TY - CONF A1 - Gerrits, Ruben A1 - Hennehan, M.J. A1 - Frick, D.A. A1 - von Blanckenburg, F. A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - The role of melanin in fungal mineral weathering and metal corrosion N2 - Melanins are organic pigments produced by most fungi. These organisms either fix these pigments in their cell wall or secrete them into their extracellular environment to protect themselves against an array of physicochemical stresses (e.g., UV irradiation, desiccation, ...). Melanin can adsorb metals like Fe. How this affects fungal uptake of Fe and deterioration of Fe-containing minerals and metals is however less known. To study this, we use the model fungi Knufia petricola A95, a rock-inhabiting fungus known to deteriorate minerals and have melanised cell walls, and Amorphotheca resinae, able to contaminate fuel tanks, secrete melanin and corrode metals. In K. petricola, we have deleted genes involved in melanin production and Fe uptake using CRISPR/Cas. Through comparison of the geochemical signatures of these gene deletion mutants with those of the wild type (WT), we explore the specific mineral/metal deterioration mechanisms of melanised fungi. Fe isotope signatures of the biomass of melanin- and Fe uptake-deficient mutants of K. petricola revealed that Fe adsorbed either directly onto melanin or after being reduced by Fe reductases. Importantly, once adsorbed to melanin, Fe could not be mobilised and taken up into the cell: both the WT and its melanin-deficient mutant, previously grown at Fe replete conditions, showed similar growth at Fe deficient conditions. Olivine dissolution experiments revealed that Fe oxidation inhibits dissolution. K. petricola was able to enhance dissolution when this inhibition is strongest (at pH 6) and prevented dissolution when this inhibition is weakest (at pH 4). The fungus therefore dissolves olivine by interacting with the oxidised Fe at the olivine surface. However, Fe uptake did not seem to be involved: mutants deficient in various Fe uptake mechanism dissolved olivine at the same rate as the WT. This indicates that Fe adsorption onto melanin might play a key role. This is also shown by K. petricola’s ability to enhance olivine dissolution even further if secreting a melanin precursor and A. resinae’s corrosion of carbon steel whilst secreting melanin. Combined, our results imply that the Fe adsorbed to melanin cannot be taken up but enables fungi to deteriorate Fe-containing substrates at a higher rate. T2 - Goldschmidt 2023 Conference CY - Lyon, Frankreich DA - 10.07.2023 KW - MIC KW - Bio-weathering KW - Olivine PY - 2023 AN - OPUS4-58523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knisz, J. A1 - Eckert, R. A1 - Gieg, L. A1 - Koerdt, Andrea A1 - Lee, J. A1 - Silva, E. A1 - Skovhus, T. L. A1 - An-Stepec, B. A. A1 - Wade, S. A. T1 - Microbiologically Influenced Corrosion - More than just Microorganisms JF - Microbiologically Influenced Corrosion - More than just Microorganisms N2 - Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern which affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines is limited. A truly interdisciplinary approach, that would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods and approaches to help solve MIC related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field. KW - MIC KW - Biodeterioration KW - Biocorrosion KW - Interdisciplinarity KW - Multiple lines of evidence PY - 2023 DO - https://doi.org/10.1093/femsre/fuad041 SN - 0168-6445 VL - 47 IS - 5 SP - 1 EP - 70 PB - FEMS Microbiology Reviews AN - OPUS4-58066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Wasserstofflagerung in unterirdischen geologischen Formationen und potenzielle Risiken durch Mikroorganismen N2 - Bei dem Vortrag werden die potentiellen mikrobiologischen Einflüsse im Falle der Lagerung von Wasserstofflagerung in unterirdischen geologischen Formationen vorgestellt, die Zusammenarbeit mit internen und auch externen Partnern. Der Fokus liegt dabei auf UGF; anaerobe Umgebungen, Sulfate reduzierenden Bakterien, methanogenen Archaea, weiterleitenden Systeme und die Kombination der Untersuchung abiotisch/biotische T2 - VDI-Schadensanalyse (49) CY - Würzburg, Germany DA - 17.10.2023 KW - MIC KW - Wasserstofflagerung KW - Unterirdische Speicher KW - Kontamination von H2 KW - H2-Abbau KW - Mikroorganismen KW - Biotische/abiotische Faktoren PY - 2023 AN - OPUS4-58645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -