRIFTS; ExoScan, Agilent GmbH, 4000–650 cm-1, 500 scans, spectral resolution 4 cm-1) is used for the classification of the binders. Moreover, it may help to identify SOP, when fluorescence dominates the Raman signal. This analytical sequence yields the best results, when time is the limiting factor. We present two in-situ studies of the paintings “Kreuzabnahme” (1914-15) by Carlo Mense and “Stadt am Morgen” (1921) by Walter Dexel. The painting “Kreuzabnahme” is an outstanding piece in Mense’s ɶuvre, because the glass plate was painted on both sides (Fig. 1). The results of the back-side show mainly inorganic pigments: basic lead white, talc, red and brown ochre, cinnabar, chrome yellow, viridian, ultramarine blue, Prussian blue and bone black. The classification of binding media using DRIFTS yields positive results for drying oil. Acrylic resin could be identified in two areas, resulting from a previous restauration treatment. For the front side painting, Mense used basic lead white, cinnabar, chrome yellow and umbra as pigments and oil as binder. Measurements of the abstract painting “Stadt am Morgen” by Walter Dexel show zinc white, basic lead white, chalk, cinnabar, red lead, strontium yellow, cadmium yellow, cobalt blue, Prussian blue, ultramarine blue, brown ochre and bone black as pigments. Moreover, synthetic alizarin (PR83) was identified as dark red colorant. The results of DRIFTS classify oil as binding media. We conclude that, the use of complementary spectroscopic methods yields the best results for in-situ analysis of reverse paintings on glass. T2 - 3rd International Conference on Innovation in Art Research and Technology CY - Parma, Italy DA - 26.03.2018 KW - Modern painting KW - Non invasive analysis KW - Raman spectroscopy PY - 2018 AN - OPUS4-44780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - In-situ Raman spectroscopic study of pigments used in modern reverse paintings on glass N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the early 20th century. The artist group “Der Blaue Reiter” around Wassily Kandinsky and Franz Marc got in touch with this technique in 1908 and 1909. In the following years it gained great popularity, especially in Germany. Nevertheless, the technique has not received its due appreciation in art history. It was considered as stained glass. However, the paint layers are applied cold, hence this artistic technique doesn’t involve a firing step. Our multidisciplinary project investigates the art historic backgrounds, the painting techniques and materials of modern reverse paintings on glass. More than 1000 paintings from ~100 artists were discovered in the framework of our project. A selection of 60 paintings could be analyzed using non-invasive, in-situ methods such as Raman and VIS spectroscopy, Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) and X-ray fluorescence (XRF). In this paper we want to point out the key role of Raman spectroscopy for our research. It offers the unique opportunity to measure paint layers from both sides. (front = through the glass; reverse = directly on the paint layer). T2 - XIII International GeoRaman Conference CY - Catania, Italy DA - 10.06.2018 KW - Raman spectroscopy KW - Reverse painting on glass KW - Non-invasive analysis PY - 2018 AN - OPUS4-45400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia A1 - Hahn, Oliver A1 - Rabin, Ira T1 - A black ink by any other name...: Typologies of arabic inks and their detection limits N2 - In this poster we will present some results of a research projects dealing with Arabic recipes of black inks [1-2]. To improve conservation practices of Arabic manuscripts we have assessed the feasibility of the recipes collected from many Arabic sources on bookmaking and reproduced the most common inks. Ink samples were then artificially aged and analysed using an array of analytical techniques, mostly non-invasive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. We will show procedures and problems concerning the identification of ink types and ingredients using reflectography (in Vis, IR and UV), X-Ray Fluorescence, Infrared and Raman spectroscopy. The focus will be in particular on squid ink [3] and mixed inks – both in the form of carbon inks with the addition of tannins and of a mixture of carbon and iron gall inks – which are particularly difficult to detect [4]. We will also examine the results of iron gall inks made with iron filings or nails instead of vitriol, the various precursor used to extract gallic acid that are mentioned in the sources as surrogates of gall nuts. [1] A. Schopen, Tinten und Tuschen des arabisch-islamischen Mittelalters, Göttingen: Vandenhoeck & Ruprecht, 2004 [2] S. Fani, Le arti del libro secondo le fonti arabe originali. I ricettari arabi per la fabbricazione degli inchiostri (sec. IX-XIII): loro importanza per una corretta valutazione e conservazione del patrimonio manoscritto, PhD thesis, Napoli: Università L’Orientale, 2013 [3] S. Centeno, J. Shamir Journal of Molecular Structure, 873 (2008), 149-159 [4] C. Colini et. al, Manuscript cultures, 11 (2018) 43-50 T2 - Jahrestagung „Archäometrie und Denkmalpflege 2019“ CY - Vienna, Austria DA - 11.09.2019 KW - Inks KW - Reflectography KW - XRF KW - Raman Spectroscopy KW - ATR PY - 2019 AN - OPUS4-50162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia A1 - Hahn, Oliver A1 - Rabin, Ira T1 - A black ink by any other name...: Typologies of Arabic inks and their detection limits N2 - In this poster we will present some results of a research projects dealing with Arabic recipes of black inks. To improve conservation practices of Arabic manuscripts we have assessed the feasibility of the recipes collected from many Arabic sources on bookmaking and reproduced the most common inks. Ink samples were then artificially aged and analysed using an array of analytical techniques, mostly non-invasive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. First, we will provide an overview of the sources [1-2] employed in the study – dating from 9th to 14th century, although the manuscripts in which they can be found dates up to the 20th century – with an eye on the ink typologies (real and perceived by the compilers). Then we will show how, by reproducing the recipes, it was possible to shed light on some oddities in the procedures and the choice of ingredients. In the end we will discuss problems concerning the identification of ink types and ingredients using reflectography (in Vis, IR and UV), X-Ray Fluorescence, Infrared and Raman spectroscopy. The focus will be in particular on mixed inks – both in the form of carbon inks with the addition of tannins and of a mixture of carbon and iron gall inks – which are particularly difficult to detect [3]. We will also examine the results of iron gall inks made with iron filings or nails instead of vitriol and the various precursor used to extract gallic acid that are mentioned in the sources as surrogates of gall nuts. [1] A. Schopen, Tinten und Tuschen des arabisch-islamischen Mittelalters, Göttingen: Vandenhoeck & Ruprecht, 2004 [2] S. Fani, Le arti del libro secondo le fonti arabe originali. I ricettari arabi per la fabbricazione degli inchiostri (sec. IX-XIII): loro importanza per una corretta valutazione e conservazione del patrimonio manoscritto, PhD thesis, Napoli: Università L’Orientale, 2013 [3] C. Colini et. al, Manuscript cultures, 11 (2018) 43-50 T2 - Technart 2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Inks KW - Reflectography KW - XRF KW - Raman Spectroscopy KW - ATR PY - 2019 AN - OPUS4-50112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Shevchuk, I. A1 - Glaser, L. A1 - Dupont, A.-L. A1 - Rouchon, V. A1 - Cohen, Zina A1 - Rabin, Ira T1 - Are X-rays safe for manuscripts’ materials? N2 - In the last decade, applications of X-rays to the study of manuscripts significantly spread in both diversity and extent. They range from writing material analysis, mostly with X-ray fluorescence (XRF), permitting non-invasive characterization of inks and pigments used, to the investigation of the origin of writing supports. In addition, XRF mapping has proved to be an invaluable tool for recovering erased text. Finally, computed-tomography (CT) has shown potential in virtually unrolling rolls, making text readable without using-damaging mechanical methods. Despite their growing use, little attention has been paid to the side effects of such analytical tools. We observed irreversible parchment colour changes during some experiments on dead-sea scrolls with synchrotron radiation sources. Furthermore, partial photo-reduction of iron under high intensity beam during X-ray absorption near edge structure spectroscopy (XANES) measurements of iron-gall ink on paper has been reported several times [5,6]. Such phenomena have mostly been overlooked so far, although there is an increasing awareness of the necessity to study them. We conducted experiments at the Deutsches Elektronen-Synchrotron (DESY) facilities to investigate X-ray induced structural alteration of paper and parchment to see whether the presence of absorption centres (ink and pigments) has an impact. In addition to better understanding degradation processes, we are aiming to define an appropriate methodology of analysis of manuscripts with a tolerable risk of damage. The first results concerning X-ray induced damage of cellulose materials have already been presented at the Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A). We are focusing here on the results on parchment materials. T2 - Cultural and Natural Heritage Workshop CY - Grenoble, France DA - 22.01.2020 KW - X-rays KW - Manuscripts KW - Parchment KW - Synchrotron PY - 2020 AN - OPUS4-50305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Stege, H A1 - Bretz, S. A1 - Hahn, Oliver T1 - A complementary spectroscopic approach for the non invasive in situ identification of synthetic organic pigments in modern reverse paintings on glass N2 - This work addresses the identification of synthetic organic pigments (SOP) in ten modern reverse paintings on glass (1912-1946) by means of an in-situ multi-analytical approach. The combination of the complimentary properties of mobile Raman spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) enabled the detection of sixteen SOP even in complex mixtures with inorganic compounds and binders. For the β-naphthol pigments, both Raman and DRIFTS yield appropriate results. DRIFTS was the preferred method for the detection of synthetic alizarin (PR83). Its diagnostic band pattern even allows its detection in complex mixtures with mineral pigments, binders and fillers. Raman spectroscopy yielded distinctive spectra for the triaryl carbonium pigments (PG1, PV2, PR81) and the two-yellow azo SOP (PY3, PY12), whereas DRIFT spectra were affected by extensive band overlapping. This may also occur in Raman spectra, but in less problematic amounts. Fluorescence is the major problem with Raman and it significantly hampers the SOP spectra even with the 785 nm laser. On the one hand the big spot size of DRIFTS (10 mm) limits the technique to rather large sampling areas, whereas the use of a 50× objective for in-situ Raman measurements permits a focus on small spots and aggregated SOP flakes. Moreover, “environmental” factors like temperature changes, artificial light, limited space and vibrations when people pass by need to be considered for in-situ measurements in museums. Finally, the results show the experimental use of SOP in modern reverse glass paintings. Among several rare SOP (e.g. PB52, PR81), two of them (PG1, PV2) have never been reported before in any artwork. T2 - Technart2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Synthetic organic pigments KW - Reverse glass painting KW - DRIFTS KW - Raman spectroscopy PY - 2019 AN - OPUS4-48009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Oesterle, D. A1 - Mayer, R. A1 - Hahn, Oliver A1 - Bretz, S. A1 - Geiger, G. T1 - First insights into Chinese reverse glass paintings gained by non invasive spectroscopic analysis N2 - A non-invasive methodological approach (X-ray fluorescence (XRF), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy) has been carried out to identify the pigments and classify the binding media in two Chinese reverse glass paintings (The Archer, Yingying and Hongniang) from the late 19th and early 20th centuries. The results reveal a combined use of traditional Chinese and imported European materials. Several pigments like cinnabar, lead white, orpiment, carbon black and copper-arsenic green (probably emerald green) were found in both paintings; red lead, artificial ultramarine blue, Prussian blue and ochre appear in at least one of the paintings. The presence of portlandite (Ca(OH)2) along calcite (CaCO3) in the fine-grained, white backing layer of Yingying and Hongniang indicates the presence of limewash. In Chinese tradition, limewash was produced from clamshells, and was then sold as clamshell white. In contrast to the Japanese pigment, Chinese clamshell white was made of finely grounded shells, which were heated over a low fire. The residue (CaO) forms portlandite (Ca(OH)2) when water is continuously added. This water-rich mixture is applied on the painting. Portlandite reacts with atmospheric CO2 during drying and forms fine-grained calcite (CaCO3) [1,2]. The identification of emerald green (The Archer) suggests an earliest manufacturing date in the 1830s [3] and promotes the sinological dating of the painting. Drying oil was classified as a binding media in most areas of both paintings. However, the orange background of The Archer yielded prominent bands of both proteinaceous and fatty binder. T2 - Technart2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Reverse glass painting KW - Raman spectroscopy KW - Non-invasive analysis PY - 2019 AN - OPUS4-48010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Feldmann, Ines A1 - Bücker, Michael A1 - Oleszczuk, S. T1 - EDX-Analysis on medieval glasses and innovative protection of stained glass panels N2 - The church of Koszewko (Poland) is a brick building edified in the 15th century built on cobblestone foundations. There are five windows in the sanctuary. Three of them enclose heraldic panels from the Küssow’s family from the 15th century which are surrounded with Goethe glass from the 18th century to complete the windows. The colored heraldic panels are strongly damaged and corroded with massive paint layer losses, glass- and leadbreakages. Those medieval glass fragments have been shortly discovered and are of particular interest for Poland since only few medieval glazing have been conserved. The damages as well as the glass compositions have been investigated with ESEM/EDX. Two categories of medieval glass compositions have been identified. The blue glass is particularly sensible to corrosion because of his high content in K2O. The colorless and the red glass samples belong to a stable glass type. Due to the thickness of the gel layer, it is easy to see that the degradation is strongly proceeded. The protection of those medieval stained-glass panels is absolute necessary. The medieval panels have been restored and surrounded from a copper frame. Then they have been fixed on the wood frame in the church. The exterior glazing has been closed with a panel of Goethe glass. The gap between the Goethe- and the medieval glass is about 3 cm. The Goethe glass panel has been stabilized with a film based on polyester to protect the medieval glasses against any damages. In this way, a low cost protective glazing has been installed for a long-term conservation of each medieval stained-glass panels. The climate measurements over the period of one year on the restored windows are in process. The temperature and the relative humidity are recorded in the church interior, in the gap between the original and the Goethe glass and outdoors. T2 - 93rd Annual Meeting of DGG and Annual Meeting of USTV CY - Nuremberg, Germany DA - 13.05.2019 KW - Medieval glasses KW - Stained glasses KW - EDX Analysis KW - Corrosion PY - 2019 AN - OPUS4-48025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cohen, Zina A1 - Bonnerot, Olivier A1 - Schlanger, J. A1 - Hahn, Oliver A1 - Rabin, Ira T1 - Composition analysis of writing materials in Geniza fragments N2 - The Cairo Geniza is an “archive” discovered in the 19th century in Ben Ezra Synagogue in Fustat, a district in Old Cairo (Egypt), located south of the center of modern Cairo. The giant collection of mostly Jewish documents that vary in genres, languages and writing supports contains a large number of early medieval Hebrew manuscripts, mostly in fragmentary form. The larger part of the Cairo Geniza is stored today in the Cambridge University Library (CUL). The Geniza provides sources for the literary, linguistic, historical studies of the various aspects Jewish life. As the documents attest, at least two Jewish communities co-existed in Fustat up to 11th century: a so-called Babylonian and Palestinian. These communities had different leaders, different traditions and lived independently. The differences seem to manifest themselves also in the paleographical, codicological and some material properties of the manuscripts produced by each community. The aim of this project is to compare the inks used in the Jewish documents depending on different variables: support (paper, parchment), purpose of the manuscript (legal, private, religious), provenance of the scribe. For the determination of the inks type and composition we had to choose non-invasive, non-destructive and portable techniques to analyse the corpus directly in the CUL. The analyses were carried out with a mobile energy dispersive micro-X-ray spectrometer ArtTAX® (Bruker GmbH, Berlin, Germany), which consists of an air-cooled, low-power molybdenum tube, polycapillary X-ray optics (measuring spot size 70 µm in diameter), an electrothermally cooled Xflash detector, and a CCD camera for sample positioning (Bronk et al 2001, Hahn et al. 2010). All measurements are executed using a 30 W low-power Mo tube, 50 kV, 600 µA Mo tube, and with an acquisition time of 15 s (live time) to minimize the risk of damage (Fig. 1, 2). Fig. 1: XRF spectrometer probe above a manuscript fragment Fig. 2: Typical element profile of a XRF linescan The Dino Lite digital stereomicroscope (Fig. 3) features built-in LED illumination at 395 nm and 940 nm and a customized external white light source. During use, the microscope is fastened to a small tripod or mounted on a Plexiglas ring holder that incorporates a white light source. Fig. 3: Dino Lite digital stereomicroscope Fig. 4: Details of one fragment (T-S 16.124) observed with the Dino microscope (x20). On the left, when illuminated with NIR (Near-Infrared, 940 nm) light, the ink fades, indicating iron-gall ink. On the right, the image under NIR light does not change. It is carbon ink. On example of these studies is the manuscript T-S 16.124 (Cambridge University Library, Fig. 5) whom belongs to the third corpus. It is a deed, written in Hebrew, dated from 1328 (= 1017 CE) and witnessed by a very high number of people (6) comparing to the standard of similar documents (between 2 and 3), from at least two different Jewish communities in Fustat (trans congregational). The verso is written in Arabic (Bareket 1999). Fig. 5: Manuscript T-S 16.124 (Cambridge University Library) To compare the inks, we used the fingerprint model. This method relies on the determination of characteristic elemental compositions and represents the amount of a minor constituent relative to the main component, iron in iron gall ink (Malzer et al. 2004, Hahn et al. 2004, Rabin et al 2014). However, a calculation of a fingerprint based on XRF measurements is not possible in the case of carbon ink since carbon, its main component, cannot be detected with this technique. Fig. 6: Ink fingerprint T-S 16-124 (recto) normalized to iron (Fe) Conclusion We show that using reflectography and XRF analysis it is possible to sort the inks according to their type. In the case of the iron-gall inks, use of the ink fingerprint, i.e. amount of the vitriol components normalized to iron we can make direct comparisons of the ink composition. We would like also to stress that though the methods of material analysis listed above have been successfully employed in the field of cultural heritage and conservation including ancient and medieval manuscripts they have not yet been used to study fragments from the Cairo Genizah. Therefore, we believe that this research project is a pioneering study that will provide new insights into the history of Hebrew writing materials, their production techniques and materials and, thus, contribute new data to the field of Hebrew paleography. T2 - Konferenz DESY “Archäometrie und Denkmalpflege 2018” CY - Hamburg, Germany DA - 20.03.2018 KW - Ink KW - XRF Analysis KW - Manuscript PY - 2018 AN - OPUS4-46042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Steger, Simon A1 - Bonnerot, Olivier A1 - Hahn, Oliver A1 - Buzi, P. A1 - Rabin, Ira T1 - Understanding the technological evolution of writing materials. Scientific systematic study of inks from Coptic manuscripts N2 - While studying the socio-geographic history of inks, division 4.5 of the BAM (Bundesanstalt für Materialforschung und Prüfung) together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink and a subsequent in-depth analysis using several spectroscopic techniques: XRF, FTIR, and Raman. In most cases, we can obtain satisfactory results using a non-invasive protocol. However, mixed inks that contain no metals evade such a protocol. These inks constitute a heterogeneous group of media used especially in the Middle East and the Islamicate world since at least the 10th century; they are characterized by blending carbon ink and tannins, with or without the addition of vitriol. Our own research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo). During many years of study, we concluded that the continuous production of Coptic manuscripts from late Antiquity to the Middle Ages offers a unique opportunity for historical study of the ink in a large geographic area. Thanks to the collaboration with the ERC project “PAThs” (www.paths.uniroma1.it), based at the University of Rome La Sapienza, and within the activities of a PhD research dedicated to this topic, we therefore created a new branch of our project focused entirely on the analysis of Coptic inks, pigments, and dyes. This pioneering systematic study of writing materials coming from a specific area and time frame (5th-10th century) aims not only at a better understanding of the complex Coptic multicultural and plurilingual society, but also and mainly at clarifying the links among the Coptic and other societies between the ancient and medieval eras. Finally, it will cast light on the history of the technological development of inks in the eastern world, from Antiquity to the middle ages. T2 - Konferenz: Scientific Methods in Cultural Heritage Research, Gordon Research Conference CY - Castelldefels, Spain DA - 22.07.2018 KW - Coptic KW - Ink KW - Manuscript PY - 2018 AN - OPUS4-46024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Matthias, Richter A1 - Christoph, Grimmer T1 - Zeolites loaded with VOCs as reference for material emissions testing N2 - Nowadays, people spend most of their time indoors. Thus, a good indoor air quality is important. Emissions of volatile organic compounds (VOCs) from furniture and building materials can cause health complaints1. Quantitative VOC-emission testing is carried out under standardized conditions in emission test chambers. In the presented project an emission reference material (ERM) is developed that emits a defined mixture of VOCs which is required for quality assurance and -control (QA/QC) measures. Porous materials (e.g zeolites, activated carbons, MOFs or aerogels) are used as reservoir materials and impregnated with VOC. The porous materials are selected, among others, by their pore size, pore size distribution, polarity and availability. Due to their regular pore structure zeolites are tested at first. For a prediction of the emission profile, the ERM is supposed to exhibit a constant emission rate over time. The aim is a stability of ≤ 10 % change in the emission rate over a minimum of 14 days. Method For impregnation, the material is placed into an autoclave inside a rotatable basket. The VOC is added and the autoclave is closed. Afterwards, CO2 is inserted. The closed system is then heated to the supercritical point of CO2 (31 °C, 73.75 bar). In this state, the CO2 acts as solvent for the VOC. By rotating the basket, the distribution of the VOC is ensured. After a few minutes, the pressure is decreased slowly and the CO2 is released. For the determination of the emission profile, the impregnated sample is placed into an emission test chamber. These chambers can be operated either with dry or humid air (50 ± 5 % rel. humidity). Every second to third day, air samples are taken and analyzed by gas chromatography. For an ideal impregnation, several different pressures and temperatures as well as impregnation times are tested. Results Two zeolite materials tested in dry air conditions reach emission profiles with a decrease of less than 10 % over 14 days (heptane and toluene, respectively). Further it was discovered that smaller pellets of the same zeolite show better results than bigger particles. When the pore size of a zeolite is too small, e.g. 0.3 nm, the VOC cannot be absorbed sufficiently. The main disadvantage of zeolites is their hygroscopicity because it has a large impact on the release of VOC when they are used in emission test chambers under standardized test conditions (23 °C, 50 % rel. humidity). Activated carbons have emission profiles with a larger change over 14 days. However, the high hydrophobicity allows measurements in humid air conditions which was not possible with the before mentioned hygroscopic zeolites. It is possible to impregnate powdered materials as well, and thus powdered non-hygroscopic (n.h.) zeolites were impregnated. Their emission profiles are comparable to those of the activated carbons. The use of methylated hygroscopic zeolites with a decrease in hygroscopicity did not yield successful emission measurements. The change over 14 days is calculated only for the stable phase (~250–300 h). The desired stability of ≤ 10 % change of the emission rate over 14 days could already be reached under dry testing conditions. Further investigations under humid conditions show that zeolites with high Si/Al-ratios are non-hygroscopic and comparable to activated carbons (20–30 % change). The next step is to reduce the change in the emission rate of these materials to the aimed ≤ 10 % over 14 days. T2 - Deutsche Zeolithtagung CY - Jena, Germany DA - 28.02.2024 KW - VOC KW - Emission KW - Quality assurance KW - Reference material KW - Zeolite PY - 2024 AN - OPUS4-59843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Wilke, Olaf T1 - Volatile organic compounds from building products - Results from seven proficiency tests with emission test chambers conducted between 2008 and 2021 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test every two years using well-characterised test materials (one sealant, one furniture board and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 41 VOCs were included of which 37 gave test chamber air concentrations between 10 and 98 µg/m³. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Four compounds had higher concentrations between 250 and 1105 µg/m³. The relative standard deviations (RSD) of BAM proficiency tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 23% in 2021. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51%. T2 - Proficiency Testing in Analytical Chemistry, Microbiology and Laboratory Medicine CY - Windsor, United Kingdom DA - 25.09.2023 KW - Proficiency Test KW - VOC-Emission KW - Chamber-test PY - 2023 AN - OPUS4-59694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -