TY - CONF A1 - Nordholt, Niclas A1 - Broska, Selina A1 - Schreiber, Frank T1 - Persistence as a microbial survival strategy against disinfectants N2 - Antimicrobial resistance is a major threat to human health. The prevalence of multi-drug resistant (MDR) bacteria is predicted to increase in the future requiring robust control strategies. One cornerstone to prevent the spread of MDR bacteria in clinical settings is the application of disinfectants to improve hygiene standards. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than the majority of the population. Our results in E. coli indicate that persistence is a bacterial survival strategy against benzalkonium chloride, a widely used disinfectant. In future experiments, we will investigate the evolution of persistence in the face of fluctuating exposure to disinfectants and whether persistence facilitates resistance against disinfectants. Lastly, we will test how tolerance and resistance against disinfectants affects susceptibility against antibiotics. T2 - Bridging Ecology and Molecular Biology: Organismic Responses to Recurring Stress CY - Berlin, Germany DA - 09.04.2018 KW - Bacteria KW - Persistence KW - Resistance KW - Biocides PY - 2018 AN - OPUS4-44667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - EVOCIDE: Preserving disinfectant efficacy by predicting evolution: exposing the principles of disinfectant survival and adaptation in bacteria N2 - Presentation of the EVOCIDE research proposal work programme.EVOCIDE seeks to gain a systems level understanding of disinfectant survival and evolution in bacteria. T2 - Joint Group Seminar Rolff-McMahon-Armitage-Steiner CY - Berlin, Germany DA - 20.12.2023 KW - Disinfectants KW - Evolution KW - Microbiology KW - Bacteria KW - Biocides PY - 2023 AN - OPUS4-59224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Gustiherdini, Cahyaruri A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by Phenotypic Heterogeneity and transcriptome remodeling N2 - Glutaraldehyde (GTA) is commonly used to disinfect medical equipment, in animal husbandry and in hydraulic fracturing. Its wide use bears the risk that microorganisms in different environments are exposed to potentially non-lethal doses of glutaraldehyde. To date, little is known about the effects of glutaraldehyde on the susceptibility of bacteria to antibiotics and its role in the selection of tolerant phenotypes. Objectives • To determine the effect of glutaraldehyde exposure on the survival of E. coli, S. aureus and P. aeruginosa to antibiotics • To find the mechanistic basis for antibiotic tolerance upon glutaraldehyde exposure Materials & Methods Four bacterial isolates were exposed to sub-inhibitory glutaraldehyde. Antibiotic tolerance was determined by time-kill assays. Regrowth dynamics (lag times) were determined with ScanLag. E. coli was further investigated, using RNAseq to identify genes and processes involved in antibiotic tolerance. Mutants of candidate genes were screened for their antibiotic tolerance and heterogeneous target gene expression under stressed and unstressed conditions. Results Short-term exposure to sub-inhibitory levels of glutaraldehyde induced tolerance to high doses of bactericidal antibiotics. Tolerance to antibiotics was associated with highly heterogeneous regrowth dynamics and global transcriptome remodeling. Differentially expressed genes represented diverse biological functions and cellular components, including antibiotic efflux, metabolic processes, and the cell envelope. The heterogeneous regrowth dynamics and the diversity of the differentially expressed genes are likely related to the unspecific mode-of-action of glutaraldehyde. Among the many differentially expressed genes, several genes were identified that were not previously associated with antibiotic tolerance or persistence, which, when overexpressed alone, increased antibiotic tolerance. Conclusion Our results highlight how the big advantage of a disinfectant, its unspecific mode-of-action, can induce transient tolerance to antibiotics in bacteria. These findings have implications for 1.) settings where disinfectants and antibiotics are used in proximity, such as hospitals and animal husbandry, and 2.) for the selection dynamics of tolerant bacteria in fluctuating environments because of the trade-off that arises from overcoming the lag phase as fast as possible and maintaining antibiotic tolerance. T2 - VAAM Jahrestagung 2023 CY - Göttingen, Germany DA - 10.09.2023 KW - Glutaraldehyde KW - Disinfectants KW - Biocides KW - Antibiotics KW - Bacteria PY - 2023 AN - OPUS4-58439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Brown, J. A1 - Hardie, K. A1 - Unger, Wolfgang T1 - Model systems and sample preparation for surface characterisation of bacteria and biofilms by near-ambient pressure XPS N2 - Bacterial samples are typically freeze dried or cryo-prepared prior to XPS analysis to allow for measurements in ultra-high vacuum (UHV). The sample environment in the near-ambient pressure (NAP) XPS instrument EnviroESCA allows for measurements in up to 15 mbar water vapor, thus, sample preparation is no longer restricted to UHV-compatible techniques. For instance, biofilms grown in medium can be transferred directly from the medium to the measurements chamber, maintaining a humid environment throughout the measurements. Considering the complexity of bacterial samples, sample preparation must be carefully considered in order to obtain meaningful and reproducible results. In this talk, various strategies for sample preparation of bacteria and biofilms for NAP-XPS measurements will be discussed. Model systems of planktonic bacteria, artificial biofilms resembling the exopolysaccharide matrix and biofilms have been characterised in various conditions. The stability and homogeneity of the samples was assessed by monitoring the C1s core level peak at different sample locations. The quality of the XPS-spectra is also influenced by the gas environment, which will be exemplified by core level spectra of P. Fluorescens acquired in air, water vapor and ultra-high vacuum. T2 - 18th European conference on applications of surface and interface analysis (ECASIA) CY - Dresden, Germany DA - 15.09.2019 KW - NAP-XPS KW - Biofilms KW - Bacteria KW - E. coli KW - XPS PY - 2019 AN - OPUS4-49189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Kunte, Hans-Jörg A1 - Koerdt, Andrea ED - Eibergen, N. ED - Poulassichidis, T. T1 - Microbiologically Influenced Corrosion (MIC) by Halophilic (Salt-Loving) Nitrate and Sulfate-Reducing Microorganisms N2 - The survey of Canadian shale sites showed a dominance of halophilic microorganisms, including Halomonas (HA). Nitrate-amended incubations of the field samples under high salinity (14.6% NaCl), revealed a dominance of HA (>72%) and an accumulation of nitrite. Nitrite accumulation directly inhibited the growth of SRB, thereby decreasing their souring and corrosion risks. However, accumulated nitrite may also contribute to iron corrosion, which will be tested by using different concentrations of nitrate as an electron acceptor to HA. Different salinities are further tested on HA strains supplemented with iron coupons to determine their effects on iron corrosion rates. HA incubated with separate cultures of corrosive methanogen and SRB were tested to determine whether a positive or adverse effect will occur between them. Lastly, analyses of iron coupons will be conducted using TOF-SIMS, FIB-SEM and EDS for corrosion product characterization T2 - Corrosion 2021 CY - Online Meeting DA - 19.04.2021 KW - MIC KW - Bacteria KW - Halophile KW - Corrosion KW - Environmental condition KW - Korrosion KW - High salinity PY - 2021 UR - https://my.nace.org/PaperTrail/Authors/Submission.aspx?id=2914f145-7f8f-ea11-813a-005056a95a7c SP - Paper C2021-16284, 1 AN - OPUS4-52479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Kleinbub, Sherin T1 - Microbial modelling of sulfate-reducing bacteria (SRB) and methanogenic archaea (ME) using iron N2 - Sulfate reducing bacteria (SRB) and methanogenic archaea (MA) are commonly found in the oil and gas environments. The formation of hydrogen sulfide (HS-) is particularly concerning for the petroleum industry due to its corrosiveness. However, the activities of SRB are limited to the concentration of sulfate present in the environment, whereas methanogens can utilize substrates such as H¬2 for methanogenesis. MA is commonly found in sulfate-free environments, such as deep sediments, and are known to form interspecies electron transfer relationships with SRB. Recently, SRB and MA capable of microbiologically influenced corrosion (MIC) by using elemental iron as a direct electron source (EMIC) have gained increased attention. On the iron surface, EMIC-SRB can outcompete EMIC-MA in the presence of sulfate, but this changes as sulfate depletes. The formation of FeS on the metal surface can be further utilized by MA for methanogenesis as it provides a conductive path. However, the possible kinetics involved of the overall process are currently unknown. We obtained a co-culture of EMIC-SRB and EMIC-MA to investigate the growth rates and electrical potential changes under different environmental conditions, including changes in pH, temperature and salinity. Results indicate that under neutral conditions and using iron as the sole substrate, methane production (up to 5 mM) starts after sulfate was depleted. Electrochemical measurements will be conducted on the co-culture under different conditions to determine the changes in the electrical potential in correlation with the sulfate and methane concentration. Fluorescence and electron microscope images of the biofilm structure will be used to visualize cell distribution and morphology. This study embarks the first step of understanding the relationship between EMIC-SRB and EMIC-MA. Such knowledge is important for the field of microbial electrophysiology and can be further explored for industrial applications. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-7) CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Bacteria KW - Archaea KW - Iron PY - 2019 AN - OPUS4-49420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -