TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Hamann, Sven A1 - Weyer, Rüdiger A1 - Kalbe, Ute T1 - Assessment of Microplastic Emissions from Artificial Turf Sports Pitches N2 - Following the recommendation of the European Chemicals Agency, on 25 September 2023 the European Commission passed a comprehensive new regulation to reduce emissions of microplastics (MP) into the environment, which includes the sale and use of intentionally added MP.1,2 This also applies to the application of synthetic rubber granulate infill in artificial turf systems and will ultimately have an impact on recreational sports. In Germany, rubber granulate made of ethylene-propylene-diene-monomer rubber (EPDM) is currently predominantly used. So far, there is no sufficient database for estimating MP emissions from artificial turf pitches into the environment and thus their relevance as a source of MP pollution.3 This topic is controversially discussed due to the complexity of sampling and analytics. To close this research gap, this project has the goal to determine mass balances for the emissions of MP from artificial turf pitches to allow an estimation of the amount of MP released per artificial turf pitch and year. Within this study, MP emissions of three artificial turf scenarios at different time states (unaged, artificially aged and real-time aged) are compared: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Europe: fossil based, EPDM infill), and the future (turf with recycled gras fibres, no synthetic infill). To simulate the outdoor weathering during the lifespan of an artificial turf of approx. 15 years, brand-new artificial turf and EPDM rubber granulate were accelerated aged by means of UV weathering and mechanical stress. Potential MP emissions into surface and groundwater are simulated by lysimeter and shake experiments. MP mass contents are subsequently determined by Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry. Using special microfilter crucibles allows the estimation of the particle sizes of the emitted MP, which is a fundamental requirement for an assessment of potential health hazards for humans. T2 - SETAC 2024 CY - Seville, Spain DA - 05.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Lysimeter KW - PAK KW - Schwermetalle PY - 2024 AN - OPUS4-60014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Eileen A. A1 - Brandhorst, Antonia K. M. A1 - Gorbushina, Anna A. A1 - Schumacher, Julia T1 - The Tet‑on system for controllable gene expression in the rock‑inhabiting black fungus Knufia petricola N2 - Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis(melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes. KW - Microcolonial fungi KW - Inducible promoter KW - Bimolecular fluorescence complementation KW - 2A peptide KW - CRISPR/ Cas9-mediated genome editing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607672 DO - https://doi.org/10.1007/s00792-024-01354-2 VL - 28 IS - 38 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-60767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A. A1 - Erdmann, Eileen A. A1 - Gerrits, Ruben A1 - Schumacher, Julia T1 - From rocks to riches: Knufia petricola as model and expression platform N2 - Black fungi belong to different classes of Ascomycota but evolved similar morpho-physiological adaptations such as yeast-like growth and constitutive melanin formation to colonize extreme competition-free environments. They are ubiquitously found on air-exposed surfaces, from ancient marble monuments to modern solar panels. The rock inhabitant Knufia petricola was chosen to become a model for these extremotolerant black fungi. Plasmid-based and ribonucleoprotein-based CRISPR/Cas9 techniques were introduced to precisely introduce one to multiple double strand breaks into the DNA to modify, replace or add sequences to the genome either using the available selection marker systems (hygR, natR, genR, baR, suR) or by marker-free approaches. Multiplexing is very efficient, allowing for four or more simultaneous genome editing events. The newly generated cloning vectors containing the Tet on construct for doxycycline-controlled gene expression, and the validated sites in the K. petricola genome for color-selectable (pks1, phs1, ade2) or neutral insertion (igr1 to 5) of expression constructs complete the reverse genetics toolbox. One or multiple endogenous or heterologous genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides. We thus can express genes from synthetic clusters in a non-pigmented background (Δpks1/Δphs1). The fact that K. petricola only produces few secondary metabolites (DHN melanin, carotenoids, mycosporines and a siderophore) and plant cell-wall degrading enzymes but is capable to take the burden of acetyl-CoA-consuming metabolism and protein secretion renders K. petricola a promising host for the expression of heterologous genes encoding high-end secondary metabolites and enzymes. T2 - 12th International Mycological Congress (IMC12) CY - Maastricht, Netherlands DA - 11.08.2024 KW - Fungus KW - Genetic engineering KW - Heterologous gene expression KW - Cell factory PY - 2024 AN - OPUS4-60838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -