TY - CONF A1 - Seeger, Stefan T1 - VOC, Fine and Ultrafine Particles Emissions from Additive Manufacturing and 3D-Printers N2 - The presentation gives an overview on Additive Manufacturing techniques and related potential risks from emission of hazardous gases and aerosols, based on emission characterizations in BAM. Voluntary mitigation strategies are presented T2 - BAM - JBMIA (Japan Business Machine and Information System Industries Association) Meeting, JBMIA Emissions Working Group Meeting CY - Tokyo, Japan DA - 04.05.2019 KW - 3D Printing KW - Additive Manufacturing KW - Particulate emissions KW - Emissions of hazardous gases KW - Filament comparison PY - 2019 AN - OPUS4-47812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - UBA Projects on Particulate Emissions from Laser Printers N2 - The presentation gives an overview on past and ongoing projects in BAM on laser printer particulate emissions, funded by the German Environment Agency (UBA) in order to further develop award criteria for the Blue Angel ecolabel for office machines T2 - BAM - JBMIA (Japan Business Machine and Information System Industries Association) Meeting, JBMIA Emissions Working Group Meeting CY - Tokyo, Japan DA - 04.05.2019 KW - Laser Printer KW - Particulate emission KW - Blue Angel ecolabel KW - Office machines PY - 2019 AN - OPUS4-47811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schütter, Jan A1 - Pietsch, Franziska A1 - Schreiber, Frank A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem T1 - Effect of surface topography and chemistry on the attachment of bacteria on solid surfaces N2 - Microbiologically induced corrosion due to bacterial biofilms causes several problems in industrial systems, technical applications and in medicine. Prior to the formation of a biofilm on a substrate, planktonic cells attach on the surface. Hence, the properties of the surface play a key role in biofilm formation and are of great importance for the development of strategies to prevent bacterial attachment and biofilm formation. This project aims at clarifying to which extent surface micro-/nanostructuring and chemical functionalization affects bacterial attachment and whether a synergistic combination of the two can be used to control bacterial adhesion. To answer these questions, model surfaces with regular patterns of 5-10 micrometers in size have been prepared, which provide distinct zones differing in terms of their chemistry or nano-roughness. This was achieved by micro contact printing of self-assembled monolayers with different functional groups and deposition of patterned ZnO nanorod arrays for studying the effect of surface chemistry and morphology, respectively. Typical contrasts studied were combinations of positively/negatively charged, hydrophobic/hydrophilic or flat/rough. The attachment behavior of bacteria on tailored surfaces were studied in a flow chamber as a function of time. The strain Pseudomonas fluorescens SBW25 was chosen as a model organism. DNA-intercalating dyes such as Syto9 have a high affinity to adsorb on ZnO nanorods. To overcome this limitation a genetic modification was performed by introducing a gene which expresses a green fluorescent protein in P. fluorescens SBW25 enabling the quantitative evaluation of the flow chamber studies by means of fluorescence microscopy. Further analysis of the attachment behavior was performed by means of scanning electron microscopy. The presentation will summarize the results of our systematic study on the role of individual parameters on bacterial attachment and highlight synergistic combinations, showing an inhibition or enhancing effect. As the investigations with model substrates enable a precise control of the surface parameters, this approach can be applied to different microorganisms and material systems to achieve a correlative description of bacterial adhesion on solid surfaces. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Microbial KW - Corrosion KW - MIC KW - Nanorods PY - 2019 AN - OPUS4-49730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - How light determines the life of the plant pathogen Botrytis cinerea N2 - The rotation of the Earth causes a day/night cycle that is characterized by changing light and temperature conditions. Fungi actively sense the environmental light conditions to induce protective mechanisms against the light-associated stresses and to regulate development. Since fungi adapted to habitats with different light regimes, the complexities of their ‘visual’ systems and photoresponses may vary significantly. Fungi that are associated with plants experience a special light regime because the host seeks optimum light conditions for photosynthesis – and the fungus must cope with them. Moreover, fungi living under the canopy are confronted with an altered spectrum enriched for green and far-red light. Plants sense light to coordinate growth and morphogenesis: a low red:far-red ratio indicates the presence of competitors (shading by other plants) and triggers the shade avoidance response which is accompanied by increased susceptibility to nectrophic pathogens. Botrytis cinerea, the causal agent of gray mold diseases on many plant species in moderate climate zones (high humidity, temperatures around 20°C, seasons), exhibits striking photoresponses accompanied by a broad action spectrum and a high number of photoreceptors. Light is the most important factor controlling morphogenesis: it induces conidiation for disease spreading (summer cycle) and represses sclerotial development for survival and/or sexual recombination (winter cycle). In the past years, we identified several cellular components involved in photoperception and regulation of photomorphogenesis and virulence indicating that the same signaling pathways are of relevance for both processes, propagation and infection. Notably, we recognized the role of the phytochromes (red/far-red light sensors) for coordinated responses to light and elevated temperatures (photo-/thermomorphogenesis) – similar to the function of Arabidopsis PhyB. BcPHY2-like thermosensors are likely restricted to the Leotiomycetes, which include several plant pathogens of the moderate climate zones. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - fungus KW - light KW - plant pathogen KW - signaling KW - virulence PY - 2019 AN - OPUS4-48128 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoperception in black fungi that share niches with green organisms N2 - Sunlight, the major source of energy, drives life but in excess it provokes UV-induced DNA damage, accumulation of reactive oxygen species, desiccation, osmotic stresses and so on. Biological strategies to survive excess light include protection, avoidance and active utilisation. Phototrophic organisms including cyanobacteria, green algae and plants use all three strategies. Fungi occupying phototrophic niches may profit from the surplus photosynthetic products which also obliges them to cope with the same light-induced stresses. One way of handling these stresses would be to use similar signalling pathways to sense the presence and to interact with their phototrophic partners. Obviously, the levels of adaptation and responses to light will depend on the environment as well as fungal genotype and phylogenetic position. Black fungi – a polyphyletic group – accumulate the dark pigment DHN melanin in their cell walls and often occupy light-flooded habitats from phyllosphere to rock surfaces. Here we compare two sequenced melanised fungi of different lifestyles in their response to light. The Leotiomycete Botrytis cinerea is an aggressive pathogen that primarily infects the above-ground parts of plants. It possesses large numbers of photoreceptors that respond to a broad spectrum of light. As a consequence, light controls morphogenesis in which it induces conidiation for disease spreading and represses sclerotial development for survival and/or sexual recombination. Cellular components involved in photo-perception and regulation of morphogenesis, stress responses and virulence have been identified and appear to regulate propagation, survival and infection. These include phytochromes, a group of photoreceptors which are particularly enriched in the Leotiomycetes and that mediate coordinated responses to light and elevated temperatures. Assuming that photo-regulation may be equally important for fungi that live in mutualistic relationships with phototrophs either by forming composite organisms or biofilms, we investigate the role of light in the rock-inhabiting Eurotiomycete Knufia petricola. Like other black yeasts, K. petricola grows slowly, does not form specialised reproductive structures and constitutively produces DHN melanin as well as carotenoids. Combining K. petricola with the cyanobacterium Nostoc punctiforme, we developed a model system for studying biofilm formation and bio-weathering. A genetic toolbox to manipulate this model system is being developed. K. petricola strain A95 possesses ten putative photoreceptors, more than found in filamentous Eurotiomycetes suggesting that light plays an important role for abiotic and biotic interactions in extremo-tolerant and symbiosis-capable fungi. T2 - International Symposium on Fungal Stress (ISFUS) CY - Sao Jose dos Campos, Brazil DA - 19.05.2019 KW - Botrytis KW - carotenoids KW - Knufia KW - melanin KW - Nostoc PY - 2019 AN - OPUS4-48130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoregulation of Metabolism in Plant- & Rock-associated Black Fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from excess photosynthetic products. But to cope with sunlight-associated stresses it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The filamentous foliar plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideo- and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and photoregulation are important for fungi that avoid loss of energy and nutrients through cooperation with phototrophs. T2 - European Fungal Secondary Metabolism Symposium CY - Hannover, Germany DA - 30.09.2019 KW - Fungi KW - Secondary metabolism KW - Light regulation KW - Pigments PY - 2019 AN - OPUS4-49638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoregulation in Plant- & Rock-associated Black Fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from excess photosynthetic products. But to cope with sunlight-associated stresses it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The filamentous foliar plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideo- and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and photoregulation are important for fungi that avoid loss of energy and nutrients through cooperation with phototrophs. T2 - Scientific Colloquium at the Department of Genetics, University of Seville CY - Seville, Spain DA - 24.10.2019 KW - Light sensing KW - Knufia petricola KW - Botrytis cinerea PY - 2019 AN - OPUS4-49637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Single-cell trait-based biodiversity in microbial communities and its link to ecosystem functioning in a stratified lake N2 - A fundamental question in ecology is how biodiversity affects ecosystem function. Biodiversity is commonly estimated based on genetic variation. We investigated a new approach that defines and measures biodiversity in complex microbial communities. We used the variation in multiple functionally-relevant, phenotypic traits measured in parallel in single cells as a metric for microbial phenotypic diversity. We studied phenotypic diversity and ecosystem functioning throughout different photosynthetic layers dominated by divergent microbial communities in the gradient of Lago di Cadagno. We determined genetic diversity by 16S and 18S amplicon sequencing and bulk ecosystem functioning (photosynthesis). In addition, we determined phenotypic diversity using single-cell technologies such as nanometer-scale secondary ion mass spectrometry (NanoSIMS) correlated with confocal laser scanning microscopy (CLSM) and scanning flow-cytometry. We measured functional trait variation between individuals in 13CO2 fixation, 15NH4+ uptake, and variation in physio-morphological cell traits, such as cell size, shape, and auto-fluorescence for various pigments related to photosynthesis. We used the distances between individuals in a multidimensional trait space to derive phenotypic trait-based diversity indices, such as trait richness, trait evenness, and trait divergence. We find that phenotypic trait divergence associates with ecosystem functioning, whereas genetic diversity does not. Including activity-based, single-cell phenotypic measurements with NanoSIMS provided an additional accuracy to the trait-based diversity assessment and allowed us to formulate hypotheses on the mechanisms that shape the correlation between phenotypic diversity and eco-system function. Together, our results show that phenotypic diversity is a meaningful concept to measure microbial biodiversity and associate it with ecosystem functioning. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - NanoSIMS KW - Biodiversity PY - 2019 AN - OPUS4-49077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Alexandra A1 - Bresch, Harald T1 - OECD test guideline on particle size and size distribution: Comparability of measurement results N2 - OECD-Prüfrichtlinien werden weltweit für regulatorische Zwecke angewandt, da sie eine harmonisierte und über internationale Ringversuche validierte Vorschrift zur Analyse vorgeben. Die bestehende Prüfrichtlinie TG 110 zur Größencharakterisierung von Partikeln und Fasern ist für viele Methoden und Materialklassen nicht geeignet, weswegen es Bedarf an einer Neuentwicklung gibt. Im Fokus der neuen TG steht die reproduzierbare und vergleichbare Anwendung von Methoden zur Bestimmung von Partikelgröße sowie Größenverteilung annährend sphärischer und faserförmiger Nanomaterialien im Bereich 1-1000 nm. Berücksichtigt werden die häufig angewandten Methoden zur Größencharakterisierung mit ihren unterschiedlichen physikalisch-technischen Limitierungen und die Bestimmung unterschiedlicher Durchmesser (hydrodynamischer, Feret…). Weiterhin sind materialspezifische Einflüsse durch die Partikel sowie das Messmedium zu berücksichtigen. Jede der Methoden soll unter Berücksichtigung von ISO-Standards und den materialspezifischen Limitierungen in der neuen Prüfrichtlinie beschrieben und über einen Ringversuch validiert werden. T2 - BAM BfR Workshop CY - Berlin, Germany DA - 21.03.2019 KW - OECD KW - Nanoparticle KW - Particle Size KW - Nano KW - Characterization PY - 2019 AN - OPUS4-47633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schliephake, H. A1 - Adam, Christian T1 - CFK-Abfälle als Primärkohleersatz Im Lichtbogenofen bei der Stahlerzeugung N2 - CFK-Abfälle werden trotz der bestehenden Verfahren zur Rückgewinnung der Carbonfasern zukünftig vermehrt anfallen. Für diese Abfälle wird nach technischen Lösungen der energetischen oder stofflichen Verwertung gesucht. Eine Möglichkeit ist die Nutzung der CFK-Abfälle als Primärkohleersatz im Lichtbogenofen bei der Stahlherstellung. T2 - 3. Fachtagung Composite Recycling & LCA CY - Stuttgart, Germany DA - 20.02.2019 KW - Carbonfaser KW - CFK PY - 2019 AN - OPUS4-47438 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan A1 - Radnick, Jörg T1 - Perspektive der BAM auf neuartige Materialien N2 - Neuartige Materialien, die bekannte (Werk-)Stoffe mit neuen Funktionalitäten ausstatten, spielen eine zunehmend wichtige Rolle im Bereich der Materialforschung und -prüfung. Das Spektrum neuartiger Materialien reicht von der gezielten Oberflächenfunktionalisierung und -strukturierung makroskopischer Materialien, dünnen Beschichtungen bis hin zu mikro- und nanoskaligen Kompositmaterialien und funktionalen Materialien an der Schnittstelle zur Biologie, Biotechnologie, nachhaltige Energiespeicherung und Sensorik. Dabei bieten neuartige Materialien die Chance, Werkstoffe und Produkte mit erweiterter oder verbesserter Funktionalität zu erhalten und Sicherheit bereits im Designprozess zu berücksichtigen. Durch dieses breite Anwendungsspektrum und die Herausforderungen, die solche Materialien für die Sicherheit in Chemie und Technik mit sich bringen, sind diese in allen Themenfeldern der BAM repräsentiert (Material, Analytical Sciences, Energie, Infrastruktur und Umwelt). Die Aufgaben der BAM erstrecken sich dabei von der Herstellung von Referenzmaterialien für Industrie, Forschung und Regulation, über die Erstellung von standardisierten Referenzverfahren für nachhaltige Messungen im Umwelt- und Lebenswissenschaftsbereich bis hin zur Bereitstellung von belastbaren und zitierbaren Referenzdaten. Durch die genaue Charakterisierung neuartiger Materialien können potentiell problematische Substanzen identifiziert und deren Risiken besser abgeschätzt werden. In diesem Beitrag werden einige aktuelle Beispiele aus diesen Bereichen vorgestellt. T2 - NanoDialog der Bundesregierung - Chancen und Risiken von Neuartigen Materialien CY - Berlin, Germany DA - 22.05.2019 KW - Advanced Materials KW - Nanomaterialien KW - Neuartige Materialien PY - 2019 AN - OPUS4-49594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahrig, M. A1 - Torge, Manfred T1 - 3D Inspection of the restoration and conservation of stained glass N2 - The initial focus of this research was on the development of a general workflow for the documentation and monitoring of historical stained glass windows using structured light scanning. Therefore windows from different churches, time periods and with different corrosion and damage phenomena were scanned before and after conservation measures. T2 - 27th CIPA International Symposium “Documenting the past for a better future” CY - Ávila, Spain DA - 01.09.2019 KW - Stained glass KW - Restoration and conservation KW - Structured light scanning KW - 3D inspection KW - Glass scanning PY - 2019 AN - OPUS4-49600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Material studies of historic inks: From antiquity to the Middle Ages N2 - While studying the history of inks, division 4.5 of the BAM (Bundesanstalt für Materialforschung und Prüfung) together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink, and a subsequent in-depth analysis using several spectroscopic techniques. One of them, X-ray Fluorescence (XRF) aims primarily at establishing the fingerprints of inks containing metals, making it possible to distinguish among different inks. Our research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo) as well as other medieval Jewish and Armenian communities. The presentation shows the panorama of historic inks and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Age. T2 - Kolloqium CY - KIT, Germany DA - 17.05.2019 KW - historic inks PY - 2019 AN - OPUS4-48131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Material studies of the Dead Sea Scrolls N2 - Our study is dedicated to non-destructive characterization of the support and the inks of the DSS. To that aim we use micro-XRF, 3D- SY-XRF, different IR methods including synchrotron radiation based reflectance spectroscopy, optical and electron microscopy. The lecture discusses advantages and the shortcomings of the non-destructive testing approach. T2 - Seminar CY - Freie Universität Berlin, Germany DA - 04.02.2019 KW - Dead Sea Scrolls PY - 2019 AN - OPUS4-48132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Materialwissenschaftliche Untersuchungen an Qumranrollen N2 - Heute stimmen die meisten Gelehrten und Historiker darin überein, dass die Höhlen von Qumran eine Essener-Bibliothek beherberg-ten. Über ihren Ursprung, sowie die Herkunft der einzelnen Schriften, wird noch immer rege debattiert. Der aktuelle Beitrag präsentiert detaillierte Lösungsansätze zu Klärung der Provenienzfrage der Schriftrollen von Qumran. T2 - Vorlesungsreihe CY - Freie Universität Berlin, Germany DA - 14.01.2019 KW - Qumranrollen PY - 2019 AN - OPUS4-48133 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Evolution of writing black inks N2 - Our research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo) as well as other medieval Jewish and Armenian communities. The presentation shows the panorama of historic inks and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Age. T2 - Elephantine Salon CY - Ägyptisches Museum Berlin, Germany DA - 22.03.2019 KW - Carbon ink KW - Iron-gall ink KW - Historic ink PY - 2019 AN - OPUS4-48134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Analyzing historic inks: From antiquity to the Middle Ages. N2 - While studying the socio-geographic history of inks, division 4.5 of the Bundesanstalt für Materialforschung und Prüfung (BAM) together with the Centre for the Study of Manuscript Cultures (CSMC) in Hamburg has developed a non-invasive protocol for ink analysis. It consists of a primary reflectographic screening to determine the type of the ink (soot, tannin or iron-gall) and a subsequent in-depth analysis using several spectroscopic techniques: X-ray fluorescence (XRF), Infrared and Raman spectroscopies. The first of them, XRF elemental analysis aims at establishing the unique fingerprints of inks containing metals or trace elements in carbon inks. In addition, we use Raman analysis to identify so-called mixed inks, an ink category that received little attention so far. Finally, with the help of IR spectroscopy we obtain information about the ink binders. T2 - Coptic Literature in Context. The Contexts of Coptic Literature Late Antique Egypt in a dialogue between literature, archaeology and digital humanities CY - Rom, Italy DA - 25.02.2019 KW - Ink PY - 2019 AN - OPUS4-48135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Evolution of writing black inks N2 - The evolution and socio-geographic distribution of writing inks from Late Antiquity to the Middle Ages are one of the foci of our investigative work at the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin and the Centre for the Study of Manuscript Cultures, Hamburg University. This presentation will examine the inks used by Jews in the in different geographical zones try to correlate the results of the material analysis with written records and existing traditions. We will compare the inks proposed by Maimonides, who lived in 12th-century Egypt, with the considerations of Rashi, who lived in 11th-century northern France, and see that they both advocated use of the inks commonly known and produced in their respective regions. It is Maimonides who proposes to add tannins to the soot inks, but rejects the metallic salt, both of which were practices that were well attested in contemporary Arabic recipes for making ink. In contrast, Rashi was favourable to employing the plant inks in use in contemporary Northern Europe. T2 - Jewish-Christian Relations from the Mediterranean to the Indian Ocean: Evidence from Material Culture CY - Bochum, Germany DA - 26.03.2019 KW - Ink KW - Jewish cultures PY - 2019 AN - OPUS4-48136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Material analysis of manuscripts: methodological introduction N2 - Natural sciences play auxiliary role in the studies of manuscripts. The success of their contribution depends strongly on the formulation of the question and the choice of the methods to obtain the requested answer. Therefore, one should try to go beyond the understanding of the basic principles of the scientific analysis. We will start with a glance at the basic principles of the techniques used in the material science for determination of the elemental composition (X-ray emission) and molecular composition (FTIR & Raman). We will move then to the bench and mobile equipment commonly used in the field of cultural heritage. At the end we will choose a question to be answered and design an ideal experiment that will be modified according to the limitations dictated by on-site conditions. In the ateliers in the afternoon we will a) compare two XRF devices that differ in their spatial resolution; b) use a high resolution microscope (Keyence) to obtain a close look at writing surfaces and materials; c) we will learn to determine the type of the inks with the help of another microscope (DinoLite AD413T-12V), a usb microscope with visible, UV and NIR illumination; d) we will learn to use FTIR-ATR device for determination of the type of the writing surface; e) We will use mobile Raman device for identification of pigments. T2 - Summer School: Manusciences19 CY - Frejus, France DA - 10.03.2019 KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Parchment N2 - This lecture will present history of parchment based on written sources and chemical examination of antique, medieval and modern parchment. Our studies of the Dead Sea Scrolls writing surfaces show that they can be divided roughly into three groups: leather, parchments of a light tint, and those of various shades of brown. The latter ones are invariably tanned, whereas the middle group is characterized by the presence of various inorganic salts. Some of the pale parchments, among them the Temple Scroll (11Q19), are remarkably similar to medieval European parchment. Therefore we have formulated the working theory that in the Judaea of the Hellenistic period two different parchment-making traditions existed side by side: an ‘eastern’ one (represented by the tanned parchments of Qumran, closely resembling Aramaic documents from the fifth century BC, and a ‘western’ one (represented by the untanned/lightly tanned ones similar to early Christian Greek parchments). This division has found support during our studies of the Geniza fragments, in which Babylonian and Palestinian traditions seem to follow the “eastern” and “western” technologies, respectively. T2 - Sumer School: Manusciences19 CY - Frejus, France DA - 10.03.2019 KW - Parchment KW - Leather KW - Tanning PY - 2019 AN - OPUS4-48138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -