TY - JOUR A1 - Söftje, M. A1 - Weingartz, T. A1 - Plarre, Rüdiger A1 - Gjikaj, M. A1 - Namysko, J. C. A1 - Kaufmann, D. E. T1 - Surface Tuning of Wood via Covalent Modification of Its Lignocellulosic Biopolymers with Substituted BenzoatesA Study on Reactivity, Efficiency, and Durability N2 - Chemical modification of wood applying benzotriazolyl-activated carboxylic acids has proven to be a versatile method for the durable functionalization of its lignocellulosic biopolymers. Through this process, the material properties of Wood can be influenced and specifically optimized. To check the scope and limitations of this modification method, various benzamide derivatives with electron-withdrawing (EWG) or electron-donating (EDG) functional groups in different positions of the aromatic ring were synthesized and applied for covalent modification of Scots pine (Pinus sylvestris L.) sapwood in this study. The bonded amounts of substances (up to 2.20 mmol) were compared with the reactivity constants of the Hammett equation, revealing a significant correlation between the modification efficiency and the theoretical reactivity constants of the corresponding aromatic substitution pattern. The successful covalent attachment of the respective substituted benzamides was proven by attenuated total reflection infrared (ATR-IR) spectroscopy, while the stability of the newly formed ester bond was proven in a standardized leaching test. KW - Leaching KW - Wood Protection KW - Wood Modification PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538932 VL - 6 IS - 49 SP - 33542 EP - 33553 AN - OPUS4-53893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521517 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwabe, M. A1 - Griep, S. A1 - Schmidtberg, H. A1 - Plarre, Rüdiger A1 - Goesmann, A. A1 - Vilcinskas, A. A1 - Vogel, H. A1 - Brinkrolf, K. T1 - Next-Generation Sequencing Analysis of the Tineola bisselliella Larval Gut Transcriptome Reveals Candidate Enzymes for Keratin Digestion N2 - The clothes moth Tineola bisselliella is one of a few insects that can digest keratin, leading to the destruction of clothing, textiles and artwork. The mechanism of keratin digestion is not yet fully understood, partly reflecting the lack of publicly available genomic and transcriptomic data. Here we present a high-quality gut transcriptome of T. bisselliella generated from larvae reared on keratin-rich and keratin-free diets. The overall transcriptome consists of 428,221 contigs that were functionally annotated and screened for candidate enzymes involved in keratin utilization. As a mechanism for keratin digestion, we identified cysteine synthases, cystathionine β-synthases and cystathionine γ-lyases. These enzymes release hydrogen sulfite, which may reduce the disulfide bonds in keratin. The dataset also included 27 differentially expressed contigs with trypsin domains, among which 20 were associated with keratin feeding. Finally, we identified seven collagenases that were upregulated on the keratin-rich diet. In addition to this enzymatic repertoire potentially involved in breaking down keratin, our analysis of poly(A)-enriched and poly(A)-depleted transcripts suggested that T. bisselliella larvae possess an unstable intestinal microbiome that may nevertheless contribute to keratin digestion KW - Insect biotechnology KW - Gene expression KW - RNA-Sequencing KW - Transcriptomics KW - Tineola bisselliella KW - Keratin PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529902 VL - 12 IS - 8 SP - 1113 PB - MDPI AN - OPUS4-52990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palma-Onetto, V. A1 - Hoskova, K. A1 - Krizkova, B. A1 - Krejcirova, R. A1 - Pflegerova, J. A1 - Bubenickova, F. A1 - Plarre, Rüdiger A1 - Dahlsjo, C. A. L. A1 - Dahlsjo, J. A1 - Bourguignon, T. A1 - Sillam-Dusses, D. A1 - Sobotnik, J. T1 - The labral gland in termites: evolution and function N2 - The evolutionary success of termites has been driven largely by a complex communication system operated by a rich set of exocrine glands. As many as 20 different exocrine organs are known in termites. While some of these organs are relatively well known, only anecdotal observations exist for others. One of the exocrine organs that has received negligible attention so far is the labral gland. In this study, we examined the structure and ultrastructure of the Labrum in soldiers of 28 termite species. We confirm that the labral gland is present in all termite species, and comprises two secretory regions located on the ventral side of the labrum and the dorso-apical part of the hypopharynx. The Labrum of Neoisoptera has a hyaline tip, which was secondarily lost in Nasutitermitinae, Microcerotermes and species with snapping soldiers. The epithelium of the gland generally consists of class 1 secretory cells, with an addition of class 3 secretory cells in some species. A common feature of the secretory cells is the abundance of smooth endoplasmic reticulum, an organelle known to produce lipidic and often volatile secretions. Our observations suggest that the labral gland is involved in communication rather than defence as previously suggested. Our study is the first to provide a comprehensive picture of the structure of the labral gland in soldiers across all Termite taxa. KW - Exocrine gland KW - Hypopharynx KW - Labrum KW - Termitoidae KW - Ultrastructure KW - Isoptera PY - 2018 U6 - https://doi.org/10.1093/biolinnean/blx162 SN - 0024-4066 SN - 1095-8312 VL - 126 IS - 3 SP - 587 EP - 597 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-44666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - He, Shulin A1 - Johnston, P. R. A1 - Kuropka, B. A1 - Lokatis, S. A1 - Weise, C. A1 - Plarre, Rüdiger A1 - Kunte, Hans-Jörg A1 - McMahon, Dino Peter T1 - Termite soldiers contribute to social immunity by synthesizing potent oral secretions N2 - The importance of soldiers to termite Society defence has long been recognized, but the contribution of soldiers to other societal functions, such as colony immunity, is less well understood. We explore this issue by examining the role of soldiers in protecting nestmates against pathogen infection. Even though they are unable to engage in grooming behaviour, we find that the presence of soldiers of the Darwin termite, Mastotermes darwiniensis, significantly improves the survival of nestmates following entomopathogenic infection. We also show that the copious exocrine oral secretions produced by Darwin termite soldiers contain a high concentration of Proteins involved in digestion, chemical biosynthesis, and immunity. The oral secretions produced by soldiers are sufficient to protect nestmates against infection, and they have potent inhibitory activity against a broad spectrum of microbes. Our findings support the view that soldiers may play an important role in colony immunity, and broaden our understanding of the possible function of soldiers during the origin of soldier-first societies. KW - External KW - Social KW - Immunity KW - Soldier KW - Antimicrobial KW - Proteome PY - 2018 U6 - https://doi.org/10.1111/imb.12499 SN - 1365-2583 SN - 0962-1075 VL - 27 IS - 5 SP - 564 EP - 576 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-45726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vilcinskas, A. A1 - Schwabe, M. A1 - Brinkrolf, K. A1 - Plarre, Rüdiger A1 - Wielsch, N. A1 - Vogel, H. T1 - Larvae of the clothing moth Tineola bisselliella maintain gut bacteria that secrete enzyme cocktails to facilitate the digestion of keratin N2 - The evolutionary success of insects is promoted by their association with beneficial microbes that enable the utilization of unusual diets. The synanthropic clothing moth Tineola bisselliella provides an intriguing example of this phenomenon. The caterpillars of this species have adapted to feed on keratin-rich diets such as feathers and wool, which cannot be digested by most other animals and are resistant to common digestive enzymes. Inspired by the hypothesis that this ability may be conferred by symbiotic microbes, we utilized a simple assay to detect keratinase activity and a method to screen gut bacteria for candidate enzymes, which were isolated from feather-fed larvae. The isolation of DNA from keratin-degrading bacterial strains followed by de novo genome sequencing resulted in the identification of a novel bacterial strain related to Bacillus sp. FDAARGOS_235. Genome Annotation identified 20 genes with keratinase domains. Proteomic analysis of the culture supernatant from this gut bacterium grown in non-nutrient buffer supplemented with feathers revealed several candidate enzymes potentially responsible for keratin degradation, including a thiol-disulfide oxidoreductase and multiple proteases. Our results suggest that the unusual diet of T. bisselliella larvae promotes their association with keratinolytic microorganisms and that the ability of larvae to feed on keratin can at least partially be attributed to bacteria that produce a cocktail of keratin-degrading enzymes. KW - Keratin KW - Insect biotechnology KW - Beneficial microbes KW - Symbiosis KW - Dietary adaptation KW - Tineola bisselliella PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512309 VL - 8 IS - 9 SP - 1415 PB - MDPI AN - OPUS4-51230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Söftje, M. A1 - Acker, S. A1 - Plarre, Rüdiger A1 - Namyslo, J. C. A1 - Kaufmann, D. E. T1 - Novel nicotinoid structures for covalent modification of wood: an environmentally friendly way for its protection against insects N2 - Timber is constantly exposed to environmental influences under outdoor conditions which limits its Lifetime and usability. In order to counteract the damaging processes caused by insects, we have developed a novel and more environmentally friendly method to protect wood materials via covalent modification by organic insecticides. Starting with an important class of synthetic insecticides which are derived from the natural insecticide nicotine, various new carboxylic acid derivatives of imidacloprid were made accessible. These activated neonicotinoids were utilized for the chemical modification of wood hydroxy groups. In contrast to conventional wood preservation methods in which biocides are only physically bound to the surface for a limited time, the covalent fixation of the preservative guarantees a permanent effect against wood pests, demonstrated in standardized biological tests. Additionally, the environmental interaction caused by non-bound neonicotinoids is significantly reduced, since both, a smaller application rate is required and leaching of the active ingredient is prevented. By minimizing the pest infestation, the lifetime of the material increases while preserving the natural appearance of the material. KW - Environment KW - Wood Protection KW - Efficacy KW - Insecticide PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506856 VL - 10 SP - 15726 EP - 15733 AN - OPUS4-50685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect Wood from termite attack. KW - Wood Protection KW - Nano Particles KW - Termites PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508377 VL - 78 SP - 493 EP - 499 PB - Springer AN - OPUS4-50837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haustein, T. A1 - Busweiler, Sabine A1 - Haustein, V. A1 - von Laar, C. A1 - Plarre, Rüdiger T1 - Laboratory breeding of Korynetes caeruleus (Coleoptera: Cleridae) for the biological of Anobium punctatum) (Coleoptera, Ptinidae) N2 - Larvae and adults of Korynetes caeruleus (de Geer 1775) (Coleoptera: Cleridae) were collected from old churches and reared in the laboratory on Anobium punctatum (de Geer 1774) (Coleoptera: Ptinidae). Breeding success of K. caeruleus was low, but basic parameters of this species’ developmental cycle were identifi ed. At 21°C and 75% relative humidity and a fourmonth cold period at 4°C, the development of K. caeruleus from egg to adult appearance lasted 2 years. The pupal stage may be reached and completed after one and a half years. Feeding on larvae of A. punctatum by larvae of K. caeruleus was observed and consisted of a combination of sucking haemolymph and consuming body parts. The sickle-like mandibles of larvae of K. caeruleus penetrate the cuticle of prey larvae; this is followed by pumping and sucking body movements. Adult beetles of A. punctatum were not attacked by K. caeruleus larvae. Feeding behaviour of adult K. caeruleus was not investigated. KW - Cultural heritage KW - Coleoptera KW - Korynetes caeruleus KW - Cleridae KW - Ptinidae KW - Anobium punctatum KW - Biological pest control KW - Life history data KW - Laboratory breeding KW - Wood protection PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-494999 SN - 1802-8829 VL - 116 SP - 362 EP - 371 PB - České Budějovice AN - OPUS4-49499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Esparza Mora, Margy Alejandra. A1 - Davis, H. E. A1 - Meconcelli, S. A1 - McMahon, Dino Peter A1 - Plarre, Rüdiger T1 - Inhibition of a Secreted Immune Molecule Interferes With Termite Social Immunity N2 - Social immune behaviors are described in a great variety of insect societies and their role in preventing emerging infectious diseases has become a major topic in insect research. The social immune system consists of multiple layers, ranging from the synthesis of external immune molecules to the coordination of individual behaviors into sophisticated collective defensive tasks. But our understanding of how complex group-level behavioral defenses are orchestrated has remained limited. We sought to address this gap in knowledge by investigating the relationship between the external activity of an important immune effector molecule in termites, Gram negative binding protein 2 (GNBP-2) and collective grooming and cannibalism. We reasoned that as an external enzyme capable of degrading entomopathogenic fungi, GNBP-2 can facilitate the spread of pathogenic molecules in the colony, and thus serve to trigger collective defenses in a manner analogous to pathogen-associated molecular signatures (PAMPs) of the individual immune system. To test whether GNBP-2 could play a role in regulating social immune behavior, we experimentally inhibited its fungicidal activity using the glycomimetic molecule, D-d-gluconolactone (GDL) and recorded collective behavioral responses to an infected nestmate. Contrary to expectations, GNBP-2 inhibition did not influence the rate or intensity of grooming of either control or fungus-infected nestmates. By contrast, we found that the probability of being harmed through defensive cannibalistic behaviors was significantly reduced by the inhibition of GNBP-2. Our findings indicate that the regulation of collective immune behaviors may depend in part on the external secretion of an enzyme originating from the individual immune system, but that other cues are also necessary. KW - Entomopathogen KW - Termite KW - Social immunity KW - Cannibalism KW - GNBP-2 KW - Hygienic behavior KW - GDL KW - Metarhizium PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520037 VL - 8 SP - Article 75 AN - OPUS4-52003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoyer, C. A1 - Pfütze, C. A1 - Plarre, Rüdiger A1 - Trommler, U. A1 - Steinbach, S. A1 - Klutzny, Kerstin A1 - Holzer, F. A1 - Rabe, C. A1 - Höhlig, B. A1 - Schmidt, S. A1 - Roland, U. T1 - Chemical-free pest control by dielectric heating with radio waves and microwaves: Thermal effects N2 - Thermal pest control with hot air is widely accepted as an alternative to chemical methods. However, it requires relatively long treatment times owing to the low thermal conductivity of wood. Direct dielectric heating that applies radio waves or microwaves has the advantage of more homogeneous heating. However, Sound experimental data on this technique are currently rare. Therefore, the thermal treatment of wood-destroying insects with radio waves and microwaves was studied with two model pests, Anobium punctatum and Hylotrupes bajulus, and with Tenebrio molitor as a reference. The secure elimination of pests was achieved, and the corresponding treatment time was in the range of a few minutes. Temperature profiles were more homogeneous when applying radio waves. KW - Dielectric heating KW - Microwaves KW - Pest control KW - Radio waves KW - Wood protection PY - 2018 U6 - https://doi.org/10.1002/ceat.201600712 SN - 1521-4125 SN - 0930-7516 VL - 41 IS - 1 SP - 108 EP - 115 PB - Wiley-VCH CY - Weinheim AN - OPUS4-43527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Protasov, E A1 - Noah, J O A1 - Kästle Silva, J O A1 - Mies, U S A1 - Hervé, V A1 - Dietrich, C A1 - Lang, K A1 - Mikulski, L A1 - Platt, K A1 - Poehlein, A A1 - Köhler-Ramm, T A1 - Miambi, E A1 - Boga, H I A1 - Feldewert, C A1 - Ngugi, G K A1 - Plarre, Rüdiger A1 - Sillam-Dussès, D A1 - Šobotník, J A1 - Daniel, R A1 - Brune, A T1 - Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods N2 - Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to nonmethanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods,suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological nichesprovided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages. KW - Nitrososphaerales KW - Archaea KW - Methanogens KW - Gut microbiota KW - Termites KW - Cockroaches KW - Millipedes KW - Bathyarchaeia PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-588230 SN - 1664-302X VL - 14 SP - 1 EP - 21 PB - Frontiers AN - OPUS4-58823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plarre, Rüdiger ED - Sudhaus, W. ED - Wessel, A. T1 - Von maßlosen Übertreibungen und friedfertigen Menschen – Redensartliches mit Insektenbezug und deren sprachwissenschaftliche Zuordnung T1 - Of exorbitant exaggerations and peaceful people - figures of speech involving insects and their linguistic classification N2 - Unsere Alltagssprache bedient sich so manchem Vorbild aus der Welt der Insekten. In Sinnsprüchen, Sprichwörtern, Redewendungen und Zitaten finden Fliegen und Mücken dabei besonders häufig Verwendung und dies meist in Form der Allegorie als wichtiges rhetorisches Gestaltungsmittel. Die eng mit dem Menschen verbundene Lebensweise der Stubenfliege z. B. bietet dafür die geschichtliche und kulturelle Basis. Redensarten sind ein sprachliches Spiegelbild gelebter Kultur, was den Vergleich mit anderen Sprachen interessant macht. So hat jede Sprache ein charakteristisches Portfolio von ihnen, die sinnverwandt sein, aber auch bei wörtlicher Übersetzung zu Missverständnissen führen können. Sprachen sind nicht gegeneinander isoliert. Während ihrer Differenzierung gab es immer auch aktiven Austausch von einzelnen Sprachelementen. Diesen Prozess zu rekonstruieren ist Aufgabe der vergleichenden Sprachwissenschaft, die sich dabei auch Methoden der biologisch-phylogenetischen Analyse bedient. KW - Vergleichende Linguistik KW - Kulturelle Entomologie KW - Redensarten KW - Sprache PY - 2022 U6 - https://doi.org/10.25671/GNF_Sber_NF_56_05 SN - 0037-5942 VL - 56 SP - 83 EP - 104 PB - Gesellschaft Naturforschender Freunde zu Berlin CY - Berlin AN - OPUS4-56987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -