TY - CONF A1 - Simon, Franz-Georg A1 - Chubarenko, B. A1 - Purina, I. T1 - Approach for analysis of environmental impact of geosynthetics in aquatic systems by example of the Baltic Sea N2 - Whereas the behavior of geosynthetics in landfill engineering is well studied and documented since decades, little is known on application in applications such as coastal protection or ballast layers for wind energy plants. However, due to the rapid expansion of offshore wind energy, rising water levels and more extreme weather conditions as a result of climate change more and more hydraulic engineering projects will be realized in the future. Construction with geosynthetics has various advantages, but it has to be ensured that there is no negative environmental impact from the application of geosynthetics in hydraulic engineering. It is expected that any effect will be visible only on the long-term. Therefore, accelerated testing is needed to derive requirements for geosynthetics in hydraulic engineering. T2 - 7th IEEE/OES Baltic Symposium, Clean and Safe Baltic Sea and Energy Security for the Baltic countries CY - Klaipeda, Lithuania DA - 12.06.2018 KW - Geosynthetics KW - Artificial ageing KW - Micro plastic PY - 2018 AN - OPUS4-45206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chubarenko, B. A1 - Domnin, D. A1 - Simon, Franz-Georg A1 - Scholz, Philipp A1 - Leitsin, V. A1 - Tovpinets, A. A1 - Karmanov, K. A1 - Esiukova, E. T1 - Change over Time in theMechanical Properties of Geosynthetics Used in Coastal Protection in the South-Eastern Baltic JF - Journal of Marine Science and Engineering N2 - The most massive design on the Baltic shore used geosynthetic materials, the landslide protection construction in Svetlogorsk (1300 m long, 90,000 m2 area, South-Eastern Baltic, Kaliningrad Oblast, Russian Federation) comprises the geotextile and the erosion control geomat coating the open-air cliff slopes. Due to changes in elastic properties during long-term use in the open air, as well as due to its huge size, this structure can become a non-negligible source of microplastic pollution in the Baltic Sea. Weather conditions affected the functioning of the structure, so it was assessed that geosynthetic materials used in this outdoor (open-air) operation in coastal protection structures degraded over time. Samples taken at points with different ambient conditions (groundwater outlet; arid places; exposure to the direct sun; grass cover; under landslide) were tested on crystallinity and strain at break. Tests showed a 39–85% loss of elasticity of the polymer filaments after 3 years of use under natural conditions. Specimens exposed to sunlight are less elastic and more prone to fail, but not as much as samples taken from shaded areas in the grass and under the landslide, which were the most brittle. KW - Geosynthetics KW - Microplastic KW - Degradation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567978 UR - https://www.mdpi.com/2077-1312/11/1/113 DO - https://doi.org/10.3390/jmse11010113 SN - 2077-1312 VL - 11 IS - 1 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-56797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chubarenko, B. A1 - Kileso, A. A1 - Esiukova, E. A1 - Pinchuk, V. A1 - Simon, Franz-Georg T1 - Dataset on geosynthetic material debris contamination of the South-East Baltic shore JF - Data in Brief N2 - The database gives information on the contamination of the shore of the South-Eastern Baltic with the debris of geosynthetic materials for the period 2018–2020. This new type of coastal pollution enters the natural environment due to the destruction of coastal protection structures and construction activities. The database contains sections: (1) a list of types of geosynthetic material residues, their photographic images and photographs illustrating examples of finds in natural conditions [1 List_geosynthetic_debris_SEB], (2) monitoring data on the contamination of the beach strip with the debris of geotextiles, braids from gabions, geocontainers (big bags), geocells and geogrids for the beaches of the South-Eastern Baltic for the period 2018–2020 [2 Monitoring_geosynthetic_debris_SEB]; (3) statistical distributions of the found geosynthetic debris by size [3 Scales_geosynthetic_debris_SEB] and (4) results of test surveys on the shores of Lithuania and Poland adjacent to Kaliningrad Oblast. All data refer to the beaches of the Kaliningrad Oblast (Russia), including the Russian parts of the Vistula and Curonian Spits, but also contains information on a one-time assessment of the pollution of the beaches of the adjacent territories: the Polish shore from the Poland-Russia border on the Vistula Spit to the mouth of the Vistula River, the Lithuanian shore from the border Lithuania-Russia on the Curonian Spit to the border of Latvia-Lithuania. Materials were collected during field surveys within the ERANET-RUS_Plus joint project EI-GEO, ID 212 (RFBR 18-55-76002 ERA_a, BMBF 01DJ18005). KW - Geosynthetics KW - Geotextiles KW - Contamination KW - Marine littering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541947 DO - https://doi.org/10.1016/j.dib.2021.107778 SN - 2352-3409 VL - 40 SP - 1 EP - 7 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-54194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Esiukova, Elena A1 - Chubarenko, Boris A1 - Simon, Franz-Georg T1 - Debris of geosynthetic materials on the shore of South-Eastern Baltic (Kaliningrad Oblast, Russian Federation) T2 - 2018 IEEE/OES Baltic International Symposium (BALTIC) N2 - Geosynthetics are widely used in hydraulic engineering and within coastal protection constructions at the Baltic Sea shore, such as walls, promenades, and gabions walls. Storms influence leads to deformation of some of the protection structures and cause the release of geotextiles onto the beach. Fragments of geotextile migrate along the shore, experiencing additional degradation and destruction down to macro-, meso-, and micro-particles. During October 2017 - March 2018, the Baltic Sea shore along the Sambia Peninsula (Kaliningrad Oblast of the Russian Federation) was monitored to establish the contamination of sandy beaches by geotextiles that had degraded. Several local sources of pollution of beaches by geosynthetic materials were established. T2 - 7th IEEE/OES Baltic Symposium "Clean and Safe Baltic Sea and Energy Security for the Baltic countries" CY - Klaipeda, Lithuania DA - 12.06.2018 KW - Baltic Sea KW - Geotextiles KW - Geosynthetics KW - Degradation KW - Coastal protection PY - 2018 SN - 978-1-5386-4467-6 DO - https://doi.org/10.1109/BALTIC.2018.8634842 SN - 2150-6035 SP - 1 EP - 6 PB - IEEE Xplore Digital Library CY - New York AN - OPUS4-47760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg T1 - EI-GEO (S&T CALL 2017), Environmental impact of geosynthetics in aquatic systems N2 - 2021 marks the 10th anniversary of the first ERA.Net RUS joint call for European-Russian STI cooperation projects. Pooling the resources of more than 20 European and Russian funding agencies, more than 150 projects were funded with an estimated budget of about € 60 million. Being even larger than many thematic ERA.NETs, the ERA.Net RUS Plus has been the biggest and most successful regional ERA.NET so far. Indicating a strong demand for scientific cooperation, the smaller-scale projects funded within the ERA.Net RUS (Plus) calls perfectly complement Russian participation in the EU Framework Programmes. Not least of all, the ERA-Net RUS calls are examples of successful collaboration at a time when cooperation in other fields is complicated by the politically challenging situation. These calls contributed to keeping the communication channels open. Against this background a dedicated event in late 2021 highlighted what has been achieved within the first decade of the initiative. The project EI-GEO coordinated by BAM was selected as best practice project. The presentation displays the main results of the project and discusses the key success factors. T2 - ERA.Net RUS: Celebrating ten years of multilateral European-Russian Research and Innovation cooperation CY - Online meeting DA - 09.12.2021 KW - Geosynthetics KW - Coastal protection KW - European research area PY - 2021 AN - OPUS4-53965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg A1 - Barqawi, Haitham A1 - Chubarenko, B. A1 - Esiukova, E. A1 - Putna-Nimane, I. A1 - Barda, I. A1 - Strode, E. A1 - Purina, I. ED - Köppen, S. ED - Reckermann, M. T1 - EI‐GEO environmental impact of geosynthetics in aquatic systems T2 - Earth system changes and baltic sea coasts - Conference proceedings of the 3rd baltic earth conference N2 - EI‐GEO is a multinational research project (Germany, Latvia, Russia) funded under the ERA.Net RUS Plus Call 2017. Aim of the project is the investigation whether geosynthetics in hydraulic engineering applications could be a source of microplastics (MPs) and other contaminants to the aquatic environment causing negative effects to aquatic organisms. Whereas the behavior of geosynthetics in landfill engineering is well studied and documented since decades, little is known on application in applications such as coastal protection or ballast layers for wind energy plants. However, due to the rapid expansion of offshore wind energy, rising water levels and more extreme weather conditions as a result of climate change more and more hydraulic engineering projects will be realized in the future. Applied methods are artificial ageing of geosynthetics in environmental simulation chambers, storage of samples under environmental condition for comparison with laboratory simulation, sample characterization by microscopic methods and ecotoxicological testing of water in contact with geosynthetics. In parallel a case study at the Baltic Sea shore at Kaliningrad Oblast (Russia) will be performed. The aim of study is to estimate the level of pollution of the beaches by geosynthetic debris and identify the possible sources. T2 - 3rd Baltic Earth Conference CY - Online meeting DA - 02.06.2020 KW - Geosynthetics KW - Micro plastic KW - Hydraulic engineering PY - 2020 UR - https://www.baltic-earth.eu/hel2020/material/3rd_BalticEarth_Conference_Proceedings.pdf SN - 2198-4247 SP - 151 EP - 152 PB - International Baltic Earth Secretariat Publications CY - Geesthacht AN - OPUS4-50881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Putna-Nimane, I. A1 - Barda, I. A1 - Liepina-Leimane, I. A1 - Strode, E. A1 - Kileso, A. A1 - Esiukova, E. A1 - Chubarenko, B. A1 - Purina, I. A1 - Simon, Franz-Georg T1 - Environmental impact of geosynthetics in coastal protection JF - Materials N2 - Geosynthetic materials are applied in measures for coastal protection. Weathering or any damage of constructions, as shown by a field study in Kaliningrad Oblast (Russia), could lead to the littering of the beach or the sea (marine littering) and the discharge of possibly harmful additives into the marine environment. The ageing behavior of a widely used geotextile made of polypropylene was studied by artificial accelerated ageing in water-filled autoclaves at temperatures of 30 to 80 °C and pressures of 10 to 50 bar. Tensile strength tests were used to evaluate the progress of ageing, concluding that temperature rather than pressure was the main factor influencing the ageing of geotextiles. Using a modified Arrhenius equation, it was possible to calculate the half-life for the loss of 50% of the strain, which corresponds to approximately 330 years. Dynamic surface leaching and ecotoxicological tests were performed to determine the possible release of contaminants. No harmful effects on the test organisms were observed. KW - Geosynthetics KW - Geotextiles KW - Dynamic surface leaching test KW - Artificial ageing KW - Marine littering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520576 DO - https://doi.org/10.3390/ma14030634 SN - 1996-1944 VL - 14 IS - 3 (Special issue: Measurement of the environmental impact of materials) SP - 634-1 EP - 634-13 PB - MDPI CY - Basel AN - OPUS4-52057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg T1 - Product testing and performance N2 - Geosynthetic materials are applied in measures for coastal protection. Weathering or any damage of constructions, as shown by a field study in Kaliningrad Oblast (Russia), could lead to the littering of the beach or the sea (marine littering) and the discharge of possibly harmful additives into the marine environment. The ageing behavior of a widely used geotextile made of polypropylene was studied by artificial accelerated ageing in water-filled autoclaves at temperatures of 30 to 80° C and pressures of 10 to 50 bar. Tensile strength tests were used to evaluate the progress of ageing, concluding that temperature rather than pressure was the main factor influencing the ageing of geotextiles. Using a modified Arrhenius equation, it was possible to calculate the half-life for the loss of 50% of the strain, which corresponds to approximately 330 years. T2 - EuroGeo-7, Session Geosynthetics, Sustainability and Current Industry Challenges CY - Warschau, Poland DA - 04.09.2022 KW - Geosynthetics KW - Ageing KW - Autoclave tests PY - 2022 AN - OPUS4-55671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -