TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of a procedure for the analysis of the emissions of VVOCs N2 - Several aspects were explored towards the standardization of a suitable procedure. The use of gaseous standards is necessary and a standard gas mixture containing 60 substances was successfully generated and employed for further investigations. The suitability of different chromatography columns was addressed: The use of PLOT (Porous Layer Open Tubular) columns is well suitable for VVOC analysis. The recoveries of the 60 analytes on several adsorbents and their combinations were determined: A combination of a graphitized carbon black and a carbon molecular sieve showed great results for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. Different options such as purging, the use of a drying system or splitting were investigated for water removal. This contribution will present experimental results supporting the standardization of a method for VVOC analysis. T2 - Indoor Air conference CY - Kuopio, Finland DA - 12.06.2022 KW - Analytical method KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kochovski, Z. A1 - Feldmann, Ines A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Ni- and Co-Struvites: Revealing Crystallization Mechanisms and Crystal Engineering toward Applicational Use of Transition Metal Phosphates N2 - Industrial and agricultural waste streams (waste water, sludges, tailings, etc.) which contain high concentrations of NH4+, PO43–, and transition metals are environmentally harmful and toxic pollutants. At the same time, phosphorous and transition metals constitute highly valuable resources. Typically, separate pathways have been considered to extract hazardous transition metals or phosphate independently from each other. Investigations on the simultaneous removal of multiple components have been carried out only to a limited extent. Here, we report the synthesis routes for Ni- and Co-struvites (NH4MPO4·6H2O, M = Ni2+ and Co2+), which allow for P, ammonia, and metal co-precipitation. By evaluating different reaction parameters, the phase and stability of transition metal struvites as well as their crystal morphologies and sizes could be optimized. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P) ratios, whereas Co-struvite only forms at low M/P ratios. Detailed investigations of the precipitation process using ex situ and in situ techniques provided insights into the crystallization mechanisms/crystal engineering of these materials. M-struvites crystallize via intermediate colloidal amorphous nanophases, which subsequently aggregate and condense to final crystals after extended reaction times. However, the exact reaction kinetics of the formation of a final crystalline product varies significantly depending on the involved metal cation in the precipitation process: several seconds (Mg) to minutes (Ni) to hours (Co). The achieved level of control over the morphology and size makes precipitation of transition metal struvites a promising method for direct metal recovery and binding them in the form of valuable phosphate raw materials. Under this paradigm, the crystals can be potentially up-cycled as precursor powders for electrochemical or (electro)catalytic applications, which require transition metal phosphates. KW - Crystallization KW - Struvite KW - Nickel KW - Cobalt KW - Phosphorous recovery KW - Up-cycling KW - Aqueous synthesis PY - 2022 DO - https://doi.org/10.1021/acs.cgd.2c00284 VL - 22 IS - 7 SP - 4305 EP - 4315 PB - ACS Publications CY - Washington D.C. AN - OPUS4-55286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute T1 - The Impact of Weather Conditions on Biocides in Paints N2 - Aim. The European biocidal products regulation requires environmental risk assessments for biocidal products under service conditions. This is only possible, if processes that lead to biocide emissions into the environment are understood and can be reasonably predicted. Actual emissions due to leaching result from different processes that are affected by material properties and environmental conditions. Transformation of biocides can affect emissions considerably. Leaching and possible transformation of the film preservatives carbendazim, diuron, OIT and terbutryn in paints was observed under laboratory and field conditons in order to investigate the influence of different factors, e.g. water contact and radiation on biocide emissions. The paints contained either white titanium dioxide or a red iron oxide pigment to check whether pigments affect leaching processes. Methods. Test specimens of a water-based styrene acrylic dispersion paint on glass were exposed to UVA-radiation in a UV weathering device and/or exposed to water contact by immersion events on the basis of the European standard EN 16105. Plywood panels were coated and exposed to natural weather conditions in a semi-field experiment. Concentrations of biocides and transformation products were analysed in leachates from laboratory tests, runoff samples and remaining coatings. Results. The impact of weathering conditions on transformation processes differs for the investigated active substances. Water contact, radiation as well as pigments in the paints determine the pattern and amount of transformation products on coatings, leachates and runoff water. Observations from laboratory and field experiments were compared. It proved that results from laboratory tests support understanding of data from field experiments. Detailed knowledge on the fate of active substances under environmental conditions supports manufacturers to develop safe applications of film preservatives and authorities to evaluate its environmental impact. T2 - European Technical Coatings Congress 2022 CY - Kraków, Poland DA - 12.07.2022 KW - Paints KW - Biocides KW - Transformation KW - Emission PY - 2022 AN - OPUS4-55274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute A1 - Kalbe, Ute A1 - Happel, O. T1 - Combination of leaching tests with ecotoxicity and chemical analysis – lessons learnt N2 - The presentation describes analytical methods to characterize eluates from leaching tests and identify organic substances in leachates. Chances to obtain complementary information from ecotoxtests and chemical analysis are discussed. T2 - Workshop: Ecotoxicological evaluation of construction products – test results, implementation in Guidance, Technical Standards and Ecolabelling CY - Online meeting DA - 21.03.2022 KW - Leaching KW - Ecotoxicity KW - Construction products PY - 2022 AN - OPUS4-55276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Light-dependent development in Botrytis cinerea N2 - Sunlight is an important environmental factor is almost all ecosystems by being a source of energy, information, and stress. All organisms must protect themselves from the harmful effects of light such as UV radiation, ROS accumulation, heat, and desiccation. Finally, light qualities and quantities can be used for decision making, timing and as guide for directed growth when they are sensed and transduced into intracellular signals. Botrytis cinerea and other plant pathogens infecting the sun-exposed parts of the plant must cope with the high light conditions the host plant seeks. Further they experience an altered light spectrum (‘green gap’) when they colonize shaded parts of the plant; it is depleted for blue and red light that is absorbed by the plant chlorophyll and enriched for green and far-red light that is reflected or transmitted by the plant tissue. As these ambient light conditions trigger the shade avoidance response in the plant, the pathogens may trigger their own ‘shading response’ such as the upregulation of virulence determinants and inoculum production. B. cinerea maintains a highly sophisticated light signaling machinery that senses different light qualities to trigger a variety of responses, that are protection, morphogenesis, positive and negative tropisms, and entrainment. These characteristics render B. cinerea a valuable model to enlighten the role of light in parasitic fungus-plant interactions and beyond. The vegetative mycelium – the core of all infection and developmental programs – is not visibly pigmented and thus considered to be sensitive to biotic and abiotic stresses. However, the vegetative hyphae have a very limited half-life and are usually restricted to the invasive growth phase in which they are protected from light by the plant tissue. Fast colonization of host tissues and by this proper nutrient acquisition enables the rapid formation of long-lasting reproduction structures (melanized conidiophores with conidia, sclerotia) on the surfaces of rotted plant tissues. Depending on the light and temperature conditions, conidiation or sclerotial development is initiated. Taken together, B. cinerea uses light-regulated signaling networks to avoid light whenever possible; for example, by minimizing the half-life of sensitive cells that are hiding in plant tissues and by scheduling critical steps such as conidiogenesis, conidial germination and penetration of plant tissues for the night. T2 - BotrySclero2022 CY - Avignon, France DA - 13.06.2022 KW - Fungus KW - Light KW - Stress KW - Melanin PY - 2022 AN - OPUS4-55248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Fungi in extreme habitats: Lessons from the microcolonial black fungus Knufia petricola N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. But to cope with sunlight-associated stresses [e.g. high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses] it is important for fungi to accurately sense and respond to changes in light. The genomes of black [dihydroxynaphthalene (DHN) melanin-containing] fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for fungi that receive nutrients through cooperation with phototrophs. T2 - Gordon Research Conference "Cellular and Molecular Fungal Biology" CY - Holderness, NH, USA DA - 26.06.2022 KW - Light KW - Stress KW - Photoperception KW - Pigments PY - 2022 AN - OPUS4-55249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Schwibbert, Karin A1 - Richter, Anja A1 - Bonse, Jörn T1 - BioCombs4Nanofibers: From nanofibers over spiders to bacteria N2 - This 6 minute long MP4-video presents some key results of the European research project "BioCombs4Nanofibers" to the broader public. Inspired by nature, some concepts of certain types of spiders are transferred to technology in order to develop bacteria-repellent surfaces through laser surface nanostructuring. Funding notice: This study was funded by the European Union's research and innovation program under the FET Open grant agreement No. 862016 (BioCombs4Nanofibers, http://biocombs4nanofibers.eu). KW - Antiadhesive surfaces KW - Laser-induced periodic surface structures (LIPSS) KW - Cribellate spiders KW - Bacterial adhesion tests KW - Bacteria-repellent surfaces PY - 2022 UR - https://download.jku.at/org/7kM/xyU/BioCombs4Nanofibers/D5.6_video%20for%20the%20broader%20public_23.03.2022.mp4 UR - https://www.jku.at/en/biocombs4nanofibers/dissemination/ DO - https://doi.org/10.26272/opus4-54939 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Alexandra A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Counting Small Particles in Electron Microscopy Images — Proposal for Rules and Their Application in Practice N2 - Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials. KW - Nano KW - Particle size distribution KW - Nanoparticle KW - Nanomaterial KW - OECD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551891 DO - https://doi.org/10.3390/nano12132238 SN - 2079-4991 VL - 12 IS - 13 SP - 2238 PB - MDPI CY - Basel AN - OPUS4-55189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kämpf, K. A1 - Bachmann, V. A1 - Peters, T. A1 - Kuhlbusch, T. T1 - Test Guideline No. 125 - Nanomaterial Particle Size and Size Distribution of Nanomaterials N2 - The OECD Working Party on Manufactured Nanomaterials (WPMN) has actively worked towards understanding possible safety issues for manufactured nanomaterials and has contributed significantly to resolving these by developing Test Guidelines, Guidance Documents, Test Reports and other publications with the aim of a safe use of manufactured nanomaterials. To address the specific needs of manufactured nanomaterials, the OECD Test Guideline No. 110 “Particle Size Distribution/Fibre Length and Diameter Distributions” was identified as one of the test guidelines (TGs) to require an update. The current TG 110 (adopted in 1981) is only valid for particles and fibres with sizes above 250 nm. The WPMN prioritised to either update TG 110 to be applicable also to particles at the nanoscale or draft a new nanomaterial specific (TG). Eventually, it was decided to develop a new TG that covers the size range from 1 nm to 1000 nm, intended for particle size and particle size distribution measurements of nanomaterials. Paragraph 11 provides further justification on the need for such measurements for nanomaterials. This TG overlaps with TG 110 in the size range from 250 nm to 1000 nm. When measuring particulate or fibrous materials, the appropriate TG should be selected depending on the size range of particles tested. In line with TG 110, the new TG for nanomaterials includes separate parts for particles and fibres. For the part of this TG which addresses particles, several methods applicable to nanomaterials were reviewed and included to take into account developments since 1981 when the TG 110 was adopted. This TG includes the following methods: Atomic Force Microscopy (AFM), Centrifugal Liquid Sedimentation (CLS)/Analytical Ultracentrifugation (AUC), Dynamic Light Scattering (DLS), Differential Mobility Analysis System (DMAS), (Nano)Particle Tracking Analysis (PTA/NTA), Small Angle X-Ray Scattering (SAXS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The method Single Particle Inductively Coupled Plasma Mass Spectrometry (sp-ICP-MS) could not be sufficiently validated within the interlaboratory comparison (ILC) carried out for the different methods in this TG (see also paragraph 6 for further details on the ILC). Applicability of sp-ICP-MS is strongly limited to nanomaterials with high mass values in combination with a sufficiently high particle size. However, the general method ICP-MS is widely used and the sp-mode for the size measurement of specific nanomaterials was successfully performed in ILCs elsewhere. The method is therefore included in the Appendix Part C of this TG, which further details the limitations of sp-ICP-MS. For measuring the diameter and length of fibres, analysing images captured with electron microscopy is currently the only method available. This TG includes Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). To test the validity of this TG, an ILC was performed. Test materials were chosen to reflect a broad range of nanomaterial classes, e.g. metals, metal oxides, polymers and carbon materials. Where possible, well-characterised test materials were used. Additionally, the test materials were chosen to reflect a broad range of sizes representing the size range 1 nm to 1000 nm. Specifically for fibres, a broad range of aspect ratios was included (length/diameter of 3 to > 50). Some of the test materials used are commercially available and further references are given in the validation report of the ILC. Sample preparation for physical chemical characterisation is critical for all listed methods. Due to the differences between individual nanomaterials and due to the wide range of individual material properties it is impossible to have a generic protocol to obtain the best possible sample preparation for every nanomaterial. Therefore, a generic protocol on sample preparation is not part of this TG. Information on sample preparation is given in the paragraphs 25-29, 33, 34 and 39 for particles and in paragraphs 159) for fibres. Further information on sample preparation of nanomaterials for physical chemical characterisation can be found in the OECD Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials and elsewhere. KW - Nano KW - Nanomaterial KW - Nanoparticle KW - OECD KW - Test guideline PY - 2022 DO - https://doi.org/10.1787/20745753 SP - 1 EP - 72 PB - Organisation for Economic Co-operation and Development CY - Paris AN - OPUS4-55191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sichler, Theresa A1 - Herzel, Hannes A1 - Adam, Christian T1 - European Sewage Sludge Ash Monitoring N2 - For the European sewage sludge ash monitoring ash samples from sewage sludge incineration plants were requested from all over Europe. First results of the received samples regarding main and trace element contents were presented at ESPC4. Moreover, a list of all known European facilities for sewage sludge monoincineration was presented. T2 - European Sustainable Phosphorus Conference 4 CY - Vienna, Austria DA - 20.06.2022 KW - Sewage sludge ash KW - Sewage sludge incineration KW - Phosphorus recovery PY - 2022 AN - OPUS4-55145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirsch, Klemens A1 - Matschiavelli, N. A1 - Koerdt, Andrea A1 - Stumpf, T. T1 - Microbiologically Influenced Corrosion of Cast Iron Containers for High-Level Nuclear Waste Disposal N2 - Ductile and corrosion resistant cast iron is investigated as a potential container material to store high-level nuclear waste (HLW) in deep geological repositories (DGR) in claystone bedrock. The dynamic corrosion process is dependent on the conditions present in the DGR which are influenced and/or controlled by geochemical parameters (e.g., redox potential, pH, presence of and ionic concentration in (pore-)water), physical parameters (e.g., pressure), and the influence of metabolically active microorganisms. Cast iron corrosion will occur at the intersection of container and its decontaminable coating with the bentonite backfill material which contains natural microbial populations. The conditions in a DGR are simulated in microcosm experiments to investigate the impact of microbiologically influenced corrosion (MIC); the microcosms contain: B27 bentonite, synthetic pore water, N2 or N2-CO2 atmosphere, cast iron coupons, as well as the bacterium Desulfosporosinus burensis (isolated from repository depth in Buré, France). Three coupon configurations will be used: untreated, coated with decontaminable coating, and coated with decontaminable coating which has been damaged to simulate possible damages. The microcosms will be examined for bio- and geochemical parameters, such as pH, redox potential, mineral phases, sulphate concentration, Fe(II):Fe(III), changes in microbial populations, and the corrosion process for formation of corrosion products, and potential microbial influence, after a 270-day incubation period at 25°C under anaerobic conditions. In subsequent experiments, the sorption behavior of lanthanides and actinides onto the membranes of viable cells and spores of D. burensis, as well as the surface of corroded cast iron coupons will be investigated. T2 - 8th International Workshop on Long-term Prediction of Corrosion in Nuclear Waste Systems 2022 CY - Baden, Switzerland DA - 21.06.2022 KW - Microbiologically influenced corrosion (MIC) KW - Cast iron KW - Nuclear waste disposal PY - 2022 AN - OPUS4-55154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Plarre, Rüdiger A1 - Busweiler, Sabine A1 - Haustein, V A1 - von Laar, C. A1 - Haustein, T ED - Bueno-Mari, R ED - Montalvo, T ED - Robinson, W H T1 - Korynetes caeruleus (coleoptera: cleridae) for biological control of anobium punctatum (coleoptera, ptinidae) N2 - Larvae and adults of Korynetes caeruleus (de Geer 1775) (Coleoptera: Cleridae) were collected from old churches and reared in the laboratory on Anobium punctatum (de Geer 1774) (Coleoptera, Ptinidea, formerly Anobiidae). Breeding success of K. caeruleus was low, but basic parameters of this species’ developmental cycle were identified. At 21 °C and 75 % relative humidity and a four-month cold period at 4 °C, the development of K. caeruleus from egg to adult appearance lasted 2 years. The pupal stage may be reached and completed after one and a half years. Feeding on larvae of A. punctatum by larvae of K. caeruleus was observed and consisted of a combination of sucking haemolymph and consuming body parts. The sickle-like mandibles of larvae of K. caeruleus penetrate the cuticle of prey larvae followed by pumping and sucking body movements. Adult beetles of A. punctatum were not attacked by K. caeruleus larvae. Feeding behavior of adult K. caeruleus was not investigated. T2 - 10th International Conference on Urban Pests CY - Barcelona, Spain DA - 26.06.2022 KW - Cultural heritage KW - Biological pest control KW - Life history data KW - Wood protection PY - 2022 SN - 978-84-09-41424-6 SP - 34 EP - 44 AN - OPUS4-55170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieksmeyer, T. A1 - He, S. A1 - Esparza-Mora, M. A. A1 - Jiang, S. A1 - Petrasiunaite, V. A1 - Kuropka, B. A1 - Banasiak, Robert A1 - Julseth, M. J. A1 - Weise, C. A1 - Johnston, P. R. A1 - Rodriguez-Rojas, A. A1 - McMahon, Dino Peter T1 - Eating in a losing cause: Limited benefit of modifed macronutrient consumption following infection in the oriental cockroach Blatta orientalis N2 - Background: Host–pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. Results: We fnd that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches signifcantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited efect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on diferent diets, regardless of infection status. Conclusions: We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide signifcant immune protection in B. orientalis, suggesting that the host’s dietary shift might also result from random rather than directed behaviour. The lack of an apparent beneft of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted. KW - Animal immune system KW - A key interface KW - Host and symbiont ecology KW - Behavioural mechanisms KW - Biotic environment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550022 DO - https://doi.org/10.1186/s12862-022-02007-8 SN - 2730-7182 VL - 22 IS - 1 SP - 1 EP - 14 PB - Springer Nature CY - London, UK AN - OPUS4-55002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Mezera, Marek A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Krüger, Jörg A1 - Müller, F. A. A1 - Gräf, S. T1 - A brief survey on open questions about laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS) represents a simple and robust way for the nanostructuring of solids that allows creating a wide range of surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. While the currently available laser and scanner technology already allows surface processing rates at the m2/min level, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry. This typically manifests in difficulties to control the processing of LIPSS and in limitations to ensure the long-term stability of the created surface functions. This presentation aims to identify some unsolved scientific problems related to LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, it is intended to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Industrial applications KW - Biofilm growth PY - 2022 AN - OPUS4-54929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Buchberger, G. A1 - Stifter, D. A1 - Duchoslav, J. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Reducing Escherichia coli adhesion to PET by modulating spatial periods of laser-induced surface nanoripples N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms. Here, the stabilizing extracellular biofilm matrix together with physiological changes on the single cell level leads to an increased resilience towards harsh environmental conditions, antimicrobials, the host immune response and established cleaning procedures. Persistent microbial adhesion on e.g., medical implants, in water supply networks or food-processing industry is often associated with chronic inflammation, nosocomial and foodborne infections, enhanced biofouling and product contamination. To prevent persistent microbial colonization, antibacterial surface strategies often target the initial steps of biofilm formation and impede adhesion of single cells before a mature biofilm is being formed. While chemical coatings have been widely used, their restricted biocompatibility for eukaryotic cells and attenuated antibacterial-effects due to compound release limit their areas of application and alternative strategies focus on modified surfaces topographies to impede bacterial adhesion. In this work, we used ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns) to generate laser-induced periodic surface structures (LIPSS) with different submicrometric periods ranging from ~210 to ~610 nm on commercial poly(ethylene terephthalate) (PET) foils. Following structurally and chemically analyses, PET samples were subjected to bacterial colonization studies with Escherichia coli TG1, a bacterial test strain with a strong biofilm formation capacity due to the formation of nanofiber-like cell-appendages (pili). Bacterial adhesion tests revealed that E. coli repellence decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the importance of extracellular appendages in the bacterial repellence observed here, thus, pointing out new antibiotics-free strategies for antibacterial surfaces by impeding nanofiber-mediated bacterial adhesion. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Bacterial adhesion tests KW - Bacteria repellent surfaces KW - Polymer foils KW - E. coli PY - 2022 AN - OPUS4-54930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Beate A1 - Pfeiffer, F. A1 - Dyall-Smith, M. A1 - Kunte, Hans-Jörg T1 - Genome Sequence of Pseudomonas veronii Strain G2, a Member of a Bacterial Consortium Capable of Polyethylene Degradation N2 - Nine different bacterial isolates were recovered from landfills. Each isolate was obtained in pure culture. As a consortium, the bacteria degrade polyethylene. The complete genome sequence of strain G2 was determined by PacBio sequencing. Using the TYGS server for taxonomic classification, strain G2 was assigned to the species Pseudomonas veronii. KW - Polyethylene KW - Next generation sequencing KW - Pseudomonas veronii PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548973 DO - https://doi.org/10.1128/mra.00365-22 SP - 1 EP - 2 PB - ASM AN - OPUS4-54897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Selina A1 - Rodríguez-Rojas, A. A1 - Rolff, J. A1 - Schreiber, Frank T1 - Biocides used as material preservatives modify rates of de novo mutation and horizontal gene transfer in bacteria N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution and transmission of AMR. Previous studies showed that de-novo mutagenesis and horizontal gene transfer (HGT) by conjugation or transformation – important processes underlying resistance evolution and spread - are affected by antibiotics, metals and pesticides. However, natural microbial communities are also frequently exposed to biocides used as material preservatives, but it is unknown if these substances induce mutagenesis and HGT. Here, we show that active substances used in material preservatives can increase rates of mutation and conjugation in a species- and substance-dependent manner, while rates of transformation are not increased. The bisbiguanide chlorhexidine digluconate, the quaternary ammonium compound didecyldimethylammonium chloride, the metal copper, the pyrethroid-insecticide permethrin, and the azole-fungicide propiconazole increase mutation rates in Escherichia coli, whereas no increases were identified for Bacillus subtilis and Acinetobacter baylyi. Benzalkonium chloride, chlorhexidine and permethrin increased conjugation in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Taken together, our data show the importance of assessing the contribution of material preservatives on AMR evolution and spread. KW - Mutation rate KW - Horizontal gene transfer KW - Biocides PY - 2022 DO - https://doi.org/10.1016/j.jhazmat.2022.129280 SN - 0304-3894 VL - 437 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-55261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Biocides Used as Material Preservatives Modify Rates of de novo Mutation and Horizontal Gene Transfer in Bacteria N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-55263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazemifard, N. A1 - Dehkohneh, Abolfazl A1 - Baradaran Ghavami, S. T1 - Probiotics and probiotic-based vaccines: A novel approach for improving vaccine efficacy N2 - Vaccination is defined as the stimulation and development of the adaptive immune system by administering specific antigens. Vaccines' efficacy, in inducing immunity, varies in different societies due to economic, social, and biological conditions. One of the influential biological factors is gut microbiota. Cross-talks between gut bacteria and the host immune system are initiated at birth during microbial colonization and directly control the immune responses and protection against pathogen colonization. Imbalances in the gut microbiota composition, termed dysbiosis, can trigger several immune disorders through the activity of the adaptive immune system and impair the adequate response to the vaccination. The bacteria used in probiotics are often members of the gut microbiota, which have health benefits for the host. Probiotics are generally consumed as a component of fermented foods, affect both innate and acquired immune systems, and decrease infections. This review aimed to discuss the gut microbiota's role in regulating immune responses to vaccination and how probiotics can help induce immune responses against pathogens. Finally, probiotic-based oral vaccines and their efficacy have been discussed. KW - Probiotics KW - Gut microbiota KW - Probiotic-based vaccines PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561767 DO - https://doi.org/10.3389/fmed.2022.940454 SN - 2296-858X VL - 9 SP - 1 EP - 15 PB - Frontiers Media CY - Lausanne AN - OPUS4-56176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide resistance risk assessment N2 - This presentation details the current status of biocide resistance risk assessment. T2 - Risk assessment of biocide and antibiotic resistance CY - Online meeting DA - 09.03.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 UR - https://www.gu.se/en/biocide/risk-assessment-of-biocide-and-antibiotic-resistance AN - OPUS4-56235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -