TY - CONF A1 - Vogel, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Leaching behavior of Antimony in MSWI bottom ash N2 - Bottom ash (BA) from municipal solid waste incineration (MSWI) contains harmful substances such as heavy metals, chloride and sulfate which are mobilized in contact with water. Standardized leaching tests are used to measure the extent of mobilization. It is known that fresh bottom ash displays elevated concentrations of various heavy metals such as lead or zinc due to the formation of hydroxo complexes as a result of high pH values of 12 and above. Storage of BA is accompanied by ageing processes, mainly the reaction of CaO and Ca(OH)2 with CO2 leading to lower pH values in contact with water around 11. Usually heavy metals concentrations are minimum at these conditions. Knowledge of the long-term leaching behavior of potentially harmful substances is crucial for the assessment of the environmental compatibility of reusing municipal solid-waste incineration bottom ash (MSWI BA) in construction, i.e., as a road base layer. BA fractions obtained from wet-processing aiming at the improvement of environmental quality were used to investigate the mobility of relevant substances. Eluates from laboratory-scaled leaching procedures (column percolation and lysimeters) were analyzed to learn about the long-term release of substances. Unsaturated conditions and artificial rainwater were used in the lysimeter tests to simulate field conditions. In addition, batch test eluates were generated at usual liquid-to-solid ratios (L/S) for compliance testing purposes. A variety of cations and anions was measured in the eluates. The wet treatment reduces the leaching of chloride and particularly sulfate by more than 60%. The release of typical contaminants for the treated MSWI BA such as the heavy metals Cu and Cr was well below 1% in the conducted leaching tests. An increase in the Sb concentration was observed in the lysimeter experiments starting at L/S 0.75 L/kg and in the column experiment at L/S 4 L/kg is assumed to be related to decreasing concentrations of Ca and thus to the dissolution of sparingly soluble calcium antimonate. The same leaching mechanism applies with V, but the concentration levels observed are less critical regarding relevant limit values. However, on the long term the behavior of Sb could be problematic for the application of MSWI BA as secondary building material. T2 - MINEA Final Conference CY - Bologna, Italy DA - 20.02.2020 KW - Antimony KW - Bottom ash KW - Leaching KW - Solubility PY - 2020 AN - OPUS4-50450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Syc, M. A1 - Simon, Franz-Georg A1 - Hyks, J. A1 - Braga, R. A1 - Biganzoli, L. A1 - Costa, G. A1 - Funari, V. A1 - Grosso, M. T1 - Metal recovery from incineration bottom ash: state-of-the-art and recent developments JF - Journal of Hazardous Materials N2 - Municipal solid waste incineration (MSWI) is one of the leading technologies for municipal solid waste (MSW) treatment in Europe. Incineration bottom ash (IBA) is the main solid residue from MSWI, and its annual European production is about 20 million tons. The composition of IBA depends on the composition of the incinerated waste; therefore, it may contain significant amounts of ferrous and non-ferrous (NFe) metals as well as glass that can be recovered. Technologies for NFe metals recovery have emerged in IBA treatment since the 1990s and became common practice in many developed countries. Although the principles and used apparatus are nearly the same in all treatment trains, the differences in technological approaches to recovery of valuable components from IBA – with a special focus on NFe metals recovery – are summarized in this paper. KW - Bottom ash KW - Metal recovery KW - Waste-to-energy KW - Non-ferrous metals KW - Iron scrap PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504927 DO - https://doi.org/10.1016/j.jhazmat.2020.122433 SN - 0304-3894 VL - 393 SP - 122433 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-50492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalbe, Ute A1 - Vogel, Christian A1 - Simon, Franz-Georg T1 - Antimony in incineration bottom ash – Leaching behavior and conclusions for treatment processes T2 - SUM 2020 Proceedings N2 - Antimony (Sb) is used in industrial products mainly as flame retardant in plastic material. Due to such additives in plastics, about a half of Sb ends up in municipal solid waste incineration at the end-of-life and consequently in relevant amounts in the generated bottom ash. In contact with water, the initial leachability is low, as antimonates form sparingly soluble compounds with Ca2+. Following the carbonation of the incineration bottom ash (IBA) during the proceeding ageing the pH in the leachates decreases. With decreasing concentration of Ca in the eluate the solution equilibrium changes and antimonates dissolve. In Germany it is intended to regulate Sb in IBA with the planned implementation of the so called Mantelverordnung (MantelVO, containing provisions on the utilisation of mineral waste) in the near future. The limit values set in the draft might be critical for IBA and therefore pose a risk for the utilisation of the mineral fraction of IBA in the well-established recycling routes. T2 - SUM 2020 – 5th Symposium on Urban Mining and Circular Economy CY - Online meeting DA - 18.11.2020 KW - Bottom ash KW - Leaching KW - Antimony PY - 2020 SP - 1 EP - 4 AN - OPUS4-51622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blasenbauer, D. A1 - Huber, F. A1 - Lederer, J. A1 - Quina, M. A1 - Blanc-Biscarat, D. A1 - Bogush, A. A1 - Bontempi, E. A1 - Blondeau, J. A1 - Chimenos, J. A1 - Dahlbo, H. A1 - Fagerqvist, J. A1 - Giro-Paloma, J. A1 - Hjelmar, O. A1 - Hyks, J. A1 - Keaney, J. A1 - Lupsea-Toader, M. A1 - O’Caollai, C. A1 - Orupõld, K. A1 - Pajak, T. A1 - Simon, Franz-Georg A1 - Svecova, L. A1 - Syc, M. A1 - Uvang, R. A1 - Vaajasaari, K. A1 - van Caneghem, J. A1 - van Zomeren, A. A1 - Vasarevičius, S. A1 - Wégner, K. A1 - Fellner, J. T1 - Legal situation and current practice of waste incineration bottom ash utilisation in Europe JF - Waste Management N2 - Almost 500 municipal solid waste incineration plants in the EU, Norway and Switzerland generate about 17.6 Mt/a of incinerator bottom ash (IBA). IBA contains minerals and metals. Metals are mostly separated and sold to the scrap market and minerals are either disposed of in landfills or utilised in the construction sector. Since there is no uniform regulation for IBA utilisation at EU level, countries developed own rules with varying requirements for utilisation. As a result from a cooperation network between European experts an up-to-date overview of documents regulating IBA utilisation is presented. Furthermore, this work highlights the different requirements that have to be considered. Overall, 51 different parameters for the total content and 36 different parameters for the emission by leaching are defined. An analysis of the defined parameter reveals that leaching parameters are significantly more to be considered compared to total content parameters. In order to assess the leaching behaviour nine different leaching tests, including batch tests, up-flow percolation tests and one diffusion test (monolithic materials) are in place. A further discussion of leaching parameters showed that certain countries took over limit values initially defined for landfills for inert waste and adopted them for IBA utilisation. The overall utilisation rate of IBA in construction works is approximately 54 wt%. It is revealed that the rate of utilisation does not necessarily depend on how well regulated IBA utilisation is, but rather seems to be a result of political commitment for IBA recycling and economically interesting circumstances. KW - Bottom ash KW - Leaching tests KW - Utilisation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500161 DO - https://doi.org/10.1016/j.wasman.2019.11.031 SN - 0956-053X VL - 102 SP - 868 EP - 883 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abis, M. A1 - Bruno, M. A1 - Kuchta, K. A1 - Simon, Franz-Georg A1 - Grönholm, R. A1 - Hoppe, M. A1 - Fiore, S. T1 - Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe JF - Energies N2 - In 2018, the production of Municipal SolidWaste (MSW) in EU-28 reached 250.6 Mt, with the adoption of different management strategies, involving recycling (48 wt %), incineration and thermal valorization (29 wt %) and landfilling (23 wt %). This work was based on the analysis of the baseline situation of MSW management in EU-28 in 2018, considering its progress in 2008–2018, and discussed the possible improvement perspectives based on a framework involving incineration and recycling as the only possible alternatives, specifically evaluating the capability of already-existing incineration plants to fulfill the EU needs in the proposed framework. The results of the assessment showed two main crucial issues that could play a pivotal role in the achievement of Circular Economy action plan targets: the need to increase the recycling quotas for specific MSW fractions through the separate collection, and therefore the improvement of definite treatment process chains; the optimization of the recovery of secondary raw materials from incineration bottom ash, involving the Recycling of ferrous and nonferrous metals and the mineral fraction. Both issues need to find an extensive application across all member states to decrease the actual differences in the adoption of sustainable MSW management options. KW - Bottom ash KW - Circular economy KW - Waste treatment KW - Recycling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520285 DO - https://doi.org/10.3390/en13236412 SN - 1996-1073 VL - 13 IS - 23 SP - 6412 EP - 6412 PB - MDPI CY - Basel AN - OPUS4-52028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -