TY - CONF A1 - Kanaris, Orestis A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Consequences of benzalkonium chloride tolerance in Escherichia coli: Effects on selection and evolution in the presence of ciprofloxacin N2 - We investigated the selection dynamics between a benzalkonium chloride (BAC)-tolerant Escherichia coli strain (S4) and a sensitive wild type under four conditions: in the absence of antibiotics and in the presence of three different sub-inhibitory concentrations of the antibiotic ciprofloxacin in liquid cultures. The wild type was selected over the BAC-tolerant strain in the absence of antibiotics, while the opposite was observed at all ciprofloxacin concentrations investigated.Furthermore, we assessed the evolvability of resistance of the two strains to inhibitory concentrations of ciprofloxacin by performing a serial dilution evolution experiment with gradually increasing ciprofloxacin concentrations. The wild type had a higher probability to develop resistance to ciprofloxacin than the tolerant strain. By the end of the evolution experiment both strains evolved to grow at the highest ciprofloxacin concentration investigated, which was 2048 ×MIC of the wild type. T2 - 6th international symposium on the environmental dimention of antibiotic resistance-EDAR 6 CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Tolerance KW - Experimental evolution KW - Selection PY - 2022 AN - OPUS4-56808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Question: One cornerstone to prevent the spread of bacteria in clinical and industrial settings is the application of biocides including disinfectants and preservatives. However, bacteria can evolve resistance to biocides, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Our objective is to investigate if persistence is a bacterial survival strategy against biocides. Furthermore, we investigate the mechanisms of biocide persistence and if persistence can evolve in the face of fluctuating exposure to biocides. Lastly, we test if the evolved mechanisms of biocide tolerance lead to biocide resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of biocides and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against biocides. In addition, we will present data from an ongoing evolution experiment for persistence against biocides. Conclusion There is a link between antibiotic and biocide persistence with possible implications for antibiotic resistance evolution and spread. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance - EDAR 2019 CY - Hong Kong, China DA - 09.06.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - Time-kill kinetics reveal heterogeneous tolerance to disinfectants N2 - Background. Disinfection is an important mitigation strategy to control and prevent the spread of infections. Incomplete or incorrect usage of disinfection may promote evolution of resistance against disinfectants and antibiotics. Ideally, disinfection reduces the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Objective. In this study, we investigated six active substances of disinfectants, preservatives, and antiseptics against a population of E. coli to identify the presence of a tolerant subpopulation. Methods. We performed time-kill experiments and analyzed the data with a mathematical model to statistically infer whether the data is best explained by the presence of a tolerant subpopulation. Results. The analysis identified bimodal kill kinetics for benzalkonium chloride, didecyldimethylammonium chloride, and isopropanol. In contrast, kill kinetics by chlorhexidine, glutaraldehyde, and hydrogen peroxide were best explained by unimodal kill kinetics. These findings have implications for the risk of disinfection failure. In addition, we are currently performing adaptive laboratory evolution (ALE) experiments with the different disinfectants to investigate the potential consequences of tolerant sub-populations for the evolution of antimicrobial resistance and tolerance. T2 - Vereinigung Allgemeiner und Angewandter Mikrobiobiologie Jahreskongress 2023 CY - Göttingen, Germany DA - 10.09.2023 KW - Biocide KW - Desinfectant KW - E.coli PY - 2023 AN - OPUS4-58470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - Time-kill kinetics reveal heterogeneous tolerance to disinfectants N2 - Background. Disinfection is an important mitigation strategy to control and prevent the spread of infections. Incomplete or incorrect usage of disinfection may promote evolution of resistance against disinfectants and antibiotics. Ideally, disinfection reduces the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Objective. In this study, we investigated six active substances of disinfectants, preservatives, and antiseptics against a population of E. coli to identify the presence of a tolerant subpopulation. Methods. We performed time-kill experiments and analyzed the data with a mathematical model to statistically infer whether the data is best explained by the presence of a tolerant subpopulation. Results. The analysis identified bimodal kill kinetics for benzalkonium chloride, didecyldimethylammonium chloride, and isopropanol. In contrast, kill kinetics by chlorhexidine, glutaraldehyde, and hydrogen peroxide were best explained by unimodal kill kinetics. These findings have implications for the risk of disinfection failure. In addition, we are currently performing adaptive laboratory evolution (ALE) experiments with the different disinfectants to investigate the potential consequences of tolerant sub-populations for the evolution of antimicrobial resistance and tolerance. T2 - FEMS Conference CY - Hamburg, Germany DA - 10.07.2023 KW - Biocide KW - Desinfectant KW - E.coli PY - 2023 AN - OPUS4-58471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - New Approaches and Concepts in Microbiology CY - Online meeting DA - 07.07.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Phenotypic and evolutionary responses of bacteria to disinfection N2 - Disinfectants are important to prevent the transmission of pathogens, especially in the face of the current antibiotic resistance crisis. The crisis is further exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfectant application, persistence to disinfectants and its role for the evolution of tolerance and cross-resistance to antibiotics has not been studied. Our work shows that E. coli displays persistence against several widely used disinfectants, including benzalkonium chloride (BAC), didecyldimethylammoniumchlorid (DDAC) and isopropanol. The molecular mechanism of BAC persistence is triggered in stationary phase and affected by several antibiotic persister genes (hipA, tisB, tolC, relA, spoT). Experimental evolution and population dynamic modeling show that repeated failure of disinfection due to persisters rapidly selects for BAC tolerance underpinned by reduced cell surface charge due to mutations in genes related to lipid A acylation (lpxML). Furthermore, evolved BAC tolerance affects the susceptibility to antibiotics, leading to positive selection of disinfectant tolerant strains at environmentally relevant antibiotic concentrations and variations in evolvability of antibiotic resistance due to epistatic effects. These results highlight the need for faithful application of disinfectants to steward their efficacy and the efficacy of antibiotics. A better understanding of the bacterial response to disinfectants is crucial to understand and avert the ongoing antimicrobial resistance crisis. T2 - Gordon Research Conference - Molecular mechanisms of evolution CY - Easton, MA, United States DA - 25.06.2023 KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2023 AN - OPUS4-57861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Heterogeneity in the bacterial response to disinfection and its impact on antibiotic tolerance and resistance N2 - The global rise of antibiotic resistance has made the proper use of disinfectants more important than ever. Their application in clinical l settings is an integral part of antibiotics stewardship by preventing the occurrence and spread of infections. However, improper use of disinfectants also harbours the risk for the evolution of tolerance and resistance to disinfectants, but also to antibiotics. It is therefore crucial to understand whether and how bacteria can survive chemical disinfection and which conditions facilitate the evolution of tolerance and resistance. Here, we study the heterogeneity in the response of isogenic E. coli populations exposed to different levels of commonly used disinfectants. At concentrations below the minimal inhibitory concentration (MIC), we find that certain disinfectants induce prolonged lag times in individual cells, a phenotype that has been associated with persistence against antibiotics. At concentrations above the MIC, we find heterogeneous killing for a range of the tested substances. Interestingly, for the three cationic surfactants that were tested, we find kill kinetics revealing the presence of a tolerant subpopulation that can withstand disinfection longer than most of the population. We will present results from an ongoing evolution experiment in which we test the potential for evolution of population-wide tolerance and resistance through intermittent exposure to lethal doses of a cationic surfactant. T2 - New Approaches and Concepts in Microbiology CY - Heidelberg, Germany DA - 10.07.2019 KW - Persistence KW - Biocides KW - Resistance KW - heterogeneity KW - Bacteria PY - 2019 AN - OPUS4-48524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Broska, Selina A1 - Schreiber, Frank T1 - Persistence as a microbial survival strategy against disinfectants N2 - Antimicrobial resistance is a major threat to human health. The prevalence of multi-drug resistant (MDR) bacteria is predicted to increase in the future requiring robust control strategies. One cornerstone to prevent the spread of MDR bacteria in clinical settings is the application of disinfectants to improve hygiene standards. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than the majority of the population. Our results in E. coli indicate that persistence is a bacterial survival strategy against benzalkonium chloride, a widely used disinfectant. In future experiments, we will investigate the evolution of persistence in the face of fluctuating exposure to disinfectants and whether persistence facilitates resistance against disinfectants. Lastly, we will test how tolerance and resistance against disinfectants affects susceptibility against antibiotics. T2 - Bridging Ecology and Molecular Biology: Organismic Responses to Recurring Stress CY - Berlin, Germany DA - 09.04.2018 KW - Bacteria KW - Persistence KW - Resistance KW - Biocides PY - 2018 AN - OPUS4-44667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina B. I. A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance (AMR). Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Here, I present results which demonstrate that phenotypic heterogeneity in E. coli, namely the formation of tolerant persister cells, can enable the survival of disinfection and consequentially facilitate the evolution of AMR. Using experimental evolution that selects for tolerance, we find that mutations in lipid A biosynthesis arise following periodic treatment with benzalkonium chloride (BAC), a widely used disinfectant. BAC tolerance is associated with additional, diverse mutations as well as changes in the susceptibility to antibiotics from different classes and changes in motility and biofilm formation, suggesting extensive regulatory re-wiring in the evolved clones. Remarkably, we find that fitness costs (growth rate reduction) incurred by BAC tolerance are alleviated in the presence of antibiotics. These findings demonstrate the complexity underlying the adaptation to antimicrobials and highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. T2 - Bacterial Networks (BacNet22) CY - Sant Feliu de Guixols, Spanien DA - 04.09.2022 KW - Persistence KW - Biocides KW - evolution KW - disinfection KW - biocide tolerance PY - 2022 AN - OPUS4-55713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Lewerenz, Dominique A1 - Gödt, Annett A1 - Schreiber, Frank T1 - Evolutionary implications of heterogeneous disinfectant tolerance N2 - Introduction: Effective disinfection is crucial to maintain hygiene and to prevent the spread of infections. Phenotypic heterogeneity in disinfection survival (i.e. tolerance) may result in failure of disinfection, which in turn may foster the evolution of resistance to both disinfectants and antibiotics. However, the consequences of phenotypic heterogeneity for disinfection outcome and resistance evolution are not well understood. Goal: This study investigates the impact of phenotypic heterogeneity on the survival and evolution of Escherichia coli during disinfection with six commonly used substances. Furthermore, the consequences of evolved disinfectant tolerance for antibiotic resistance evolution are studied. Materials & Methods: The extent of population heterogeneity during disinfection is derived by determining time-kill kinetics and analysis with mathematical modelling. The link between population heterogeneity and evolvability of disinfectant tolerance was assessed by laboratory evolution experiments under periodic disinfection. The ability of disinfectant tolerant strains to evolve antibiotic resistance is assessed by serial transfer experiments with increasing concentrations of different antibiotics and by whole genome sequencing. Results: Multi-modal time-kill kinetics in three of the six disinfectants suggest the presence of disinfectant-tolerant subpopulations (i.e. persister cells). Importantly, the ability and extent to evolve population-wide tolerance under periodic disinfection is related with the presence of persister cells and the level of phenotypic heterogeneity during disinfection. Interestingly, the probability of high-level resistance evolution to certain antibiotics is attenuated in disinfectant tolerant strains as compared to the sensitive ancestor. Whole-genome sequencing reveals epistatic interactions between disinfectant tolerance and antibiotic resistance mutations, preventing access to canonical evolutionary paths to resistance. Summary: Our findings suggest that phenotypic heterogeneity can facilitate disinfection survival and the evolution of population wide tolerance, which can impact future antibiotic resistance evolution. T2 - Vereinigung Allgemeiner und Angewandter Mikrobiobiologie Jahreskongress 2023 CY - Würzburg, Germany DA - 02.06.2024 KW - Biocide KW - Resistance KW - Persistence KW - Evolution KW - Herteogeneous phenotypes PY - 2024 AN - OPUS4-60244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Heterogeneous tolerance to biocides and its consequences for the evolution of antimicrobial resistance N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance (AMR). Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Here, I present results which demonstrate that phenotypic heterogeneity in E. coli, namely the formation of tolerant persister cells, can enable the survival of disinfection and consequentially facilitate the evolution of AMR. Using experimental evolution that selects for tolerance, we find that mutations in lipid A biosynthesis arise following periodic treatment with benzalkonium chloride (BAC), a widely used disinfectant. BAC tolerance is associated with additional, diverse mutations as well as changes in the susceptibility to antibiotics from different classes and changes in motility and biofilm formation, suggesting extensive regulatory re-wiring in the evolved clones. Remarkably, we find that fitness costs (growth rate reduction) incurred by BAC tolerance are alleviated in the presence of antibiotics. These findings demonstrate the complexity underlying the adaptation to antimicrobials and highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. T2 - 4th VAAM discussion meeting 'Microbial Cell Biology' CY - Berlin, Germany DA - 09.10.2022 KW - Persistence KW - Biocides KW - Evolution KW - Disinfection KW - Biocide tolerance KW - Heterogeneity PY - 2022 AN - OPUS4-55958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank A1 - Kanaris, Orestis A1 - Schmidt, Selina T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - World Microbe Forum (ASM, FEMS) CY - Online meeting DA - 20.06.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -