TY - JOUR A1 - Hofmann, Michael A1 - Richter, Matthias A1 - Jann, Oliver T1 - Robustness validation of a test procedure for the determination of the radon-222 exhalation rate from construction products in VOC emission test chambers N2 - This study investigated the adaptation of the state-of-the-art test procedure for the determination of emissions of volatile organic compounds (VOC) from materials into indoor air to test for the radon exhalation from stony construction products. A complete robustness validation including all relevant parameters showed that the procedure can be well applied by testing institutes already holding available the required VOC testing infrastructure that solely needs to be complemented by calibrated commercial radon measurement instrumentation. When measurements of the radon exhalation from construction materials become mandatory by law, test capacity can easily be applied. This work can serve as a recommendation for the European standardisation that still is on hold in this point. KW - Radon exhalation KW - Construction products KW - Emission test chamber KW - Robustness validation KW - Standardisation PY - 2020 U6 - https://doi.org/10.1016/j.apradiso.2020.109372 SN - 0969-8043 VL - 166 IS - 109372 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-51145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Wilke, Olaf A1 - Kalus, Sabine A1 - Schultes, P. A1 - Hutzler, C. A1 - Luch, A. T1 - Formaldehyde emissions from wooden toys: Comparison of different measurement methods and assessment of exposure N2 - Formaldehyde is considered as carcinogenic and is emitted from particleboards and plywood used in toy manufacturing. Currently, the flask method is frequently used in Europe for market surveillance purposes to assess formaldehyde release from toys, but its concordance to Levels measured in emission test chambers is poor. Surveillance laboratories are unable to afford laborious and expensive emission chamber testing to comply with a new amendment of the European Toy Directive; they need an alternative method that can provide reliable results. Therefore, the application of miniaturised emission test chambers was tested. Comparisons between a 1 m3 emission test chamber and 44 mL microchambers with two particleboards over 28 days and between a 24 L desiccator chamber and the microchambers with three puzzle samples over 10 days resulted in a correlation coefficient r2 of 0.834 for formaldehyde at steady state. The correlation between the results obtained in microchambers vs. flask showed a high variability over 10 samples (r2: 0.145), thereby demonstrating the error-proneness of the flask method in comparison to methods carried out under ambient parameters. An exposure assessment was also performed for three toy puzzles: indoor formaldehyde concentrations caused by puzzles were not negligible (up to 8 µg/m3), especially when more conservative exposure scenarios were considered. KW - EN 717-3 KW - Formaldehyde KW - Wooden toys KW - Emission test chamber KW - Flask method KW - Microchamber PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520196 VL - 14 IS - 2 (Special issue: Measurement of the environmental impact of materials) SP - 262-1 EP - 262-16 PB - MDPI AN - OPUS4-52019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Olaf A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Jann, Oliver T1 - Volatile organic compounds from building products - Results from six round robin tests with emission test chambers conducted between 2008 and 2018 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories, their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test (round robin test, RRT) every two years using well-characterized test materials (one sealant, one furniture board, and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 36 VOCs were included of which 33 gave test chamber air concentrations between 13 and 83 µg/m3. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Three compounds had higher concentrations between 326 and 1105 µg/m3. In this paper, the relative standard deviations (RSD) of BAM round robin tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 28 % in 2018. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51 %. KW - Construction product KW - Emission test chamber KW - Interlaboratory comparison KW - Proficiency testing KW - Rround robin test KW - VOC emission PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-526139 VL - 31 IS - 6 SP - 2049 EP - 2057 PB - Wiley AN - OPUS4-52613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandt, S. A1 - Brozowski, F. A1 - Horn, Wolfgang A1 - Müller, B. T1 - Odour testing of building products: Examinations for an on-going development of the test standard ISO 16000-28 N2 - VOC-emissions and their odours from building products and furnishings present indoors should not have an impact on personal well-being or health. Odours can be measured by applying the standard ISO 16000-28. Indoor air determination of odour emissions from building products using test chambers. One of the described procedures is the assessment of perceived intensity using a comparative scale by a group of panellists. In this paper, the perceived intensity sampling procedure and its evaluation method are investigated and shown to need improvement. New technical developments in the methodology used to increase the reproducibility of measurement results are discussed. Since odour tests are used for labelling, they have a major influence on the assessment of construction products, similar to the procedure of the German Committee for Health Evaluation of Building Products (AgBB). In the original ISO standard, the evaluation is typically performed using a sampling container separated from the emission chamber. For a better sample presentation, an adapter was developed to connect the emission test chamber to the evaluation funnel and thus enable an odour assessment which is comparable to a direct measurement. The investigations show that losses of odourous substances can be greatly reduced, which is very desirable when seeking to obtain reliable results in odour measurement. Another experimental series was carried out to reduce the measurement effort in the evaluation of perceived intensity. Application of the developed greater than or less than/equal to. query could be helpful here. The results show that the query mostly leads to the same result as the evaluation of the perceived intensity using the method according to the standard but is much easier to perform. Overall, the results can contribute to improving the acceptance of the evaluation of perceived intensity using ISO 16000-28 and to determining odours from building materials increasingly more precisely. T2 - Healthy Buildings 2023 Europe CY - Aachen, Germany DA - 11.06.2023 KW - Building material KW - Odour KW - Perceived intensity KW - VOC KW - Emission test chamber PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-580070 SP - 345 EP - 352 PB - ISIAQ (International Society of Indoor Air Quality and Climate) CY - Herndon, VA, USA AN - OPUS4-58007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Proposal of a standard test method for the quantification of particulate matter during 3D printing and the systematic ranking of filament materials N2 - The diversity of fused filament fabrication (FFF) filaments continues to grow rapidly as the popularity of FFF-3D desktop printers for the use as home fabrication devices has been greatly increased in the past decade. Potential harmful emissions and associated health risks when operating indoors have induced many emission studies. However, the lack of standardization of measurements impeded an objectifiable comparison of research findings. Therefore, we designed a chamber-based standard method, i.e., the strand printing method (SPM), which provides a standardized printing procedure and quantifies systematically the particle emission released from individual FFF-3D filaments under controlled conditions. Forty-four marketable filament products were tested. The total number of emitted particles (TP) varied by approximately four orders of magnitude (1E9 ≤ TP ≤ 1E13), indicating that origin of polymers, manufacturer-specific additives, and undeclared impurities have a strong influence. Our results suggest that TP characterizes an individual filament product and particle emissions cannot be categorized by the polymer type (e.g., PLA or ABS) alone. The user's choice of a filament product is therefore decisive for the exposure to released particles during operation. Thus, choosing a filament product awarded for low emissions seems to be an easily achievable preemptive measure to prevent health hazards. T2 - 11th International Aerosol Conference CY - Athens, Greece DA - 04.09.2022 KW - Ultrafine particles KW - FFF-3D-Printer KW - Indoor emission KW - Emission test chamber KW - Test method KW - Exposure risk PY - 2022 AN - OPUS4-55666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -