TY - CONF A1 - Schulz, Anne-Christine A1 - Schreiber, Frank T1 - Co-selection for biocide and antibiotic resistance in microbial wastewater communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. They play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP Here, we want to investigate co-selection processes of antibiotic resistance in natural WWTP microbial communities upon biocide exposure. Microbial communities were sampled at the WWTP Ruhleben in Berlin and characterized regarding their susceptibility against different clinically relevant antibiotics. To investigate the link between biocide exposure and antibiotic resistance, changes in the susceptibility level after exposure to environmentally relevant concentrations of the commonly used biocide didecyldimethylammonium chloride (DDAC) will be determined by enumerating resistant and non-resistant E. coli on selective plates with and without antibiotics and DDAC. In case of antibiotics, clinical breakpoint concentrations according to EUCAST will be used to discriminate between susceptible and resistant strains. In case of DDAC (and biocides in general), clinical breakpoints do not exist. Therefore, we determined a cut-off concentration at which the majority of naturally-occurring E. coli strains cannot grow anymore based on (I) the MIC (minimal inhibitory concentration) distribution, and (II) by plating wastewater communities onto selective indicator agar plates loaded with increasing DDAC concentration. Additionally, antibiotic cross-resistance will be determined by spotting single colonies, isolated from DDAC-selective plates onto antibiotic plates. The results of our experiments will help to determine selective concentrations and to estimate the risk of antibiotic co-selection and cross-resistance in microbial WWTP communities upon biocide exposure. T2 - Annual Conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2023 AN - OPUS4-58510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Razkin Bartolomé, Malen A1 - Gräf, S. A1 - Thiele, Dorothea A1 - Sahre, Mario A1 - Zabala, A. A1 - Buruaga, L. A1 - Krüger, Jörg A1 - Müller, F.A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on fs-laser processed laser-induced periodic surface structures N2 - Bacteria are ubiquitous and colonize all types of surfaces, including those in close proximity to humans, such as skin, food, and everyday objects. This raises the question of whether their presence represents a problem to be mitigated or a potential source of benefit to be harnessed, thereby stimulating scientific inquiry into the role of surface-associated bacteria in diverse domains ranging fromhuman health to industrial biotechnology. Aim: The objective of this project is to explore the impact of modifying surface topography on bacterial adhesion behavior. By manipulating the physical characteristics of the substrate, the attachment and detachment dynamics of bacteria can potentially be modified, leading to novel strategies for controlling bacterial colonization in various applications, such as medical devices. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were tested on LIPSS-covered Fused Silica samples. T2 - 2023 Spring Meeting · , 2023 · Strasbourg CY - Strasbourg, France DA - 29.05.2023 KW - LIPSS KW - Biofilm KW - fs-laser processing PY - 2023 AN - OPUS4-58456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Schwibbert, Karin A1 - Richter, Anja M. A1 - Krüger, Jörg T1 - Laserstrukturierte Oberflächen Ein Weg zur Kontrolle der Biofilmbildung? N2 - Bakterielle Biofilme stellen in medizinischen und industriellen Bereichen ein ernsthaftes Problem dar. Eine der größten gesellschaftlichen Herausforderungen liegt in der zunehmenden Resistenz von Bakterien gegen Biozide, die bei antimikrobiellen Behandlungen eingesetzt werden, z.B. durch übermäßigen Einsatz in Medizin, Industrie und Landwirtschaft oder durch Reinigung und Desinfektion in Privathaushalten. Daher sind neue effiziente bakterienabweisende Strategien, die den Einsatz von Bioziden vermeiden, dringend erforderlich. Ein vielversprechender Weg zur Erzielung bakterienabweisender Oberflächen liegt in der berührungslosen und aseptischen großflächigen Laserbearbeitung von technischen Oberflächen. Maßgeschneiderte Oberflächentexturen, ermöglicht durch verschiedene Laserbearbeitungsstrategien, die zu topographischen Skalen im Bereich von Nanometern bis Mikrometern führen, können eine Lösung für diese Herausforderung darstellen. In dem Vortrag wird ein Überblick über den aktuellen Stand der Technik bei der subtraktiven Texturierung von Laseroberflächen zur Kontrolle der Biofilmbildung bei verschiedenen Bakterienstämmen und in unterschiedlichen Umgebungen gegeben. Auf der Grundlage spezifischer Eigenschaften von Bakterien und laserbearbeiteten Oberflächen werden die Herausforderungen antimikrobieller Oberflächendesigns erörtert und zukünftige Richtungen aufgezeigt. T2 - GRAVOSeminar, GRAVOmer Kompetenznetzwerk CY - Online meeting DA - 28.02.2024 KW - Laser-Materialbearbeitung KW - Ultrakurzpuls-Laser KW - Biofilme KW - Antibakterielle Oberflächen KW - Oberflächenfunktionalisierung PY - 2024 UR - https://gravomer.de/veranstaltungen-anzeigen/laserstrukturierte-oberflaechen-ein-weg-zur-kontrolle-der-biofilmbildung AN - OPUS4-59594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Risk Assessment of Biocide Resistance N2 - This presentation details approaches for the risk assessment of biocide resistance. Different methods are presented to acquire the necessary data for such risk assessments. T2 - OECD, 7th Meeting of the Working Party on Biocides CY - Leiden, Netherlands DA - 18.09.2023 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-59062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaut, Valerie A1 - Schreiber, Frank A1 - Vareschi, Silvia T1 - Antibiotic tolerance of biofilms emerging fro multicellular effects of antibiotic efflux N2 - The overarching goal of this project is to develop a predictive model for efflux-mediated antimicrobial tolerance in bacterial multicellular assemblies. Our central hypostasis is that efflux pump activity causes emergent antibiotic tolerance of multicellular bacterial populations, through the interplay of efflux mediated spatial interactions and efflux-linked persistence. To test this hypothesis, we will use a combination of microscopy, microbial killing assays, computational modelling, and data analysis, integrating information from 3 types of multicellular assembly: colonies, cell-to-cell interactions in a monolayer microfluidic device, and 3D flow chamber biofilms. Building on our preliminary observations, we will experimentally characterize the link between colony structure and spatial patterns of efflux gene expression in strains that differ in their levels of efflux. We will develop a mathematical model to test whether local growth inhibition of neighbors due to effluxing cells, coupled with local environment-dependent regulation of efflux, can account qualitatively for these results. By including persister cell formation in our model we will predict, and measure, the emergent function of antimicrobial tolerance in our colonies. To fully understand how tolerance emerges from the interplay between efflux-mediated spatial interactions and efflux-linked persister cell formation, we need quantitative measurements at the single cell level. To this end, we will use a microfluidic setup with cells growing in a monolayer to qualify in detail the dependence of efflux expression and persister cell formation on nutrient conditions, the correlation between efflux and persister formation, and the spatial range of efflux-mediated neighbour growth inhibition. To predict and quantitatively understand the emergent multicellular function of tolerance, we will perform individual-based modelling of biofilm growth, using as input the parameters measured on the single-cell level with our microfluidics experiments. Our simulations will predict biofilm spatial structure development, patterns of efflux and persister formation and, ultimately, tolerance to antimicrobial challenge. These predictions will be directly tested in flow-cell biofilm experiments. We are currently generating acrAB-tolC knockout-strain, without efflux activity, and a strain with an inducible acrAB-tolC efflux pump. To distinguish the different strains under the microscope, they were labeled with genes encoding for different fluorescent proteins. All strains are currently characterized in terms of growth, minimum inhibitory concentration of different antimicrobial substances, colony morphology, and biofilm formation ability. On the theoretical side, we are currently working on modeling the system at various scales and degree of detail, ranging from coarse-grained continuum models to stochastic, individual-based models. Some exploratory work was doe to test existing software for individual-based modelling that may be adapted for our purpose. Furthermore, we are in the process of developing more coarse-grained models. This work involves some physiological modelling and literature search, focusing on working mechanisms of efflux pumps and kinetic models for import and export of antibiotics. T2 - SPP Meeting CY - Jena, Germany DA - 04.10.2023 KW - Antibiotic KW - Bioilm KW - Tolerance KW - Efflux PY - 2023 AN - OPUS4-59245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keshmiri, Hamid T1 - Bidiffractive leaky-mode biosensor N2 - This study details a thorough analysis of leaky and waveguide modes in biperiodic diffractive nanostructures. By tuning diffraction orders and subsequently confining local density of optical states at two distinct resonance wavelengths, we present a highly sensitive refractive index biosensing platform that can resolve 35.5 to 41.3 nm/RIU of spectral shift for two separate biological analytes. T2 - EMBL Symposium: Seeing is Believing - Imaging the Molecular Processes of Life CY - Heidelberg, Germany DA - 04.10.2023 KW - Optics PY - 2023 AN - OPUS4-59247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keshmiri, Hamid T1 - Plasmon-enhanced diffractive supercells N2 - Multiple diffractive surface modulations can concurrently couple the light to several electromagnetic surface waves. We present a multi-resonant plasmonic supercell structure with a broad range of applicability in harvesting the light over an extensive wavelength range and angles of incidence. T2 - Molecular Plasmonics 2023 CY - Jena, Germany DA - 11.05.2023 KW - Optics PY - 2023 AN - OPUS4-59248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis A1 - Schreiber, Frank T1 - Consequences of tolerance to disinfectants on the evolution of antibiotic resistance in E. coli N2 - Biocides are used as disinfectants and preservatives; one important active substance in biocides is benzalkonium chloride (BAC). BAC-tolerant bacterial strains can survive short treatments with high concentrations of BAC. BAC tolerance and resistance have been linked to antibiotic resistance. Here, the selection dynamics between a BAC-tolerant Escherichia coli strain and a sensitive wild type were investigated under four conditions: in the absence of antibiotics and in the presence of three different sub-inhibitory concentrations of the antibiotic ciprofloxacin in liquid cultures. The wild type was selected over the BAC-tolerant strain in the absence of antibiotics, while the BAC-tolerant strain was selected over the wild type at all ciprofloxacin concentrations investigated, with a minimum selection concentration (MSC) of 1/10th of the minimum inhibitory concentration (MIC) of the wild type. Furthermore, the evolvability of resistance of the two strains to inhibitory concentrations of ciprofloxacin was assessed by performing a serial dilution evolution experiment with gradually increasing ciprofloxacin concentrations. The wild type had a higher probability to develop resistance to ciprofloxacin than the tolerant strain. By the end of the evolution experiment both strains evolved to grow at the highest ciprofloxacin concentration investigated, which was 2048 ×MIC of the wild type. The importance of these results is highlighted by the fact that concentrations of ciprofloxacin well above the calculated MSC can be found in environmental samples such as hospital wastewaters and livestock slurry. In turn, BAC is used as a disinfectant in the same settings. Thus, the selection of BAC-tolerant strains at sub-inhibitory concentrations of ciprofloxacin can contribute to the stabilization and spread of BAC-tolerance in natural populations. The prevalence of such strains can impair the effects of BAC disinfections. T2 - µClub seminar series CY - Berlin, Germany DA - 15.12.2023 KW - Antimicrobial resistance PY - 2023 AN - OPUS4-59222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - Annie, Biwen A1 - Rene, Hesse A1 - Askar, Enis A1 - Ji Zheng, Yao A1 - Sobol, Oded A1 - Kunte, Hans-Jörg T1 - The impact and potential of halophilic microorganisms on alternative fuels N2 - As more industrial interests focusing on using salt caverns and repurposed gas or petroleum reservoirs for alternative fuel storage, i.e. CO2/H2, the question raises whether microorganisms may impact the infrastructure, gas purity and storage condition over time. Environments with high salinity (> 1.5 Meq of NaCl) are resided by halophiles (salt-loving microorganisms). To compensate for the intensive osmotic stress, they have resorted to two main adaptation strategies: 1) production of compatible solutes and 2) accumulation of intracellular KCl. Microbial community analysis of several high salinity environments revealed a number of recurring genera, including Halomonas and Halanaerobium. However, the impact of halophiles on the overall integrity and stability of the storage facilities remain largely unknown. To evaluate the suitability and stability of saline storage facilities, several model halophilic microorganisms, such as members of Halomonas, will be selected as testing subjects. First, the impact of halophiles on the infrastructure will be determined using an integrative approach by combining a number of techniques, including electrochemistry, TOF-SIMS, SEM/FIB/EDS and FIB-TEM. Second, the abilities of halophiles to alter the fuel composition (i.e. increase/decrease the fractions of H2) will be monitored using gas chromatography by growing them under high pressure. As a result of climate change and the accompanying mandatory shift to renewable energy resources, microorganisms will continue to play an important role in the energy sector, both to their benefit and detriment. Thus, it is important to achieve a certain level of understanding regarding the activities and mechanisms of halophiles prior to large-scaled excursions. T2 - ISMOS-8 CY - Online meeting DA - 07.06.2021 KW - Microbiologically influenced corrosion KW - Hydrogen KW - Gas storage KW - Contamination PY - 2021 AN - OPUS4-52891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Environmental sustainability and –stability of Materials concerning the Migration of pollutants N2 - MaUS is an acronym for ”Material und Umweltsimulationen“. Plastics are in the focus of environmental politics due to their long-term behaviour and therefore to their persistence. Not only that they appear as visible contaminants in the sea and on the beach, but their unknown behaviour concerning their additives as well as the related transformation products are anxious. Therefore, we wish to establish a certified reference method to provide a method for testing plastics. Aim of this project is the development of fast motion standard reference methods for testing plastics regarding to their environmental compatibility. To establish these testing methods, we use polystyrene (PS) and polypropylene (PP) with environmental relevant brominated flame retardants, known for their persistent bioaccumulative and toxic (PBT) properties. In case of PS the material contains 1 wt% of 1,2,5,6,9,10-hexabromocyclododecan (HBCD) and in case of PP 0.1 wt% bromodiphenylether (BDE-209), which is known as a substance of very high concern (SVHC). Furthermore, we use polycarbonate (PC), which is still used as material in baby flasks and releases Bisphenol A (BPA), an estrogenic active substance. As an additional material PTFE is used for its importance as a source for two ubiquitous environmental substances (PFOS and PFOA), whose toxicological effects are still incompletely known. The focus in this current work is set on the transfer of potential pollutants out of applied materials mentioned above into environmental compartments like water or soil. Here an accelerated aging concept should be developed to shortened time consuming natural processes. For these resulting simulations we use a programmable weathering chamber with dry and wet periods and with high and low temperatures. These programmes run for several weeks and according to a defined sampling schedule we take water samples, run a clean-up procedure by SPE (Molecular imprinted polymers (MiPs) resp. polymer-based cartridges (Waters Oasis HLB)) and analyse them by HPLC-UV resp. LC-MS/MS. Of most interest in case of flame retardants are photocatalytic transformation products. Therefore, we conduct a non-target-screening resp. a suspected target-screening by LC-MS/MS and HRMS. T2 - Project meeting PlasticsEurope - BAM CY - Leverkusen, Germany DA - 06.11.2018 KW - Environmental simulation KW - Pollutants PY - 2018 AN - OPUS4-47026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Traub, Heike A1 - Ostermann, Markus A1 - Becker, Roland A1 - Köppen, Robert A1 - Bücker, Michael A1 - Reger, Christian T1 - LA-ICP-MS- und RFA-Messungen für die Bestimmung von polybromierten Flammschutzmitteln(PBFSM) in Polystyrol- und Polypropylenproben N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umwelt-beständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe (polybromierte Flammschutzmittel) in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - Kolloquium "Aquatische Ökologie" CY - Essen, Germany DA - 27.11.2019 KW - Umweltsimulation KW - PBFSM KW - LA-ICP-MS KW - RFA PY - 2019 AN - OPUS4-49975 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - TF-Projekt MaUS: Material und Umweltsimulation N2 - Gegenstand des Projekts ist die Prüfung der Umweltbeständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polycarbonat, Polytetrafluorethylen, Polystyrol und Polypropylen zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden, die es gestatten, Schnellprüfverfahren zu etablieren, die die Simulation der realen Beanspruchungen im Zeitraffermodell anwendbar machen. Somit sollen standardisierbare Schnellbeanspruchungs-verfahren erarbeitet werden, die als Prüfeinrichtungen etabliert werden und von externen Auftraggebern zur Prüfung der Umweltbeständigkeit und -verträglichkeit von neuen Materialien genutzt werden können. Die Umweltwirkungen (chemisch-physikalisch und mikrobiologisch) sollen so definiert eingesetzt werden, dass eine reproduzierbare Prüfung möglich wird. Aus diesen Verfahren und Methoden sollen Normen abgeleitet werden, die eine standardisierte Materialprüfung ermöglichen. T2 - Projektmeeting BAM - Covestro CY - Leverkusen, Germany DA - 29.05.2018 KW - Umweltsimulation KW - Schadstoffaustrag PY - 2018 AN - OPUS4-47025 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Köppen, Robert A1 - Becker, Roland A1 - Traub, Heike A1 - Ostermann, Markus A1 - Bücker, Michael A1 - Reger, Christian A1 - Westphalen, Tanja T1 - Environmental sustainability and –stability of materials concerning the migration of pollutants N2 - In addition to previously reported results on the accelerated weathering of polystyrene samples (PS) containing 1 wt. % hexabromocyclododecane (HBCD), we present the first results of our investigations of polypropylene samples (PP) containing 0.1 wt. % BDE-209. All studied polymer samples were exposed to a defined weathering schedule in a climate chamber in accordance to regulation EN ISO 4892-3:2006. For the determination of BDE-209 in the collected raining water the samples were prepared in accordance to a validated protocol. Before the analyses each sample was spiked with isotopically labeled BDE-209. Subsequently the samples were extracted with isooctane. The obtained extracts were concentrated, and the resulting solutions were analyzed by GC/MS. Additionally, the total bromine content was monitored for the weathered and untreated samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray fluorescence analysis (XRF) as a non-destructive and rapid method. In general, the resulting data from the accelerated weathering will be compared to those from the natural weathering experiments. Here, the surfaces of the test pieces were analyzed by LA-ICP-MS and XRF as well. Moreover, soil bed tests were conducted in a well characterized model soil. This soil (boulder-clay, sand with 12 % loam, particle size in total 0.2-4 mm) is filled in a free-draining basin inside of an air-conditioned cellar. In this manner, TOC, water capacity and humidity are recorded parameters. To induce a leaching process from the samples by the raining water, the target water content is calculated to 8%. The actual humidity is measured by a tensiometer, assuring the duration of the raining period. A defined humidity is a fundamental parameter for a biological activity in the soil. The test polymers were placed up to the half in the soil. Microbial activity of the soil is monitored by a reference polymer (polyurethane) and should induce the release of HBCD and BDE-209 out of the test materials. These released analytes will be captured by passive samplers (silicone tubes) placed in a distinct distance to the polymer samples in the soil. The soil bed experiments are complementary to the weathering experiments due to the biological activity in the soil. T2 - Goldschmidt 2019 CY - Barcelona, Spain DA - 18.08.2019 KW - Pollutants KW - Environmental simulation KW - Migration PY - 2019 AN - OPUS4-49803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, Hassan A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, Katrin A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Bewitterungsszenarien im Vergleich – Veränderungen in der Oberflächenmorphologie von Polypropylen (PP) und Polystyrol (PS) unter dem Aspekt des Austrags von polybromierten Flammschutzmitteln N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umwelt-beständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - 47. Jahrestagung der GUS CY - Blankenloch-Stutensee, Germany DA - 21.03.2018 KW - Schadstoffaustrag KW - Umweltsimulation KW - Bewitterung PY - 2018 SN - 978-981-18507-2-7 VL - 47 SP - 115 EP - 128 AN - OPUS4-49802 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Iznaguen, H. A1 - Traub, Heike A1 - Feldmann, Ines A1 - Köppen, Robert A1 - Witt, Angelika A1 - Jung, Christian A1 - Becker, Roland A1 - Oleszak, K. A1 - Bücker, Michael A1 - Urban, Klaus A1 - Reger, Christian A1 - Ostermann, Markus T1 - Bewitterungsszenarien im Vergleich – Veränderungen in der Oberflächenmorphologie von Polypropylen (PP) und Polystyrol (PS) unter dem Aspekt des Austrags von polybromierten Flammschutzmitteln N2 - In addition to previously reported results on the simulated aging of polystyrene samples (PS) containing 1 wt. % hexabromocyclododecane (HBCD), we present the first results of our investigations of polypropylene (PP)-samples containing 0.1 wt. % BDE-209. All studied polymer samples were exposed to a defined weathering schedule in a climate chamber in accordance to regulation EN ISO 4892-3:2006.For the determination of BDE-209 in the collected rain water samples derived from the used climate chamber, the samples were prepared in accordance with a validated protocol. Before the analyses, each sample was spiked with 2 µL of isotopically labeled BDE-209 (13C10-BDE-209) to serve as internal standard (ISTD) in the performed stable isotope dilution analysis. Subsequently the samples were extracted with isooctane, the obtained aliquots of the extracts were concentrated to 200 µL and 2 µL of the resulting solution were injected to the GC/MS for quantification. Additionally, the total bromine contents are monitored for the aged and untreated samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as well as X-ray fluorescence analysis (XRF) as non-destructive and rapid method. Furthermore, results from surface analysis using environmental scanning electron microscopy (ESEM) for morphological characterization of the aged and untreated samples were presented and discussed. In general, the resulting data from the accelerated aging will be compared to those from the natural weathering experiments (“atmospheric exposure”, in soil). The atmospheric exposure was performed by placing the samples on a weathering rack, which is aligned in SW direction (in a 45° angle to the horizon). The weathering data were regularly recorded by Deutscher Wetterdienst at this site. The surfaces of the test specimens (aged and stored references) were analyzed by ESEM as well as by LA-ICP-MS and by XRF. The surface of PS and PP specimens aged outdoors present the aging under real conditions and allow the comparison to the accelerated aged specimens by means of the weathering chamber. This way, we explore the efficiency of the accelerated aging procedure, which provides the advantage of well-defined and reproducible conditions compared to natural weathering, as a tool for testing different plastic materials. Additionally “in soil” experiments were conducted in-door in a well characterized testing soil. The soil (boulder-clay, sand with 12 % loam, particle size in total 0.2-4 mm) is filled in a free-draining concrete basin inside of an air-conditioned room. In this manner, TOC, water capacity and humidity are recorded parameters. To assure a washing out process from the samples by the raining water, the target water content is calculated to 8%. The actual humidity is measured by a tensiometer, assuring the duration of the raining period. The water content is additionally monitored by weight of the basin, capturing water from raining periods. The correct humidity is a fundamental parameter for biological activity. Samples of PS resp. PP were of dimension 10x1cm and 5 specimens were placed up to the half in the soil per basin. Microbial activity of the soil, monitored by the reference polyurethane, sets HBCD resp. BDE-209 of the samples free and will be leached from the samples by raining water. Thereafter these will be captured by passive samplers placed in a distinct distance to the samples in the soil. The “in soil” experiments are complementary to the weathering experiments due to the biological activity in the soil. These experiments simulate the fate of the brominated flame retardants in the biosphere. N2 - Gegenstand der vorzustellenden Arbeiten ist die Prüfung der Umweltbeständigkeit und -verträglichkeit von Materialien und Produkten hinsichtlich der Emission von potenziellen Schadstoffen in die Umwelt. Hierzu werden chemisch-physikalische Einflüsse (Bewitterung) und mikrobielle Beanspruchungen an Modellmaterialien evaluiert. So werden die Freisetzungsraten von Schadstoffen in Abhängigkeit der Beanspruchung beschrieben. Als Modellmaterialien kommen die Polymere Polystyrol (PS) und Polypropylen (PP) zum Einsatz, die jeweils mit polybromierten Flammschutzmitteln (PBFSM) versehen sind. Synergistische Effekte der Bewitterungsparameter und der mikrobiologischen Beanspruchung sollen dabei ebenso betrachtet werden, wie die gezielte Alterung. Auch findet eine Beschreibung des Verhaltens der ausgetragenen Schadstoffe in den Umweltkompartimenten Boden oder Wasser statt. Hier sind mit Hilfe der zu entwickelnden Screening- und non-Target-Analyseverfahren die Transformation und der Metabolismus durch Mikroorganismen zu beschreiben. Auch soll mit Hilfe der RFA und der LA-ICP-MS die Abreicherung der PBFSM in den Modellmaterialien beschrieben werden. Aus den Ergebnissen sollen Korrelationen zwischen den künstlichen Alterungsverfahren und realen Szenarien abgeleitet werden. T2 - 47. Jahrestagung der GUS 2018 CY - Stutensee - Blankenloch, Germany DA - 21.03.2018 KW - Polypropylen KW - Polystyrol KW - Flammschutzmittel KW - XRF KW - LA-ICP-MS PY - 2018 AN - OPUS4-47024 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Usmani, Shirin T1 - Wood treated with nano metal fluorides - relations between composition, size, and durability N2 - In this study, nanoscopic particles of magnesium Fluoride (MgF2) and calcium fluoride (CaF2) also known as nano metal fluorides (NMFs), were evaluated for their potential to improve wood durability. Even though these fluorides are sparingly soluble, their synthesis in the form of nano-sized particles turns them into promising candidates for wood preservation. Their distinct property of low-water solubility is proposed to maintain long-lasting protection of treated wood by reducing the leaching of fluoride. Analytical methods were used to characterize the synthesized NMFs and their distribution in treated wood specimens. Transmission electron microscopy images showed that these fluoride particles are smaller than 10 nm. In nano metal fluoride (NMF) treated specimens, aggregates of these particles are uniformly distributed in the wood matrix as confirmed with scanning electron microscopy images and their corresponding energy-dispersive X-ray spectroscopy maps. The fluoride aggregates form a protective layer around the tracheid walls and block the bordered pits, thus reducing the possible flow path for water absorption into wood. This is reflected in the reduced swelling and increased hydrophobicity of wood treated with NMFs. The biocidal efficacy of NMFs was tested against brown-rot fungi (Coniophora puteanaand Rhodonia placenta), white-rot fungus (Trametes versicolor), and termites (Coptotermes formosanus). The fungal and termite tests were performed in accordance with the EN 113 (1996) and EN 117 (2012) standards, respectively. Prior to fungal tests, the NMF treated wood specimens were leached according to the EN 84 (1997)standard. Compared to untreated specimens, the NMF treated wood specimens have a higher resistance to decay caused by brown-rot fungi, white-rot fungus, and termites. Although all NMF treatments in wood reduce the mass loss caused by fungal decay, only the combined treatment of MgF2 and CaF2 has efficacy against both brown-rot fungi and white-rot fungus. Similarly, wood treated with the combined NMF formulation is the least susceptible to attack by C. formosanus.It is proposed that combining MgF2 and CaF2changes their overall solubility to promote the release of fluoride ions at the optimal concentration needed for biocidal efficacy against fungi and termites. In this thesis, it was proven that even after leaching, sufficient fluoride was present to protect NMF treated wood from fungal decay. This shows that NMFs are robust enough for above ground contact outdoor applications of wood, where permanent wetness cannot be avoided according to Use Class 3.2, as per the EN 335 (2013) standard. Also, they pose a low risk to human health and the environment because they are sparingly soluble. Since NMFs significantly reduce the decay of wood, the CO2 fixed in it will be retained for longer than in unpreserved wood. Overall, the novel results of this study show the potential of NMFs to increase the service life of building materials made from non-durable wood. KW - Termites KW - Nano metal fluorides KW - Solubility KW - Wood protection KW - Fungi PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525108 DO - https://doi.org/10.18452/22553 SP - i EP - 118 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-52510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan, Ina A1 - Gorbushina, Anna T1 - Pilze als Besiedler von Kulturgut: Wechselwirkungen mit Material erkennen und einschätzen N2 - Mikroskopische Pilze, die sich schnell auf verfügbaren Oberflächen ausbreiten können und die wir (wenn sie sich ansammeln), auch mit bloßem Auge erkennen können, werden Schimmelpilze genannt. Da diese Organismen verschiedene organische Kohlenstoffverbindungen als Nahrung benutzen, werden sie sich bei wachstumfördernden Feuchtigkeitsbedingungen in Bibliothekbeständen schnell ausbreiten können. Im Vortrag werden Haupteigenschaften aller Pilze, sowie auch aktuelle Methoden der Identifizierung dieser Organismen erörtert. Benutzung geeigneter Lebendkulturen als Referenzorganismen geben der Materialprüfung und -forschung eine Möglichkeit des reproduzierbaren Experimentierens mit verschiedenen Materialien und Simulation von Bedingungen im Gebrauch. Vorteile unserer Testverfahren sind: (i) Zeitraffung und Kontrollierbarkeit der Umweltparameter; (ii) Benutzung einer naturnahen Vergesellschaftung; iii) gezielte Variationen der Prüfbedingungen im Labor. Ziel dieser Untersuchungen ist einerseits biogene Schäden an neuen Materialien zu verfolgen und zu modellieren, und damit eine bessere Planungsgrundlage für die Materialentwicklung anzubieten. Andererseits werden mit den Referenzorganismen mikrobiologisch moderne und zeitraffende Techniken angeboten, die neue Behandlungsmethoden oder Pflegeverfahren für die Bestandserhaltung erwarten lassen. T2 - 8. Tag der Bestandserhaltung CY - Freie Universität Berlin, Berlin, Germany DA - 27.09.2018 KW - Kulturgut KW - Pilz KW - Schimmel KW - Bestandserhaltung PY - 2018 AN - OPUS4-46293 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja A1 - Gorbushina, Anna A1 - Plarre, Rüdiger A1 - Stephan, Ina T1 - Umweltsimulation an der BAM – Grundlegende Ansätze mit Beispielen aus der natürlichen Umwelt N2 - Drei grundlegend verschiedene Ansätze für Umweltsimulation werden an Beispielen illustriert: (i) Ganzheitlicher Ansatz - Nachstellen von Umweltmilieus im Labor Ziel ist hier das Nachstellen von (kombinierten) Umweltbedingungen im Labor; die Umweltparameter werden mit all ihren Wechselwirkungen aufgebracht. Hauptnutzen ist eine gegenüber der natürlichen Beanspruchung erhöhte Reproduzierbarkeit der Umweltbedingungen. Hat man sein Laborsetup entwickelt, ist es auf verschiedene Materialien anwendbar. Unter solchen Laborbedingungen ermittelte Lebensdauern sind dabei nicht auf die typischerweise sehr variablen Real-Umweltbedingungen übertragbar. (ii) Parametrisierter Ansatz - Ermittlung einzelner Materialempfindlichkeiten Hierbei werden im Labor die Wirkungen separater Umweltparameter auf Materialien nachgestellt. Für eine solche Separation der Einflussfaktoren ist insbesondere die Aufschlüsselung möglicher Wechselwirkungen der Umwelt-parameter (z.B. Mikroklima an bestrahlten Oberflächen) erforderlich. Einzelne (meist Alterungs-) Empfindlichkeiten können qualitativ nachgewiesen werden oder sogar – als Beanspruchungs-Wirkungs-Funktionen – quantifiziert werden, was einen wesentlichen Schritt in Richtung der Digitalisierung der Material¬prüfung darstellt. Insbesondere ist dann auch eine Lebensdauer-vorhersage für vorgegebene Zeitreihen der Beanspruchungs¬parameter umsetzbar. (iii) Rückwirkungen auf die Umwelt Umweltbeanspruchungen können zur Freisetzung von Schadstoffen in die Umwelt führen. Durch die Nachstellung kritischer, aber realitätsnaher Einsatzszenarien kann die Menge an freigesetzten Substanzen abgeschätzt werden. Egal, welcher Ansatz verfolgt wird – ein Vergleich mit der oder einer Real-beanspruchung ist unerlässlich, ebenso wie die Messdatenaufzeichnung (data logging) aller potenziell relevanten Beanspruchungsparameter während dieser Realbeanspruchung. Obwohl die naturnahe Umwelt – sowohl in der BAM als auch bei der GUS – gegenüber der technischen Umwelt eher untergeordnet auftritt, werden zur Illustration Beispiele aus der naturnahen Umwelt verwendet. T2 - 50. Jahrestagung der GUS CY - Online meeting DA - 23.03.2022 KW - Umweltsimulation PY - 2022 SN - 978-3-9818507-7-2 SP - 79 EP - 89 AN - OPUS4-55015 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Barkeshli, M. A1 - Stephan, Ina ED - Barkeshli, M. ED - Arya, A. ED - Nath, V. ED - Abduraheem, K. T1 - Sizing materials used in Persian manuscripts and their behaviour against the mould fungus Aspergillus flavus N2 - Our earlier study based on historical and scientific analysis showed that Iranians used a considerable range of materials in the sizing process. Unlike many nations who used limited sizing materials to improve the mechanical strength and to smoothen the paper surface, Iranians have used various materials for sizing process from Taimurid (15th century) to Safawid (16th century) and Qajar (19th century) periods. Further to our earlier study on the Sizing Materials used in Persian manuscripts and miniature paintings, scientific analysis was carried out to investigate their behaviour against the mould fungus Aspergillus flavus. In the first stage fourteen different sizing materials that was identified from Persian historical recipes were reconstructed. In the second stage fungicidal property of each sizing samples against Aspergillus flavus fungus were identified that will be presented in this paper. KW - Sizing KW - Materials KW - Persian manuscripts KW - Deterioration KW - Fungus KW - Aspergillus flavus PY - 2023 SN - 978-93-5461-714-0 SP - 3 EP - 20 PB - Daya Publishing House CY - New Delhi AN - OPUS4-58102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides – An update N2 - This presentation describes the development of a laboratory method to assess resistance development of microorganisms to biocides and antimicrobial surfaces. T2 - The International Biodeterioration Research Group (IBRG) autumn meeting 2022 CY - Online meeting DA - 11.10.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Schmidt, Selina A1 - Boenke, V. A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides – An update N2 - This presentation describes our efforts at BAM towards the development of a laboratory method to assess resistance development of microorganisms to biocides. T2 - The International Biodeterioration Research Group (IBRG) spring meeting 2023 CY - Online meeting DA - 05.03.2023 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-57858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides N2 - Bacteria are exposed to biocides through surface disinfection or by antimicrobial surfaces. These stressful environments provide a strong selective pressure for bacteria to adapt. Here, we describe the development of a laboratory method to assess adaption of bacteria by resistance development in response to surface disinfection and antimicrobial surfaces. T2 - The International Biodeterioration Research Group (IBRG) Spring Meeting 2021 CY - Online meeting DA - 28.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization PY - 2021 AN - OPUS4-53164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides N2 - Bacteria are exposed to biocides through surface disinfection or by antimicrobial surfaces. These stressful environments provide a strong selective pressure for bacteria to adapt. Here, we describe the development of a laboratory method to assess adaption of bacteria by resistance development in response to surface disinfection and antimicrobial surfaces. T2 - OECD, 5th Meeting of the Working Party on Biocides CY - Online meeting DA - 26.05.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization PY - 2021 AN - OPUS4-53163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barkeshli, Mandana A1 - Stephan, Ina A1 - Shevchuk, Ivan A1 - Soltani, Mojtaba T1 - Characteristics of Sizing Materials Used in Persian Medieval Manuscripts: Physical, Optical, Spectral Imaging, and Fungicidal Properties N2 - In this study, we investigated the diverse range of materials used for sizing in Iranian paper manuscripts during the Timurid (fifteenth century) to Safavid (sixteenth century) and Qajar (nineteenth century) periods. Our approach combined historical analysis with scientific examination of reconstructed sizings. We reconstructed 15 sizing materials based on identified Persian historical recipes and analysed their physical, optical, and spectral characteristics. Additionally, we assessed their behaviour against the mould fungus Aspergillus flavus. The results revealed distinctive properties for each sizing material, shedding light on their potential applications in paper preservation. Furthermore, our investigation demonstrated variations in hygroscopicity, thickness, grammage, and ash content post-sizing. The sizing materials also exhibited different effects on paper reflectance properties. Additionally, our study revealed insights into the impact of sizing on burnished papers, indicating that the mechanical process of burnishing did not significantly alter the chemical composition or spectral properties of the paper, with only minor changes in brightness observed in specific cases. All tested sizing materials supported varying levels of mould growth, indicating potential implications for paper conservation. Our findings provide valuable insights into the historical practices of Iranian paper sizing and offer practical considerations for the preservation of paper manuscripts. KW - Paper sizings KW - Persian historical recipes KW - Physical and optical characteristics KW - Fungicidal property KW - Spectral imaging PY - 2024 DO - https://doi.org/10.1080/00393630.2024.2342647 SP - 1 EP - 18 PB - Informa UK Limited AN - OPUS4-60159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Stephan, Ina A1 - Boenke, Viola A1 - Drecker, Sigrid T1 - Weiterentwicklung und Verbesserung des Konzeptes zur Begrenzung von Konservierungsmitteln für Produkte mit dem Blauen Engel N2 - Im Rahmen des Forschungsvorhabens wurde die biologische Prüfmethode der Checkliste zur stoffli-chen Bewertung im Rahmen des Aufnahmeverfahrens für weitere Topfkonservierungsmittel in den Anhang 1 zur Vergabegrundlage RAL-UZ102 „Emissionsarme Innenwandfarben“ überarbeitet. Der Test für den Einsatz von Konservierungsmitteln in seiner jetzigen Fassung besteht seit nahezu 20 Jah-ren und erfolgt ausschließlich an weißer Dispersionsfarbe für den Innenraum. Die hierbei ermittelten Höchstmengen für den Einsatz von Topfkonservierern werden z.Zt. auch auf andere Innenraumbau-produkte übertragen. Ziel war es zu klären, ob die Anforderungen an die Topfkonservierung bei Far-ben tatsächlich für andere Innenraumbauprodukte übernommen werden können. Die im Vorhaben durchgeführten Versuche deuten darauf hin, dass dies nicht ohne weiteres möglich ist. Nach Rückspra-che mit Vertretern aus der Industrie wurde das Keimspektrum für die Prüfung zudem um Hefe- und Schimmelpilze erweitert. Des Weiteren wurde eine künstliche Alterung eingeführt und überprüft, ob dies einen Einfluss auf den Gehalt an Isothiazolinonen hat. Die Konzentration von Isothialzolinonen wurde mittels Ultra-Hochleistungsflüssigkeitschromatographie kontrolliert und hinsichtlich einer Kor-relation mit dem Wachstum von Mikroorganismen ausgewertet. Da die in den Innenraumbauproduk-ten zugesetzten Isothiazolinone als Kontaktallergene bekannt sind, ist es ein Ziel des „Blauen Engel“-Umweltzeichens, die geringste erforderliche Menge an Konservierungsmittel in den Produkten zu ver-wenden, ohne die positive Auswirkung der Topfkonservierung zu gefährden. Daher sind die Optimie-rung der Leistungsstärke von Konservierungsmitteln und die Kontrolle der Hygiene im Herstellungs-prozess von zunehmender Bedeutung. Um Einblicke in den Herstellungsprozess von Farben zu gewin-nen, wurden im Rahmen des Vorhabens vier Farbwerke besichtigt, in denen weiße Innenraumfarben produziert werden, die mit dem Umweltzeichen „Blauer Engel“ ausgezeichnet sind. Gemeinsam mit den Fachleuten vor Ort wurde diskutiert, welche Maßnahmen zur Verbesserung der Werkshygiene er-griffen werden können, um den Einsatz von Topfkonservierern möglichst gering zu halten. Des Weite-ren wurde in dem Forschungsvorhaben untersucht, ob eine schnellere Bestimmung der Keimzahl in den Rohstoffen mittels quantitativer Polymerasekettenreaktion bereits im Farbwerk realisierbar ist. KW - Methode KW - Isothiazolinone KW - Gebindekonservierung KW - Bakterien KW - Schimmel KW - Wirksamkeit KW - Biozide PY - 2020 SN - 1862-4804 VL - 54 SP - 4 EP - 149 PB - Umweltbundesamt CY - Dessau AN - OPUS4-50972 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank A1 - Boenke, Viola A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Sündermann, Claudia T1 - Bacterial resistance evolution towards disinfectants and antimicrobial surfaces and development of a standardized test N2 - Question Disinfectants and antimicrobial surfaces (AMCs) are important tools to prevent the spread of pathogens and antimicrobial resistant bacteria. However, concerns have been raised about the possibility for the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance - a single mechanism conferring resistance to a disinfectant and an antibiotic- and co-resistance - two distinct mechanisms physically linked on e.g. a plasmid. The risk for resistance and cross-resistance during use of biocides (including disinfectants and AMCs) must be evaluated during authorization according to the EU biocidal product regulation. However, to date there is a lack of standardized methods that support risk assessment during the authorization process. Methods We used adaptive laboratory evolution (ALE) experiments which are based on repeated exposure of bacteria to disinfectants or AMCs. The experiments are followed by phenotypic (antimicrobial susceptibility testing) and genotypic (whole genome sequencing) characterization of the evolved strains. The basic idea of these experiments is to expose bacteria to lethal conditions and select for mutants with increased survival. This approach is fundamentally different to other ALE experiments, which commonly select for increased growth at subinhibitory concentrations. However, selection for increased survival represents a selective pressure that more realistically reflects selection under in-use conditions of disinfectants and AMCs. Results First, we studied adaptation of E. coli during repeated disinfection with benzalkonium chloride in a suspension assay. The experiments showed a 2000-fold increase in survival within 5 exposure cycles. The adaptive changes are linked to highly parallel mutations in genes related to lipid A biosynthesis, less negative cell surface charge, reduced growth rate and increased competitive ability in the presence of certain antibiotics. We use the same approach to develop standardizable ALE experiments based upon accepted standards that are used to determine the efficacy of disinfectants (EN 13697) and antimicrobial surfaces (ISO 22196). The results highlight pronounced adaptation of different test strains towards surface disinfection (benzalkonium chloride and isopropanol) and AMCs (copper). Conclusion Bacteria can adapt with increased survival towards lethal stress imposed by disinfectants and AMCs. The adaptive ability of bacteria to disinfectants and AMCs can be determined in a standardized manner. T2 - 74. Jahrestagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie [DGHM] e. V. CY - Berlin, Germany DA - 05.09.2022 KW - Antimicrobial surfaces KW - ISO22196 KW - Antimicrobial resistance KW - Round robin test PY - 2022 AN - OPUS4-56432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Background: One cornerstone to prevent the spread of antibiotic resistant bacteria in clinical settings is the application of disinfectants. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Objectives: Our objective is to investigate if persistence is a bacterial survival strategy against disinfectants. Furthermore, we investigate the mechanisms of disinfectant persistence and if persistence can evolve in the face of fluctuating exposure to disinfectants. Lastly, we test if the evolved mechanisms of disinfectant tolerance lead to disinfectant resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of disinfectants and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against disinfectants. In addition, we will present data from an ongoing evolution experiment for persistence against disinfectants. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank A1 - Kanaris, Orestis T1 - Consequences of BAC tolerance for selection and evolution in the presence of antibiotics N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance. Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work at BAM we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Within our group, I mainly focus on the following two questions: How does phenotypic heterogeneity in bacteria affect the ability to survive treatment with biocides? And what are the consequences of phenotypic heterogeneity for the evolution of resistance to biocides and antibiotics? I will share published and unpublished results which demonstrate that phenotypic heterogeneity can enable the survival of biocide treatment and, through this, facilitate the evolution of AMR. On the other hand, we find that adaptation to a biocide can unexpectedly impair the ability to evolve resistance against an antibiotic. T2 - FEMS summer school for postdocs 2022: Microbial Evolvability Mechanisms: Resistance, Biology, and Strategies to Defeat and Detect CY - Split, Croatia DA - 27.04.2022 KW - Disinfection KW - Biocides KW - Evolution KW - Resistance KW - Biocide tolerance PY - 2022 AN - OPUS4-54846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Pietsch, Franziska A1 - Heidrich, Gabriele A1 - Ciok, Michal T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - ASM-FEMS World Microbe Forum CY - Online meeting DA - 20.06.2021 KW - Antimicrobial resistance KW - Antagonism KW - Biofilms PY - 2021 AN - OPUS4-53165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Gustiherdini, Cahyaruri A1 - Lewerenz, Dominique A1 - Kanaris, Orestis A1 - Schreiber, Frank T1 - The disinfectant glutaraldehyde induces antibiotic tolerance N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Gordon Research Conference - Molecular Mechanisms in Evolution CY - Easton, Massachusetts, United States DA - 25.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics PY - 2023 AN - OPUS4-58033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Consequences of benzalkonium chloride tolerance in Escherichia coli: Effects on selection and evolution in the presence of ciprofloxacin N2 - We investigated the selection dynamics between a benzalkonium chloride (BAC)-tolerant Escherichia coli strain (S4) and a sensitive wild type under four conditions: in the absence of antibiotics and in the presence of three different sub-inhibitory concentrations of the antibiotic ciprofloxacin in liquid cultures. The wild type was selected over the BAC-tolerant strain in the absence of antibiotics, while the opposite was observed at all ciprofloxacin concentrations investigated.Furthermore, we assessed the evolvability of resistance of the two strains to inhibitory concentrations of ciprofloxacin by performing a serial dilution evolution experiment with gradually increasing ciprofloxacin concentrations. The wild type had a higher probability to develop resistance to ciprofloxacin than the tolerant strain. By the end of the evolution experiment both strains evolved to grow at the highest ciprofloxacin concentration investigated, which was 2048 ×MIC of the wild type. T2 - 6th international symposium on the environmental dimention of antibiotic resistance-EDAR 6 CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Tolerance KW - Experimental evolution KW - Selection PY - 2022 AN - OPUS4-56808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by phenotypic heterogeneity and transcriptome remodeling N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - µClub Seminar Series CY - Berlin, Germany DA - 26.05.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity PY - 2023 AN - OPUS4-58031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braymer, Joseph J. A1 - Stehling, Oliver A1 - Stümpfig, Martin A1 - Rösser, Ralf A1 - Spantgar, Farah A1 - Blinn, Catharina M. A1 - Mühlenhoff, Ulrich A1 - Pierik, Antonio J. A1 - Lill, Roland T1 - Requirements for the biogenesis of [2Fe-2S] proteins in the human and yeast cytosol N2 - The biogenesis of iron–sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic–nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation. KW - Biokorrosion KW - Hydrogenasen KW - Microbially Induced Corrosion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602328 DO - https://doi.org/10.1073/pnas.2400740121 VL - 121 IS - 21 SP - 1 EP - 12 PB - Proceedings of the National Academy of Sciences CY - Washington D.C. AN - OPUS4-60232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Question: One cornerstone to prevent the spread of bacteria in clinical and industrial settings is the application of biocides including disinfectants and preservatives. However, bacteria can evolve resistance to biocides, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Our objective is to investigate if persistence is a bacterial survival strategy against biocides. Furthermore, we investigate the mechanisms of biocide persistence and if persistence can evolve in the face of fluctuating exposure to biocides. Lastly, we test if the evolved mechanisms of biocide tolerance lead to biocide resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of biocides and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against biocides. In addition, we will present data from an ongoing evolution experiment for persistence against biocides. Conclusion There is a link between antibiotic and biocide persistence with possible implications for antibiotic resistance evolution and spread. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance - EDAR 2019 CY - Hong Kong, China DA - 09.06.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - Time-kill kinetics reveal heterogeneous tolerance to disinfectants N2 - Background. Disinfection is an important mitigation strategy to control and prevent the spread of infections. Incomplete or incorrect usage of disinfection may promote evolution of resistance against disinfectants and antibiotics. Ideally, disinfection reduces the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Objective. In this study, we investigated six active substances of disinfectants, preservatives, and antiseptics against a population of E. coli to identify the presence of a tolerant subpopulation. Methods. We performed time-kill experiments and analyzed the data with a mathematical model to statistically infer whether the data is best explained by the presence of a tolerant subpopulation. Results. The analysis identified bimodal kill kinetics for benzalkonium chloride, didecyldimethylammonium chloride, and isopropanol. In contrast, kill kinetics by chlorhexidine, glutaraldehyde, and hydrogen peroxide were best explained by unimodal kill kinetics. These findings have implications for the risk of disinfection failure. In addition, we are currently performing adaptive laboratory evolution (ALE) experiments with the different disinfectants to investigate the potential consequences of tolerant sub-populations for the evolution of antimicrobial resistance and tolerance. T2 - Vereinigung Allgemeiner und Angewandter Mikrobiobiologie Jahreskongress 2023 CY - Göttingen, Germany DA - 10.09.2023 KW - Biocide KW - Desinfectant KW - E.coli PY - 2023 AN - OPUS4-58470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - Time-kill kinetics reveal heterogeneous tolerance to disinfectants N2 - Background. Disinfection is an important mitigation strategy to control and prevent the spread of infections. Incomplete or incorrect usage of disinfection may promote evolution of resistance against disinfectants and antibiotics. Ideally, disinfection reduces the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Objective. In this study, we investigated six active substances of disinfectants, preservatives, and antiseptics against a population of E. coli to identify the presence of a tolerant subpopulation. Methods. We performed time-kill experiments and analyzed the data with a mathematical model to statistically infer whether the data is best explained by the presence of a tolerant subpopulation. Results. The analysis identified bimodal kill kinetics for benzalkonium chloride, didecyldimethylammonium chloride, and isopropanol. In contrast, kill kinetics by chlorhexidine, glutaraldehyde, and hydrogen peroxide were best explained by unimodal kill kinetics. These findings have implications for the risk of disinfection failure. In addition, we are currently performing adaptive laboratory evolution (ALE) experiments with the different disinfectants to investigate the potential consequences of tolerant sub-populations for the evolution of antimicrobial resistance and tolerance. T2 - FEMS Conference CY - Hamburg, Germany DA - 10.07.2023 KW - Biocide KW - Desinfectant KW - E.coli PY - 2023 AN - OPUS4-58471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Kanaris, Orestis A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Effect of biocides on the evolution and spread of resistance N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials [1]. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR [2,3]. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - RokoCon2022 CY - Berlin, Germany DA - 29.09.2022 KW - Biocide KW - Antimicrobial resistance KW - Tolerance KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-56431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - New Approaches and Concepts in Microbiology CY - Online meeting DA - 07.07.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by a Disrupted Cellular State and Heterogenous Regrowth Dynamics N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Molecular Mechanisms in Evolution (GRS) Gordon Research Seminar CY - Easton, Massachusetts, USA DA - 24.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics KW - AMR PY - 2023 AN - OPUS4-58032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Phenotypic and evolutionary responses of bacteria to disinfection N2 - Disinfectants are important to prevent the transmission of pathogens, especially in the face of the current antibiotic resistance crisis. The crisis is further exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfectant application, persistence to disinfectants and its role for the evolution of tolerance and cross-resistance to antibiotics has not been studied. Our work shows that E. coli displays persistence against several widely used disinfectants, including benzalkonium chloride (BAC), didecyldimethylammoniumchlorid (DDAC) and isopropanol. The molecular mechanism of BAC persistence is triggered in stationary phase and affected by several antibiotic persister genes (hipA, tisB, tolC, relA, spoT). Experimental evolution and population dynamic modeling show that repeated failure of disinfection due to persisters rapidly selects for BAC tolerance underpinned by reduced cell surface charge due to mutations in genes related to lipid A acylation (lpxML). Furthermore, evolved BAC tolerance affects the susceptibility to antibiotics, leading to positive selection of disinfectant tolerant strains at environmentally relevant antibiotic concentrations and variations in evolvability of antibiotic resistance due to epistatic effects. These results highlight the need for faithful application of disinfectants to steward their efficacy and the efficacy of antibiotics. A better understanding of the bacterial response to disinfectants is crucial to understand and avert the ongoing antimicrobial resistance crisis. T2 - Gordon Research Conference - Molecular mechanisms of evolution CY - Easton, MA, United States DA - 25.06.2023 KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2023 AN - OPUS4-57861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Heterogeneity in the bacterial response to disinfection and its impact on antibiotic tolerance and resistance N2 - The global rise of antibiotic resistance has made the proper use of disinfectants more important than ever. Their application in clinical l settings is an integral part of antibiotics stewardship by preventing the occurrence and spread of infections. However, improper use of disinfectants also harbours the risk for the evolution of tolerance and resistance to disinfectants, but also to antibiotics. It is therefore crucial to understand whether and how bacteria can survive chemical disinfection and which conditions facilitate the evolution of tolerance and resistance. Here, we study the heterogeneity in the response of isogenic E. coli populations exposed to different levels of commonly used disinfectants. At concentrations below the minimal inhibitory concentration (MIC), we find that certain disinfectants induce prolonged lag times in individual cells, a phenotype that has been associated with persistence against antibiotics. At concentrations above the MIC, we find heterogeneous killing for a range of the tested substances. Interestingly, for the three cationic surfactants that were tested, we find kill kinetics revealing the presence of a tolerant subpopulation that can withstand disinfection longer than most of the population. We will present results from an ongoing evolution experiment in which we test the potential for evolution of population-wide tolerance and resistance through intermittent exposure to lethal doses of a cationic surfactant. T2 - New Approaches and Concepts in Microbiology CY - Heidelberg, Germany DA - 10.07.2019 KW - Persistence KW - Biocides KW - Resistance KW - heterogeneity KW - Bacteria PY - 2019 AN - OPUS4-48524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Phenotypic heterogeneity in disinfection: sources and consequences for antimicrobial resistance N2 - A summary of projects here at BAM which investigate the influence of phenotypic heterogeneity on the outcome of disinfection and the influence on antimicrobial resistance. This presentation was given in the Theory Seminar of the Quantitative and Theoretical Biology group of Prof. Oliver Ebenhöh at HHU Düsseldorf T2 - Theory Seminar in the Quantitative and Theoretical Biology group at HHU Düsseldorf CY - Düsseldorf, Germany DA - 24.02.2022 KW - Disinfection KW - Biocides KW - Heterogeneity KW - Resistance PY - 2022 AN - OPUS4-54442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Broska, Selina A1 - Schreiber, Frank T1 - Persistence as a microbial survival strategy against disinfectants N2 - Antimicrobial resistance is a major threat to human health. The prevalence of multi-drug resistant (MDR) bacteria is predicted to increase in the future requiring robust control strategies. One cornerstone to prevent the spread of MDR bacteria in clinical settings is the application of disinfectants to improve hygiene standards. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than the majority of the population. Our results in E. coli indicate that persistence is a bacterial survival strategy against benzalkonium chloride, a widely used disinfectant. In future experiments, we will investigate the evolution of persistence in the face of fluctuating exposure to disinfectants and whether persistence facilitates resistance against disinfectants. Lastly, we will test how tolerance and resistance against disinfectants affects susceptibility against antibiotics. T2 - Bridging Ecology and Molecular Biology: Organismic Responses to Recurring Stress CY - Berlin, Germany DA - 09.04.2018 KW - Bacteria KW - Persistence KW - Resistance KW - Biocides PY - 2018 AN - OPUS4-44667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina B. I. A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance (AMR). Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Here, I present results which demonstrate that phenotypic heterogeneity in E. coli, namely the formation of tolerant persister cells, can enable the survival of disinfection and consequentially facilitate the evolution of AMR. Using experimental evolution that selects for tolerance, we find that mutations in lipid A biosynthesis arise following periodic treatment with benzalkonium chloride (BAC), a widely used disinfectant. BAC tolerance is associated with additional, diverse mutations as well as changes in the susceptibility to antibiotics from different classes and changes in motility and biofilm formation, suggesting extensive regulatory re-wiring in the evolved clones. Remarkably, we find that fitness costs (growth rate reduction) incurred by BAC tolerance are alleviated in the presence of antibiotics. These findings demonstrate the complexity underlying the adaptation to antimicrobials and highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. T2 - Bacterial Networks (BacNet22) CY - Sant Feliu de Guixols, Spanien DA - 04.09.2022 KW - Persistence KW - Biocides KW - evolution KW - disinfection KW - biocide tolerance PY - 2022 AN - OPUS4-55713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Lewerenz, Dominique A1 - Gödt, Annett A1 - Schreiber, Frank T1 - Evolutionary implications of heterogeneous disinfectant tolerance N2 - Introduction: Effective disinfection is crucial to maintain hygiene and to prevent the spread of infections. Phenotypic heterogeneity in disinfection survival (i.e. tolerance) may result in failure of disinfection, which in turn may foster the evolution of resistance to both disinfectants and antibiotics. However, the consequences of phenotypic heterogeneity for disinfection outcome and resistance evolution are not well understood. Goal: This study investigates the impact of phenotypic heterogeneity on the survival and evolution of Escherichia coli during disinfection with six commonly used substances. Furthermore, the consequences of evolved disinfectant tolerance for antibiotic resistance evolution are studied. Materials & Methods: The extent of population heterogeneity during disinfection is derived by determining time-kill kinetics and analysis with mathematical modelling. The link between population heterogeneity and evolvability of disinfectant tolerance was assessed by laboratory evolution experiments under periodic disinfection. The ability of disinfectant tolerant strains to evolve antibiotic resistance is assessed by serial transfer experiments with increasing concentrations of different antibiotics and by whole genome sequencing. Results: Multi-modal time-kill kinetics in three of the six disinfectants suggest the presence of disinfectant-tolerant subpopulations (i.e. persister cells). Importantly, the ability and extent to evolve population-wide tolerance under periodic disinfection is related with the presence of persister cells and the level of phenotypic heterogeneity during disinfection. Interestingly, the probability of high-level resistance evolution to certain antibiotics is attenuated in disinfectant tolerant strains as compared to the sensitive ancestor. Whole-genome sequencing reveals epistatic interactions between disinfectant tolerance and antibiotic resistance mutations, preventing access to canonical evolutionary paths to resistance. Summary: Our findings suggest that phenotypic heterogeneity can facilitate disinfection survival and the evolution of population wide tolerance, which can impact future antibiotic resistance evolution. T2 - Vereinigung Allgemeiner und Angewandter Mikrobiobiologie Jahreskongress 2023 CY - Würzburg, Germany DA - 02.06.2024 KW - Biocide KW - Resistance KW - Persistence KW - Evolution KW - Herteogeneous phenotypes PY - 2024 AN - OPUS4-60244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - EVOCIDE: Preserving disinfectant efficacy by predicting evolution: exposing the principles of disinfectant survival and adaptation in bacteria N2 - Presentation of the EVOCIDE research proposal work programme.EVOCIDE seeks to gain a systems level understanding of disinfectant survival and evolution in bacteria. T2 - Joint Group Seminar Rolff-McMahon-Armitage-Steiner CY - Berlin, Germany DA - 20.12.2023 KW - Disinfectants KW - Evolution KW - Microbiology KW - Bacteria KW - Biocides PY - 2023 AN - OPUS4-59224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Heterogeneous tolerance to biocides and its consequences for the evolution of antimicrobial resistance N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance (AMR). Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Here, I present results which demonstrate that phenotypic heterogeneity in E. coli, namely the formation of tolerant persister cells, can enable the survival of disinfection and consequentially facilitate the evolution of AMR. Using experimental evolution that selects for tolerance, we find that mutations in lipid A biosynthesis arise following periodic treatment with benzalkonium chloride (BAC), a widely used disinfectant. BAC tolerance is associated with additional, diverse mutations as well as changes in the susceptibility to antibiotics from different classes and changes in motility and biofilm formation, suggesting extensive regulatory re-wiring in the evolved clones. Remarkably, we find that fitness costs (growth rate reduction) incurred by BAC tolerance are alleviated in the presence of antibiotics. These findings demonstrate the complexity underlying the adaptation to antimicrobials and highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. T2 - 4th VAAM discussion meeting 'Microbial Cell Biology' CY - Berlin, Germany DA - 09.10.2022 KW - Persistence KW - Biocides KW - Evolution KW - Disinfection KW - Biocide tolerance KW - Heterogeneity PY - 2022 AN - OPUS4-55958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank A1 - Kanaris, Orestis A1 - Schmidt, Selina T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - World Microbe Forum (ASM, FEMS) CY - Online meeting DA - 20.06.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -