TY - JOUR A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea T1 - Iron to Gas: Versatile Multiport Flow-Column Revealed Extremely High Corrosion Potential by Methanogen-Induced Microbiologically Influenced Corrosion (Mi-MIC) JF - Bioleaching and Biocorrosion: Advances in Interfacial Processes N2 - Currently, sulfate-reducing bacteria (SRB) is regarded as the main culprit of microbiologically influenced corrosion (MIC), mainly due to the low reported corrosion rates of other microorganisms. For example, the highest reported corrosion rate for methanogens is 0.065 mm/yr. However, by investigating methanogen-induced microbiologically influenced corrosion (Mi-MIC) using an in-house developed versatile multiport flow test column, extremely high corrosion rates were observed. We analyzed a large set of carbon steel beads, which were sectionally embedded into the test columns as substrates for iron-utilizing methanogen Methanobacterium IM1. After 14 days of operation using glass beads as fillers for section separation, the highest average corrosion rate of Methanobacterium IM1 was 0.2 mm/yr, which doubled that of Desulfovibrio ferrophilus IS5 and Desulfovibrio alaskensis 16109 investigated at the same conditions. At the most corroded region, nearly 80% of the beads lost 1% of their initial weight (fast-corrosion), resulting in an average corrosion rate of 0.2 mm/yr for Methanobacterium IM1-treated columns. When sand was used as filler material to mimic sediment conditions, average corrosion rates for Methanobacterium IM1 increased to 0.3 mm/yr (maximum 0.52 mm/yr) with over 83% of the beads having corrosion rates above 0.3 mm/yr. Scanning electron images of metal coupons extracted from the column showed methanogenic cells were clustered close to the metal surface. Methanobacterium IM1 is a hydrogenotrophic methanogen with higher affinity to metal than H2. Unlike SRB, Methanobacterium IM1 is not restricted to the availability of sulfate concentration in the environment. Thus, the use of the multiport flow column provided a new insight on the corrosion potential of methanogens, particularly in dynamic conditions, that offers new opportunities for monitoring and development of mitigation strategies. Overall, this study shows under certain conditions methanogenic archaea can cause higher corrosion than SRB, specific quantifications, i.e., maximum, average, and minimum corrosion rates can be determined, and that spatial statistical evaluations of MIC can be carried out. KW - Microbiologically influenced corrosion KW - Methanogen KW - Methane KW - Biocorrosion KW - Flow system KW - Modeling KW - Multiport PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506084 DO - https://doi.org/10.3389/fmicb.2020.00527 VL - 11 SP - Article 527 PB - Frontiers in microbiology AN - OPUS4-50608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Annie Biwen A1 - Deland, Eric A1 - Kleinbub, Sherin A1 - Koerdt, Andrea T1 - Standardization of MIC laboratory testing: with a special focus on corrosive methanogens N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process involving a complex group of microorganisms, including sulfate-reducing bacteria and methanogens. Standard laboratory MIC testing using static serum bottle enrichments is an easy but limited method, offering poor resolution on the biomineralization process of corrosion products. An example of this is the presumed corrosion product siderite by corrosive methanogens (Mi-MIC). Previous publications reported siderite was the sole corrosion product of M. maripaludis using metal coupons incubated under stationary conditions. However, the formation of siderite is closely related to the surrounding environmental conditions, i.e. pH, CO2 concentration, flow and temperature. Thus, siderite as the sole corrosion product of Mi-MIC remain inconclusive and questionable. To study Mi-MIC effectively, a novel versatile multiport flow-column corrosion monitoring system (MFC) was developed. MFC allows sectional corrosion rate determination under flow conditions using different types of material, inoculum and packing material. MFC offers great flexibility, ease of operation and accurate corrosion measurements that can be combined with many other techniques. Using MFC, we studied multiple strains of methanogens and compared it with sulfate-reducing bacteria under neutral and low pH conditions. It was revealed by MFC that corrosive methanogens have equally high corrosion potential as sulfate-reducing bacteria. Additionally, siderite is not the dominant nor sole corrosion product of Mi-MIC. Thus, effective corrosion monitoring and establishing standard laboratory practices, i.e. incorporating MFC as part of regular testing process, will provide deeper understanding of MIC. This will allow further microbial electrophysiology understandings, contributing to effective mitigation strategy development. T2 - EUROPEAN MIC NETWORK WEBINAR CY - Online meeting DA - 19.05.2020 KW - MIC KW - Methanogen KW - FIB/SEM KW - Corrosion products KW - Microbiologically influenced corrosion KW - Flow Model KW - Modelling KW - Korrosion PY - 2020 AN - OPUS4-51554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Brüggemann, Kristin A1 - Wurzler, Nina A1 - Kleinbub, Sherin A1 - Özcan Sandikcioglu, Özlem T1 - Effect of biocides on highly corrosive methanogenic Archaea N2 - Biocide mitigation strategies of microbiologically influenced corrosion (MIC) in the oil and gas industry have been primarily used to eliminate the growths of sulfate-reducing microorganisms (SRM). However, methanogenic Archaea (MA) can also be highly corrosive by using iron as an electron source for methanogenesis. Because of the fundamental physiological differences between archaea and bacteria, responses of MA towards SRM-specific biocides cannot be deduced using SRM. Due to the lack of information available on the effect of biocides on corrosive MA, we selected THPS, glutaraldehyde, nitrate and perchlorate to compare against corrosive SRM. Preliminary results showed that at low concentrations of THPS (0-10 ppm), growth of MA was not affected, methane production and corrosion rates (0.1 mm/yr) were comparable between the different THPS concentrations. On the contrary, the SRM strain showed decreased corrosion rates (0.18 mm/yr to 0.03 mm/yr) with increasing THPS concentrations. Further corrosion tests including electrochemical measurements of different biocides on the growth of MA and SRM will be conducted. Such knowledge not only provide important insights on the physiological response of MA to biocides but also contribute to more effective mitigation strategies that can be both economic and environmentally beneficial. T2 - 25th Annual Reservoir Microbiology Forum CY - London, UK DA - 20.11.2019 KW - Corrosion KW - Methanogen KW - Microorganism KW - Biocide PY - 2019 AN - OPUS4-49788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - An, Biwen A1 - Shen, Y. A1 - Voordouw, J. A1 - Voordouw, G. ED - Dumas, C. T1 - Halophilic Methylotrophic Methanogens May Contribute to the High Ammonium Concentrations Found in Shale Oil and Shale Gas Reservoirs T2 - Halophilic Methanogenesis in Shale Reservoirs N2 - Flow-back and produced waters from shale gas and shale oil fields contain high ammonium, which can be formed by methanogenic degradation of methylamines into methane and ammonium. Methylamines are added to fracturing fluid to prevent clay swelling or can originate from metabolism of the osmolyte triglycinebetaine (GB). We analyzed field samples from a shale gas reservoir in the Duvernay Formation and from a shale oil reservoir in the Bakken formation in Canada to determine the origin of high ammonium. Fresh waters used to make fracturing fluid, early flow-back waters, and late flow back waters from the shale gas reservoir had increasing salinity of 0.01, 0.58, and 2.66 Meq of NaCl, respectively. Microbial community analyses reflected this fresh water to saline transition with halophilic taxa including Halomonas, Halanaerobium, and Methanohalophilus being increasingly present. Early and late flow-back waters had high ammonium concentrations of 32 and 15 mM, respectively. Such high concentrations had also been found in the Bakken produced waters. Enrichment cultures of Bakken produced waters in medium containing mono, di-, or trimethylamine, or triglycinebetaine (GB) converted these substrates into ammonium (up to 20 mM) and methane. The methylotrophic methanogen Methanohalophilus, which uses methylamines for its energy metabolism and uses GB as an osmolyte, was a dominant community member in these enrichments. Halanaerobium was also a dominant community member that metabolizes GB into trimethylamine, which is then metabolized further by Methanohalophilus. However, the micromolar concentrations of GB measured in shale reservoirs make them an unlikely source for the 1,000-fold higher ammonium concentrations in flow-back waters. This ammonium either originates directly from the reservoir or is formed from methylamines, which originate from the reservoir, or are added during the hydraulic fracturing process. These methylamines are then converted into ammonium and methane by halophilic methylotrophic methanogens, such as Methanohalophilus, present in flow-back waters. KW - Methanogen KW - Oil and gas industry KW - Shale KW - Halophile KW - Corrosion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474982 UR - https://www.frontiersin.org/articles/10.3389/fenrg.2019.00023/full DO - https://doi.org/10.3389/fenrg.2019.00023 VL - 7 SP - Article 23, 1 EP - 13 PB - Frontiers Media CY - Frontiers in Energy Research AN - OPUS4-47498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem A1 - Schreiber, Frank A1 - Kleinbub, Sherin T1 - The study of methanogen-induced microbiologically influenced corrosion under flow conditions N2 - Microbiologically influenced corrosion (MIC) is an expensive but unpredictable problem for the industries. The most well-known culprit for MIC is the sulfate-reducing microorganisms (SRM), such as members from the genus Desulfovibrio. It has been widely accepted that SRM can contribute significantly to MIC through the production of hydrogen sulfide (HS-) or in some cases a direct electron uptake from the metal surface. However, in a real environmental system, SRM is not exclusive and often involved with other microorganisms that may also contribute to MIC, such as methanogens. Methanogenic archaea can produce methane (CH4) using H2+CO2, formate, methylated amines or acetate. Methanogens are highly abundant in the environment and many are found in very extreme conditions, such as high temperature and high salinity. Previous researches have demonstrated that methanogens are capable of MIC, though the specific mechanisms are still under investigation. In the oil and gas industry, methanogens are not considered as the main contributor for MIC since the corrosion rates are often too low. However, the tests for methanogen-induced MIC are usually performed at static conditions, which cannot represent the system accurately. Here, we developed a novel anaerobic system to evaluate the corrosion potential of methanogens under flow conditions. We will use the Methanococcus maripaludis KA1 strain, which was isolated from a crude oil tank, as the organism of interest. A separate system for Desulfovibrio alaskensis will be established for corrosion rate comparisons. Furthermore, we will study the synergistic effects of M. maripaludis and D. alaskensis on MIC under flow. T2 - Eurocorr 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Mikrobiell beeinflusste Korrosion KW - Methanogen KW - Korrosion KW - Microbiologically influenced corrosion KW - Methanogenesis KW - Flow system KW - Model PY - 2018 AN - OPUS4-46012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -