TY - CONF A1 - Schreiber, Frank T1 - Dr. Frank Schreiber and Work on Biocide Resistance at BAM N2 - This talk details the career path of Dr. Frank Schreiber and his work on biocide resistance at BAM. Biocides are antimicrobial products for defined applications (disinfectants, preservatives, pest control). Biocides show heterogeneous killing facilitating resistance/tolerance evolution. Adaptation to biocides has effects on growth and selection. T2 - Vortrag an der Berliner Hochschule für Technik CY - Berlin, Gemany DA - 07.06.2024 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2024 AN - OPUS4-61543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides as drivers for the evolution and selection of antimicrobial resistance N2 - This presentation provides an overview about how biocides drive the evolution of antimicrobial resistance during application and as pollutants in the environment. The presentation shows that biocides can lead to heterogeneous killing, facilitating tolerance evolution. This evolution is related to decreased susceptibility to antibiotics and has potential for co-selection. In contrast, evolved tolerance can limit antibiotic evolvability via epistatic interactions. Moreover, biocides can co-select for antibiotic resistance in wastewater and affect rates of mutation and horizontal gene transfer. Biocides and antibiotics show strong combination effects with consequences for selection of antibiotic resistance. T2 - 12. Dresdner Wasserseminar ' Wasser und Verunreinigung' CY - Dresden, Germany DA - 26.06.2025 KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance KW - Standardization PY - 2025 AN - OPUS4-64868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Beyond Antibiotics – Biocides as Drivers of Environmental AMR N2 - This presentation provides an overview about how biocides drive the evolution of antimicrobial resistance during application and as pollutants in the environment. It also discusses the contribution of biocides for the environmental transmission of AMR. T2 - OneBridge: Making environmental AMR Surveillance Fit for Purpose: Data Integration and the Ecology of Resistance CY - Dresden, Germany DA - 06.10.205 KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance KW - Standardization PY - 2025 AN - OPUS4-64872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - This presentation describes our work at BAM on resistance evolution towards biocides and antimicrobial surfaces. T2 - Break biofilms workshop CY - Vienna, Austria DA - 16.01.2023 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides PY - 2023 AN - OPUS4-57857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). In adaptive laboratory evolution experiments we cultured selected model soil microorganism with representative biocides under selection regimes with increasing and stable biocide concentrations followed by antibiotic and biocide cross-resistance determination. Moreover, we investigate if the selected biocides affect the rates of de novo mutations and HGT of plasmids that carry resistance genes among soil microorganism. Our results show only small increases of biocide resistance during serial transfers under increasing biocide concentrations. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, our results indicate that a stable low-level biocide regime did not select for high level cross-resistance to antibiotics and other biocides. Moreover, material preservatives affected the rates of HGT via conjugation and the mutation rates at sub-inhibitory concentrations. The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 4th Evo Eco PhD Meeting CY - Lutherstadt Wittenberg DA - 04.03.2020 KW - Microbiology KW - Biocides KW - Horizontal gene transfer HGT KW - Resistance evolution KW - Antimicrobial resistance PY - 2020 AN - OPUS4-51313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide resistance risk assessment N2 - This presentation details the current status of biocide resistance risk assessment. T2 - Risk assessment of biocide and antibiotic resistance CY - Online meeting DA - 09.03.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 UR - https://www.gu.se/en/biocide/risk-assessment-of-biocide-and-antibiotic-resistance AN - OPUS4-56235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - A presentation given at the VAAM conference 2022, summarizing our findings published in the research paper "Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection" T2 - Annual conference of the association for general and applied microbiology (VAAM) 2022 CY - Düsseldorf, Germany DA - 21.02.2022 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance KW - Disinfection PY - 2022 AN - OPUS4-54437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Phenotypic heterogeneity in bacterial lag times and antibiotic tolerance induced by the disinfectant glutaraldehyde N2 - Phenotypic heterogeneity in clonal bacterial populations can be considered a preliminary stage of functional differentiation, which may increase population fitness in fluctuating environments. Here, we investigated how transient exposure of clonal bacterial populations to residual amounts of a commonly used disinfectant, glutaraldehyde (GTA), induces phenotypic heterogeneity, ensuring survival of the population upon sudden challenge with high doses of antibiotics. Using the ScanLag system, we found that exposure to GTA resulted in wide lag-time distributions across different bacterial isolates of E. coli, S. aureus, and P. aeruginosa. Importantly, this was associated with elevated levels of survival (i.e. tolerance) towards lethal doses of antibiotics. As revealed by RNAseq in E. coli, GTA exposure caused global transcriptome remodeling, with more than 1200 differentially expressed genes of diverse biological functions. Several of these genes that were not previously associated with antibiotic tolerance or persistence induced, when overexpressed alone, antibiotic tolerance without showing a lag phenotype. This suggests that exposure to GTA induces unspecific, lag-dependent and specific, lag-independent tolerance to antibiotics in clonal bacterial populations. These findings have implications for 1.) settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and 2.) for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments because of the trade-off that arises from exiting lag and resuming growth as fast as possible and maintaining antibiotic tolerance. This trade-off may be weakened by phenotypically heterogeneous clonal populations as induced by GTA. T2 - 1st International Conference on Emergent Functions of Bacterial Multicellularity CY - Berlin, Germany DA - 06.01.2025 KW - Disinfectants KW - Biocides KW - Phenotypic heterogeneity PY - 2025 AN - OPUS4-62462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - BIOCIDE N2 - This presentation gives an overview about the BIOCIDE project performed with the Aquatic Pollutants joint call. T2 - Aquatic Pollutants TransNet workshop CY - Online meeting DA - 09.11.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Risk assessment KW - Wastewater PY - 2022 AN - OPUS4-56265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Hydrogen storage & Microbiologically influenced corrosion - Improved test system for Stability and Durability of the Materials & Gas N2 - Underground hydrogen storage (UHS) is a strategic step towards implementing the hydrogen economy. Achieving the required infrastructure by 2050 necessitates advancements in hydrogen-dedicated assets and the evaluation of existing infrastructure. The unique conditions in UHS require an experimental set-up to simulate UHS operating conditions, which allows to assess the readiness of current storage and transmission for hydrogen, and develop new technologies for material-resistance, operational-simulations, and risk-assessments. In addition to the physical/chemical conditions in UHS (e.g., salinity, hydrogen concentration, operating temperature/-pressure, water content), biological threats must also be considered. Therefore, we present here a high-pressure-set-up, developed for research/-industrial testing purposes. Currently, UHS-experiments for microbiologically-influenced-corrosion (MIC) are performed in standard autoclaves with relatively high volumes/pressures; they were primarily designed for material-specific investigations. While these methods provided some useful information for biological questions, they had significant limitations. Besides, the rapid depressurization that occurs with standard autoclaves can greatly affect materials, especially amorphous materials like polymers, causing damage that isn't due to the actual hydrogen storage. This presents a challenge, as the test results may not accurately reflect real-world conditions. To address these issues, specialized autoclaves have been developed to allow for slower depressurization while also enabling continuous monitoring of gases and liquids during the experiment. Such modifications could help obtain more accurate and reliable data. The novel UHS-simulation-set-up presented here is designed with a controlled independently temperature and pressure. Field samples can be used to mimic geology, water chemistry, construction materials, and microbiological conditions. Most significant advantages of the set-up are: 1. It allows for liquid addition during the test, enabling the study of biocides or the evaluation of operating setups. 2. It permits liquid/-gas sampling during the test, allowing for more efficient monitoring of testing conditions and a better understanding of the process over time. Additionally, a low-release function is added, which is particularly important for studying MIC to avoid negative side effects, on the material (e.g. polymers/corrosion product-layer/cells itself) which might occur due to the fast pressure release. T2 - MATHEA | MATerials in Hydrogen related Energy Applications 2025 CY - Hamburg, Germany DA - 24.06.2025 KW - MIC KW - MISTRAL KW - Underground storage KW - Hydrogen KW - Polymer KW - Metal PY - 2025 AN - OPUS4-63567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis T1 - Consequences of tolerance to disinfectants on the evolution of antibiotic resistance in E. coli N2 - Biocides are used as disinfectants and preservatives; one important active substance in biocides is benzalkonium chloride (BAC). BAC-tolerant bacterial strains can survive short treatments with high concentrations of BAC. BAC tolerance and resistance have been linked to antibiotic resistance. Here, the selection dynamics between a BAC-tolerant Escherichia coli strain and a sensitive wild type were investigated under four conditions: in the absence of antibiotics and in the presence of three different sub-inhibitory concentrations of the antibiotic ciprofloxacin in liquid cultures. The wild type was selected over the BAC-tolerant strain in the absence of antibiotics, while the BAC-tolerant strain was selected over the wild type at all ciprofloxacin concentrations investigated, with a minimum selection concentration (MSC) of 1/10th of the minimum inhibitory concentration (MIC) of the wild type. Furthermore, the evolvability of resistance of the two strains to inhibitory concentrations of ciprofloxacin was assessed by performing a serial dilution evolution experiment with gradually increasing ciprofloxacin concentrations. The wild type had a higher probability to develop resistance to ciprofloxacin than the tolerant strain. By the end of the evolution experiment both strains evolved to grow at the highest ciprofloxacin concentration investigated, which was 2048 ×MIC of the wild type. The importance of these results is highlighted by the fact that concentrations of ciprofloxacin well above the calculated MSC can be found in environmental samples such as hospital wastewaters and livestock slurry. In turn, BAC is used as a disinfectant in the same settings. Thus, the selection of BAC-tolerant strains at sub-inhibitory concentrations of ciprofloxacin can contribute to the stabilization and spread of BAC-tolerance in natural populations. The prevalence of such strains can impair the effects of BAC disinfections. T2 - µClub seminar series CY - Berlin, Germany DA - 15.12.2023 KW - Antimicrobial resistance PY - 2023 AN - OPUS4-59222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistenzen von Bakterien gegen Biozide – Evolution, Mechanismen und Methoden N2 - Diese Präsentation gibt einen Überblick über die Aktivitäten zum Thema Biozidresistenz an der BAM. T2 - Life Science Nord - Online-Update Hygiene und Infektionsprävention CY - Online meeting DA - 14.06.2022 KW - Antimikrobielle Resistenz KW - Antmikrobielle Oberflächen KW - Standardisierung KW - Biozide KW - Risikobewertung PY - 2022 UR - https://vimeo.com/722198443 AN - OPUS4-56236 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by Phenotypic Heterogeneity and transcriptome remodeling N2 - Glutaraldehyde (GTA) is commonly used to disinfect medical equipment, in animal husbandry and in hydraulic fracturing. Its wide use bears the risk that microorganisms in different environments are exposed to potentially non-lethal doses of glutaraldehyde. To date, little is known about the effects of glutaraldehyde on the susceptibility of bacteria to antibiotics and its role in the selection of tolerant phenotypes. Objectives • To determine the effect of glutaraldehyde exposure on the survival of E. coli, S. aureus and P. aeruginosa to antibiotics • To find the mechanistic basis for antibiotic tolerance upon glutaraldehyde exposure Materials & Methods Four bacterial isolates were exposed to sub-inhibitory glutaraldehyde. Antibiotic tolerance was determined by time-kill assays. Regrowth dynamics (lag times) were determined with ScanLag. E. coli was further investigated, using RNAseq to identify genes and processes involved in antibiotic tolerance. Mutants of candidate genes were screened for their antibiotic tolerance and heterogeneous target gene expression under stressed and unstressed conditions. Results Short-term exposure to sub-inhibitory levels of glutaraldehyde induced tolerance to high doses of bactericidal antibiotics. Tolerance to antibiotics was associated with highly heterogeneous regrowth dynamics and global transcriptome remodeling. Differentially expressed genes represented diverse biological functions and cellular components, including antibiotic efflux, metabolic processes, and the cell envelope. The heterogeneous regrowth dynamics and the diversity of the differentially expressed genes are likely related to the unspecific mode-of-action of glutaraldehyde. Among the many differentially expressed genes, several genes were identified that were not previously associated with antibiotic tolerance or persistence, which, when overexpressed alone, increased antibiotic tolerance. Conclusion Our results highlight how the big advantage of a disinfectant, its unspecific mode-of-action, can induce transient tolerance to antibiotics in bacteria. These findings have implications for 1.) settings where disinfectants and antibiotics are used in proximity, such as hospitals and animal husbandry, and 2.) for the selection dynamics of tolerant bacteria in fluctuating environments because of the trade-off that arises from overcoming the lag phase as fast as possible and maintaining antibiotic tolerance. T2 - VAAM Jahrestagung 2023 CY - Göttingen, Germany DA - 10.09.2023 KW - Glutaraldehyde KW - Disinfectants KW - Biocides KW - Antibiotics KW - Bacteria PY - 2023 AN - OPUS4-58439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - This talk discusses resistance evolution towards biocides and antimicrobial surfaces. It shows (i) that biocides affect rates of mutation and horizontal gene transfer, (ii) that biocides show heterogeneous killing facilitating tolerance evolution, and (iii) that biocides and antibiotics show strong combination effect on growth and selection. T2 - STOP project internal seminar CY - Online meeting DA - 24.04.2024 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides KW - Antimicrobial surfaces PY - 2024 AN - OPUS4-61546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - Antimicrobial Resistance in Biofilms and on Biomaterials CY - Online meeting DA - 10.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms PY - 2021 AN - OPUS4-53162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Consequences of BAC tolerance for selection and evolution in the presence of antibiotics N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance. Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work at BAM we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Within our group, I mainly focus on the following two questions: How does phenotypic heterogeneity in bacteria affect the ability to survive treatment with biocides? And what are the consequences of phenotypic heterogeneity for the evolution of resistance to biocides and antibiotics? I will share published and unpublished results which demonstrate that phenotypic heterogeneity can enable the survival of biocide treatment and, through this, facilitate the evolution of AMR. On the other hand, we find that adaptation to a biocide can unexpectedly impair the ability to evolve resistance against an antibiotic. T2 - FEMS summer school for postdocs 2022: Microbial Evolvability Mechanisms: Resistance, Biology, and Strategies to Defeat and Detect CY - Split, Croatia DA - 27.04.2022 KW - Disinfection KW - Biocides KW - Evolution KW - Resistance KW - Biocide tolerance PY - 2022 AN - OPUS4-54846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Risk Assessment of Biocide Resistance N2 - This presentation details approaches for the risk assessment of biocide resistance. Different methods are presented to acquire the necessary data for such risk assessments. T2 - OECD, 7th Meeting of the Working Party on Biocides CY - Leiden, Netherlands DA - 18.09.2023 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-59062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Progress on STOP-project WP5 and WP6 at BAM N2 - An overview of the progress that has been made on testing of antimicrobial efficacy and method development in the STOP project at BAM. T2 - STOP project meeting 09/2024 CY - Bukarest, Romania DA - 18.09.2024 KW - Antimicrobial surfaces KW - ISO22196 PY - 2024 AN - OPUS4-61178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Effect of biocides on the evolution and spread of resistance N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Antimicrobial resistance KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-56426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin T1 - Biocide resistance evolution of corrosion causing sulfate reducing bacteria N2 - SRB are environmentally and industrially important microorganisms. The disadvantage of their metabolic activity (e.g. sulfate reduction) results in the formation of toxic sulfide that leads to microbial influenced corrosion. SRB have been responsible for biocorrosion of ferrous metal. One of mitigation strategy is the use of biocides. However, it has been shown that various bacteria develop antimicrobial resistance due to excessive use of biocides. Thus, a deeper understanding of the evolution of biocide resistance of SRB is necessary. Three commonly used biocides, THPS, BAC, and GLUT were applied to investigate the susceptibility of Desulfovibrio alaskensis G20.The minimum inhibitory and bactericidal concentration and the killing kinetics of the three biocides was determined. These results will be used to conduct evolution experiments to determine the evolution of resistance towards biocides of SRBs. The outcome of this work can be helpful to improve the management of MIC treatments. T2 - Panel, Pitch & Popcorn by EUROMIC CY - Online meeting DA - 21.06.2021 KW - Biocide KW - Evolution KW - Mircobially influcenced corrosion KW - Sulfate reducing bacteria PY - 2021 AN - OPUS4-56940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -