TY - CONF A1 - Vogel, Christian T1 - Microspectroscopy reveals dust-derived apatite grains in highly-weathered soils from the Kohala climosequence on Hawaii N2 - Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to colocation with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. T2 - BESSY Science Seminar CY - Online meeting DA - 01.04.2022 KW - Phosphorus KW - Soil KW - X-ray diffraction KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Fertilizer KW - Raman spectroscopy KW - infrared spectroscopy PY - 2022 AN - OPUS4-54584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -