TY - CONF A1 - McMahon, Dino Peter A1 - Esparza, M. A1 - Davis, H. A1 - Margy, A. T1 - Infection stage and pathogen life cycle determine collective termite behaviour N2 - Social insects nesting in soil environments are in constant contact with entomopathogens and have evolved disease resistance mechanisms within a colony to prevent the occurrence and spread of infectious diseases. Among these mechanisms: mutual grooming reduces the cuticular load of pathogens, and burial of cadavers and cannibalism can prevent pathogens from replicating within the group. We explored how the rate and type of collective behavioural response is determined by stepwise infection dynamics operating at the level of the individual. Specifically, we infected the eastern subterranean termite Reticulitermes flavipes with different types of infectious particle and infection route of the entomopathogenic fungus Metarhizium anisopliae and recorded behavioural responses of nestmates to individuals at different times during the progression of infections. As expected, termites groomed conidia-exposed individuals significantly more than controls. Interestingly, grooming was significantly elevated after fungal germination than before, suggesting that pathogen growth cues act as strong stimulators of allogrooming. Conidia-exposed termites were cannibalized, but only after they became visibly ill. By contrast, termites did not groom blastospore-injected individuals more than controls at any time-point following infection. Instead, we found that blastospore-injected individuals were continually cannibalized at a low-level following injection with either viable or heat-killed blastospores, with a marked increase in cannibalism after termites injected with viable blastospores became visibly ill and were close to death. Together, these findings point to the importance of host condition as a cue for social hygienic behavior, and that the host itself appears to emit essential sickness cues that act as targets for its own sacrifice. This demonstrates that termites have independently evolved to both identify and destructively respond to sickness. T2 - VI Central European Meeting of the IUSSI 2019 CY - Wien, Austria DA - 19.03.2019 KW - Termite KW - Evolution KW - Social immunity PY - 2019 AN - OPUS4-49643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - The termites are a derived eusocial lineage of otherwise non-social cockroaches. Understanding the proximal and ultimate drivers of this major evolutionary transition represents an important goal in biology. One outstanding question concerns the evolution of termite immunity, which is thought to have undergone broad-sweeping adaptations in order to enhance group-level immune protection. To understand the evolutionary origins of termite immunity, we conducted qualitative and quantitative transcriptome analyses along a gradient of sociality. Firstly, we aimed to identify large-scale genetic shifts in immune traits linked to eusociality by comparing immune gene repertoires in solitary and subsocial cockroaches and across a range of eusocial termite lineages. Secondly, we compared the responses of a solitary cockroach, a subsocial wood-roach and different castes of a lower termite species to a non-specific immune challenge, in order to understand how sociality may have influenced the evolution of immune gene regulation. Firstly, we found that termites have a broadly representative repertoire of canonical immune genes as compared to gregarious cockroaches and subsocial wood-roaches. Secondly, with respect to immune challenge, the solitary cockroach and the subsocial wood-roach displayed a similarly comprehensive induced response, while the termite response was considerably dampened by comparison and strongly influenced by caste; with reproductives displaying a generally higher constitutive level of immune-gene expression compared to sterile castes. In summary we did not find termite eusociality to be associated with significant changes in immune gene diversity, but rather to be linked with significant modifications to the regulation of immunity following the origin of division of labour. T2 - Institute for Evolution and Biodiversity Lecture Series, Universität Münster CY - Münster, Germany DA - 20.02.2019 KW - Immunity KW - Evolution KW - Ecology KW - Termite KW - Molecular PY - 2019 AN - OPUS4-49644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - G-BOP kick-off meeting proposal ideas Ecology and evolution of termite immunity N2 - Results suggest a reduction in immune gene repertoires in termites and possible complementary expression between termite castes. With comparative genomics we will investigate the evolution of gene families related to immunity, try to understand where reductions and expansions take place and relate these changes to shifts in sociality and ecology. The role of TEs in expansions and contractions of immune gene families will be investigated. For these analyses, we propose to generate high quality, highly contiguous genomes of species from different levels of sociality, covering all major termite families. With comparative transcriptomics we will investigate the expression of immune genes in different castes. Via network analyses we will identify pathways indicated in differential immunity between castes and between species of different sociality levels. We will investigate how these pathways have been rewired along the transitions to higher levels of sociality and how, intra-specifically, they change between castes. T2 - Rundgespräch zur Vorbereitung eines SPP G-BOP - Genomic Basis Of Phenotypic Innovations in Insect Evolution CY - Zoologisches Forschungsmuseum, Bonn, Germany DA - 16.05.2019 KW - Bioinformatics KW - Evolution KW - Termites PY - 2019 AN - OPUS4-49645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - A broad suite of immune adaptations have evolved in social insects which hold close parallels with the immune systems of multicellular individuals. However, comparatively little is known about the evolutionary origins of immunity in social insects. We tackle this by identifying immune genes from 18 cockroach and termite species, spanning a gradient of social lifestyles. Termites have undergone contractions of major immune gene families during the early origin of the group, particularly in antimicrobial effector and receptor proteins, followed by later re-expansions in some lineages. In a comparative gene expression analysis, we find that reproductive individuals of a termite invest more in innate immune regulation than other castes. When colonies encounter immune-challenged nestmates, gene expression responses are weak in reproductives but this pattern is reversed when colony members are immune-challenged individually, with reproductives eliciting a greater response to treatment than other castes. Finally, responses to immune challenge were more comprehensive in both subsocial and solitary cockroaches compared to termites, indicating a reduced overall ability to respond to infection in termites. Our study indicates that the emergence of termite sociality was associated with the evolution of a tapered yet caste-adapted immune system. T2 - 112th Annual Meeting of the German Zoological Society CY - Jena, Germany DA - 10.09.2019 KW - Social KW - E$volution KW - Termite KW - Immunity PY - 2019 AN - OPUS4-49646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -