TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Phenotypic heterogeneity in disinfection: sources and consequences for antimicrobial resistance N2 - A summary of projects here at BAM which investigate the influence of phenotypic heterogeneity on the outcome of disinfection and the influence on antimicrobial resistance. This presentation was given in the Theory Seminar of the Quantitative and Theoretical Biology group of Prof. Oliver Ebenhöh at HHU Düsseldorf T2 - Theory Seminar in the Quantitative and Theoretical Biology group at HHU Düsseldorf CY - Düsseldorf, Germany DA - 24.02.2022 KW - Disinfection KW - Biocides KW - Heterogeneity KW - Resistance PY - 2022 AN - OPUS4-54442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Heterogeneous tolerance to biocides and its consequences for the evolution of antimicrobial resistance N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance (AMR). Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Here, I present results which demonstrate that phenotypic heterogeneity in E. coli, namely the formation of tolerant persister cells, can enable the survival of disinfection and consequentially facilitate the evolution of AMR. Using experimental evolution that selects for tolerance, we find that mutations in lipid A biosynthesis arise following periodic treatment with benzalkonium chloride (BAC), a widely used disinfectant. BAC tolerance is associated with additional, diverse mutations as well as changes in the susceptibility to antibiotics from different classes and changes in motility and biofilm formation, suggesting extensive regulatory re-wiring in the evolved clones. Remarkably, we find that fitness costs (growth rate reduction) incurred by BAC tolerance are alleviated in the presence of antibiotics. These findings demonstrate the complexity underlying the adaptation to antimicrobials and highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. T2 - 4th VAAM discussion meeting 'Microbial Cell Biology' CY - Berlin, Germany DA - 09.10.2022 KW - Persistence KW - Biocides KW - Evolution KW - Disinfection KW - Biocide tolerance KW - Heterogeneity PY - 2022 AN - OPUS4-55958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by phenotypic heterogeneity and transcriptome remodeling N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - µClub Seminar Series CY - Berlin, Germany DA - 26.05.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity PY - 2023 AN - OPUS4-58031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by a Disrupted Cellular State and Heterogenous Regrowth Dynamics N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Molecular Mechanisms in Evolution (GRS) Gordon Research Seminar CY - Easton, Massachusetts, USA DA - 24.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics KW - AMR PY - 2023 AN - OPUS4-58032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Gustiherdini, Cahyaruri A1 - Lewerenz, Dominique A1 - Kanaris, Orestis A1 - Schreiber, Frank T1 - The disinfectant glutaraldehyde induces antibiotic tolerance N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Gordon Research Conference - Molecular Mechanisms in Evolution CY - Easton, Massachusetts, United States DA - 25.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics PY - 2023 AN - OPUS4-58033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -