TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks - Black fungi from biofilms on material-atmosphere interface N2 - Interface between the atmosphere and mineral substrates is the oldest terrestrial habitat. Morphologically simple microbial biofilms were the first settlers on these inhospitable surfaces at times when the Earth was inhabited only by microorganisms and the solid substrates represented only by natural rock surfaces i.e. lithosphere. Miniature, self-sufficient microbial ecosystems continue to develop on subaerial (i.e. air-exposed) solid surfaces at all altitudes and latitudes where direct contact with the atmosphere and solar radiation occurs – on rocks, mountains, buildings, monuments, solar panels. All these sub-aerial biofilms develop under fluctuating and hostile conditions – and thus frequently harbour stress-tolerant black fungi inherently able to cope with the stresses of bright sunlight and constantly changing atmospheric conditions. Black fungi – a polyphyletic group of Ascomycetes– accumulate the dark pigment DHN melanin, diverse carotenoids and mycosporines in their cells and thus successfully colonise sunlight-flooded habitats from phyllosphere to rock surfaces. Various chemical and physical extremes and fluctuating environments belong to the challenges effectively mastered by black fungi. In our laboratory we isolate novel black fungi from man-made habitats like building materials and solar panels. Using Knufia petricola A95 as a model we conduct experiments to clarify interactions of black fungi with inorganic substrates. We use available mutants to determine the functional consequences of changes in the outer cell wall envelopes – from excreted EPS to layers of protective pigments. A genetic toolbox to manipulate this Chaetothyriales representative is in further development. Our long-term goal is to understand the fundamental mechanisms how black fungi are able (i) to adhere to dry atmosphere-exposed surfaces, (ii) to survive multiple stresses and (iii) to change the underlying substrates including rocks. T2 - International Symposium on Fungal Stress (ISFUS) CY - São José dos Campos, Brazil DA - 19.05.2019 KW - Subaerial biofilm KW - Melanins KW - Carotenoids KW - Knufia KW - Mineral weathering PY - 2019 AN - OPUS4-50200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - The story of how black fungi survive harsh conditions on sun-exposed desert rocks and material surfaces is fascinating. In the presentation examples of how knowledge of these organisms can be of practical value (e.g., in biodeterioration studies, such as on stone markers in cemeteries) would be given. Among other stories, the example of how roof tiles amended with a titanium oxide layers as a biocide actually selected for the black fungi will be told. A hypothesis about how these organisms would likely be found on solar panels and some early BAM work in that area will be presented. This then brings the connection to a study ripe for investigation in North Carolina. The talk presents the development of a study aiming at deciphering the influence of microbial biofilm formation on the energy conversion efficiency of solar photovoltaic panels or modules at two facilities (one facility under the impact of high intensity of animal agriculture and high deposition of ammonia from atmosphere and the other with low animal agriculture and lower atmospheric ammonia deposition) in North Carolina. The main hypothesis of the study is that microbial biofilm formation on solar photovoltaic panels will lead to significant decreases in energy conversion efficiency of solar photovoltaic modules and biofilm formation will also be accelerated by high ammonia concentration in the ambient atmosphere and high nitrogen deposition. T2 - Dr. Michael D. Aitken Symposium CY - Chapel Hill, NC, USA DA - 08.11.2019 KW - Black fungi KW - Solar panel KW - Biofilm PY - 2019 AN - OPUS4-50125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Wirth, R. A1 - Schuessler, J. A. A1 - Benning, L. G. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Feldmann, Ines T1 - Olivine weathering by the genetically amenable rock-inhabiting fungus Knufia petricola A95 N2 - In arid sun-exposed environments, rock-inhabiting fungi dominate microbial communities on rock surfaces. Fungi are known to enhance rock weathering, although the exact mechanisms are not completely understood. These natural processes can be simulated by reproducible experimental systems. Particularly attractive are genetically amenable rock-weathering fungi, where certain traits can be knocked-out to identify weathering-relevant functions. Here, we studied the effect of the rock-inhabiting fungus Knufia petricola A95 and its melanin-deficient mutant (ΔKppks) on the weathering of a Fe-bearing olivine. We examined the olivine dissolution kinetics and looked at the olivine-fungus interface. For the former we inoculated olivine powder with the fungus in batch and mixed flow reactors and analysed the medium solution by ICP-OES, for the latter biofilm-covered olivine sections from flow-through reactors were analysed by FIB-TEM. In general olivine dissolution was lower when olivine was incubated without fungi: the abiotic olivine dissolution rates were lowest and the surface of the abiotically reacted olivine sections showed no etching. Various chemical analyses show Fe (oxyhydr)oxide precipitation on top of the abiotically reacted olivine, indicating its role in inhibiting olivine dissolution. Both the wild type (WT) and ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe (oxyhydr)oxide precipitation was thus reduced, explaining the enhanced olivine dissolution in their presence. Particularly efficient at preventing Fe precipitation were attached WT cells: the inhibition of olivine dissolution almost completely disappeared. The attachment capacity of the WT is most likely caused by the production of WT-specific extracellular polymeric substances. Our presented experimental systems allowed the precipitation of Fe (oxyhydr)oxides and included a rock-inhabiting fungus and thus simulated weathering processes relevant to natural ecosystems. T2 - ISEB 2019 CY - Potsdam, Germany DA - 23.09.2019 KW - Olivine KW - Weathering KW - Fungus PY - 2019 AN - OPUS4-49585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bucar, K. A1 - Zitnik, M. A1 - Stabile, L. A1 - Ozan, J. A1 - Seeger, Stefan T1 - Performance of a Sharp GP2Y low-cost aerosol PM sensor N2 - Simple particulate matter sensors are gaining popularity due to their low price, easy handling and good temporal resolution. In this presentation, we report on the performance of a Sharp optical PM sensor GP2Y1010AU0F, which costs less than 15 €. The sensor is built around an infrared emitting diode (ILED) and a phototransistor detecting the light scattered from the aerosol particle. An electronic circuit shapes the detected light in a pulsed signal. The manufacturer advises sampling the output signal 280 microseconds after the ILED pulse. The measured output voltage is an indicator of dust concentration. We have built two identical simple PM monitoring devices using Raspberry Pi 3 computer interfacing the PM sensor with Microchip’s MCP3002 ADC via SPI. The ADC is capable of more than 100 ksamples/s at 10-bit resolution. The Rpi3 was pulsing the sensor at 10Hz, digitizing and saving the data and sending the results wirelessly. Sensor’s output pulse shape was sampled with 10 microsecond time steps and saved, thus making offline analysis possible. A time jitter of output pulses can be observed and suggests a peak fitting as a better approach to the signal readout compared to the single sampling at a fixed time after pulse triggering We compared both methods. T2 - European Aerosol Coference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - Aerosol KW - Low cost aerosol PM sensor KW - PM PY - 2019 AN - OPUS4-49581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -