TY - JOUR A1 - Oberpaul, M. A1 - Zumkeller, C. M. A1 - Culver, T. A1 - Spohn, M. A1 - Mihajlovic1, S. A1 - Leis, B. A1 - Glaeser, S. P. A1 - Plarre, Rüdiger A1 - McMahon, Dino Peter A1 - Hammann, P. A1 - Schäberle, T. F. A1 - Glaeser, J. A1 - Vilcinskas, A. T1 - High-Throughput Cultivation for the Selective Isolation of Acidobacteria From Termite Nests N2 - Microbial communities in the immediate environment of socialized invertebrates can help to suppress pathogens, in part by synthesizing bioactive natural products. Here we characterized the core microbiomes of three termite species (genus Coptotermes) and their nest material to gain more insight into the diversity of termite-associated bacteria. Sampling a healthy termite colony over time implicated a consolidated and highly stable microbiome, pointing toward the fact that beneficial bacterial phyla play a major role in termite fitness. In contrast, there was a significant shift in the composition of the core microbiome in one nest during a fungal infection, affecting the abundance of wellcharacterized Streptomyces species (phylum Actinobacteria) as well as less-studied bacterial phyla such as Acidobacteria. High-throughput cultivation in microplates was implemented to isolate and identify these less-studied bacterial phylogenetic group. Amplicon sequencing confirmed that our method maintained the bacterial diversity of the environmental samples, enabling the isolation of novel Acidobacteriaceae and expanding the list of cultivated species to include two strains that may define new species within the genera Terracidiphilus and Acidobacterium. KW - Termite-associated microbes KW - Termites KW - Coptotermes KW - Core microbiome KW - Natural products discovery KW - Acidobacteria KW - underexplored phyla KW - Social insects PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515283 DO - https://doi.org/10.3389/fmicb.2020.597628 VL - 11 SP - 1 EP - 16 AN - OPUS4-51528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Palanti, S. A1 - Cragg, S. A1 - Plarre, Rüdiger T1 - Resistance against marine borers: About the revision of EN 275 and the attempt for a new laboratory standard for Limnoria N2 - Wood protection technology in the marine environment has changed over the last decades and will continue to do so. New active ingredients, newer formulations, and novel wood-based materials including physically- and chemically-modified wood, together with increasing concerns over environmental impacts of wood preservatives, urgently demand a major revision of EN 275 “Wood preservatives – Determination of the Protective Effectiveness against Marine Borers”, dated from 1992. This IRG document reports on the technical work in CEN TC 38 regarding the revision of this standard. A Task Group within WG 24 of CEN TC 38 was formed consisting of experts from different field of competence (e.g. wood preservatives industry, wood scientists, marine biologists, archaeologists and cultural heritage conservators). Starting by e-mail correspondence in 2014, and continuing with four physical meetings (Berlin 2x, Florence, Venice) with experts from Germany, Italy, Sweden, and UK were held so far. Significant items for revision in EN 275 were identified as: number of replicates, duration of the test, dimension of specimens, number of test sites, number of reference species, reference material including reference preservative, re-immersion of specimens after non-destructive periodical evaluation for longer periods of time vs higher number of replicates for successive destructive examinations without re-immersion, utilization of X- ray apparatus and specific software to ease evaluation, etc. Furthermore, the task group is working on a standardized lab test for time-saving evaluation of different wood qualities for their potential to resist attack by limnorids. The suitability of this lab test will be determined by round robin tests as soon as safe face-to-face collaboration permits. The outcome will be published as a CEN TR (Technical Report) document, with a view to eventual adoption within the revised standard. T2 - THE INTERNATIONAL RESEARCH GROUP ON WOOD PROTECTION CY - Online meeting DA - 10.06.2020 KW - Standardization KW - Marine borers KW - Bankia sp KW - Teredo sp KW - Limnoria spp KW - Durability PY - 2020 VL - 2020 SP - IRG/WP 20-20669-1 EP - IRG/WP 20-20669-11 CY - Stockholm AN - OPUS4-52064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pietsch, Franziska A1 - O'Neill, A. J. A1 - Ivask, A. A1 - Jenssen, H. A1 - Inkinen, J. A1 - Kahru, A. A1 - Ahonen, M. A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobial coatings in the healthcare setting N2 - Antimicrobial touch surfaces have been introduced in healthcare settings with the aim of supporting existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which may drive the evolution and spread of antimicrobial resistance. This review highlights studies that indicate risks associated with resistance on antimicrobial surfaces by different processes, including evolution by de-novo mutation and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed on to antimicrobial surfaces. The review focuses on antimicrobial surfaces made of copper, silver and antimicrobial peptides because of the practical application of copper and silver, and the promising characteristics of antimicrobial peptides. The available data point to a potential for resistance selection and a subsequent increase in resistant strains via cross-resistance and co-resistance conferred by metal and antibiotic resistance traits. However, translational studies describing the development of resistance to antimicrobial touch surfaces in healthcare-related environments are rare, and will be needed to assess whether and how antimicrobial surfaces lead to resistance selection in These settings. Such studies will need to consider numerous variables, including the antimicrobial concentrations present in coatings, the occurrence of biofilms on surfaces, and the humidity relevant to dry-surface environments. On-site tests on the efficacy of antimicrobial Coatings should routinely evaluate the risk of selection associated with their use. KW - Antimicrobial resistance KW - Antimicrobial coating KW - Touch surfaces KW - Healthcare KW - Infections KW - COST action CA15114 AMICI PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510926 DO - https://doi.org/10.1016/j.jhin.2020.06.006 SN - 0195-6701 VL - 106 IS - 1 SP - 115 EP - 125 PB - Elsevier Ltd AN - OPUS4-51092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Plarre, Rüdiger ED - Trematerra, P. ED - Conti, B. T1 - Uninvited and welcomed guests in museums – biological management of clothes moths and woodworms N2 - In museums and historic houses clothes, moths (Tineola bisselliella, Tinea pellionella) and the furniture beetle (Anobium punctatum) are the most economically important pests on textiles or wooden artifacts, respectively. Their management is essential to protect cultural ethnological heritage and natural history collections for future generations. Pest management strategies have changed over time. Today, intensive knowledge on pest biology and overall material science are key cornerstones in IPM concepts - also for the Museum environment. The important first steps for sustainable pest management are risk assessment, early pest detection and identification of pathways of infestation. These steps are followed by physical and biological means of control, which have lately gained more importance than applying biocides. Several potentially effective biological enemies of clothes moths and woodworm have been known for a long time, but their promotion for pest control in Museums and historic houses is just beginning. This short review summarizes current concepts of pest life cycle interruption by applying good quarantine and very specific biological measures. The lessons learned from recent faunistic surveys, life-history studies as well as behavioral observations of parasitoids and predators of clothes moths and woodworm may supplement the pest management tool box. The need for further research in this field is addressed. T2 - Working Group Meeting "Integrated Protection of Stored Products" CY - Pisa, Italy DA - 03.09.2019 KW - Corynetes caeruleus KW - Biological control KW - Museum pests KW - Tineola bisselliella KW - Anobium punctatum KW - Apanteles carpatus KW - Baryscapus tineivorus PY - 2020 SN - 978-92-9067-333-0 VL - 148 SP - 266 EP - 273 AN - OPUS4-50543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira A1 - Hahn, Oliver ED - Michel, C. ED - Friedrich, M. T1 - Detection of Fakes: The Merits and Limits of Non-Invasive Materials Analysis N2 - This paper addresses the sensitive issue of authenticating unprovenanced manuscripts of high monetary value to certify they are genuine. Over the last decade, the popularity of material studies of manuscripts using non-destructive testing (NDT) has increased enormously. These studies are held in especially high esteem in the case of suspicious writings due to the methodological rigour they are reputed to contribute to debate. We would like to stress that materials analysis alone cannot prove that an object is genuine. Unfortunately, audiences with a humanities background often tend to disregard the technical details and treat any published interpretation of instrumental analysis as an objective finding. Four examples are outlined here to illustrate what questionable contributions the natural sciences can make in describing manuscripts that have actually been forged. KW - Fakes KW - Non-invasive analysis KW - Limitations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517202 SN - 978-3-11-071422-7 DO - https://doi.org/10.1515/9783110714333 SN - 2365-9696 VL - 20 SP - 281 EP - 290 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-51720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Kaska, K. ED - Uhlirz, T1 - Why Do We Need to Study Inks? N2 - While studying the socio-geographic history of inks, division 4.5 (Analysis of cultural artefacts and assets) of the BAM (Bundesanstalt für Materialforschung und -prüfung) in Berlin together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink, and a subsequent in-depth analysis using several spectroscopic techniques. Using this protocol, scientists can assist scholars in addressing a rather broad range of historical questions that cannot be answered unequivocally through scholarly research alone. Among these are investigations on collaboration between scribes and scriptoria, on the usage and annotation of manuscripts and on their path through time and space in general. This research can thus help to reconstruct the circumstances of the production of written heritage as well as their history and transmission. To facilitate the dialogue between the scholars and the scientists a simple optical tool was developed to allow the scholars to perform preliminary ink analysis required for formulation of the question that in turn can be answered by scientific in-depth investigations. In this paper, ink types and their identification method is accompanied by examples of the recent work conducted on parchment manuscripts in the Austrian National Library. T2 - Congress Visual Heritage, CHNT 23 CY - Vienna, Austria DA - 15.12.2018 KW - Ink KW - Parchment PY - 2020 SP - 1.1 EP - 1.9 CY - Wien AN - OPUS4-50242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raedel, Martina A1 - Bücker, Michael A1 - Feldmann, Ines A1 - Reimann, M. T1 - Conservation of damaged architectural aluminum elements N2 - Aluminum is an often-used building material in modern architecture. In recent years buildings from the 1950th and 1960th are increasingly subject of conservation works including the aluminum parts. Typical surface damages are signs of corrosion caused by weathering processes or scratches in the anodized layer due to extensive wear. To repair damaged aluminum surfaces, there are usually two options: smaller areas are repaired by using a touch-up pen, for larger damages it is necessary to remove the anodized layer completely. Both possibilities are disadvantageous for the objects; the touch-up pen often does not match the color together with an insufficient corrosion protection, while newly anodized layers often differ in color and gloss from the original surface. For this reason, a research project was initiated to develop a mobile method to repair anodized aluminum parts. The first step focusses on the mobile anodization process by using the electrolyte with a gel substrate. Different cathodic materials are to be tested together with appropriate cooling material. The anodized area should be isolated to protect undamaged areas. Examinations of the produced layers are conducted by using Keyence microscope, eddy current testing and ESEM analysis. Further steps are to transform the coloring and sealing process for mobile application. Color could be applied by using a brush or by spray while the sealing process could be performed with water vapor. An heatable putty knife could be used, if heating up the area will be necessary. Once the application process is developed, the anodization will be tested on samples with artificial damages, fixed in horizontal and vertical positions. The stability of the anodized surface will be examined by accelerated ageing in a climate chamber and outdoor weathering. The electrolyte (diluted sulfuric acid) was combined with a gel binder to enable a mobile application. Several thickening agents were tested concerning their conductivity and stability in acid systems. Anodization tests with different cathodic material and shapes were conducted. The temperature during anodization was controlled and adjusted if necessary. The anodized area was restricted by using either a lacquer, an adhesive or a removable silicon barrier. The fist results show the feasibility of the method on enclosed areas. The achieved thickness was measured by eddy current testing and the structure was controlled by ESEM analysis. The examinations show a connection between thickness and porosity of the anodized layers and the temperature during the application process. Next steps are testing mobile coloring and sealing methods followed by mobile anodization on artificial damaged areas. T2 - Metal 2019 CY - Neuchâtel, Switzerland DA - 02.09.2019 KW - Mobile anodisation KW - Aluminium KW - Conservation KW - Damage repair PY - 2020 UR - https://www.lulu.com/shop/claudia-chemello-and-laura-brambilla-and-edith-joseph/metal-2019-proceedings-of-the-interim-meeting-of-the-icom-cc-metals-working-group-september-2-6-2019-neuch%C3%A2tel-switzerland-ebook/ebook/product-24517161.html AN - OPUS4-51479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Possling, A. A1 - Malysheva, N. A1 - Yousef, K. P. A1 - Herbst, S. A1 - von Kleist, M. A1 - Hengge, R. T1 - Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose N2 - In many bacteria, the biofilm-promoting second messenger c-di-GMP is produced and degraded by multiple diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively. High target specificity of some of these enzymes has led to theoretical concepts of "local" c-di-GMP signaling. In Escherichia coli K-12, which has 12 DGCs and 13 PDEs, a single DGC, DgcC, is specifically required for the biosynthesis of the biofilm exopolysaccharide pEtN-cellulose without affecting the cellular c-di-GMP pool, but the mechanistic basis of this target specificity has remained obscure. DGC activity of membrane-associated DgcC, which is demonstrated in vitro in nanodiscs, is shown to be necessary and sufficient to specifically activate cellulose biosynthesis in vivo. DgcC and a particular PDE, PdeK (encoded right next to the cellulose operon), directly interact with cellulose synthase subunit BcsB and with each other, thus establishing physical proximity between cellulose synthase and a local source and sink of c-di-GMP. This arrangement provides a localized, yet open source of c-di-GMP right next to cellulose synthase subunit BcsA, which needs allosteric activation by c-di-GMP. Through mathematical modeling and simulation, we demonstrate that BcsA binding from the low cytosolic c-di-GMP pool in E. coli is negligible, whereas a single c-di-GMP molecule that is produced and released in direct proximity to cellulose synthase increases the probability of c-di-GMP binding to BcsA several hundred-fold. This local c-di-GMP signaling could provide a blueprint for target-specific second messenger signaling also in other bacteria where multiple second messenger producing and degrading enzymes exist. KW - Biofilm KW - Cellulose synthase KW - Bacterial second messenger KW - C-di-GMP PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511214 DO - https://doi.org/10.1016/j.jmb.2020.06.006 SN - 0022-2836 VL - 432 IS - 16 SP - 4576 EP - 4595 PB - Elsevir Ltd. AN - OPUS4-51121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Matthias A1 - Juritsch, Elevtheria A1 - Jann, Oliver T1 - Determination of recovery rates of adsorbents for sampling very volatile organic compounds (C1-C6) in dry and humid air in the sub-ppb range by use of thermal desorption gas chromatography-mass spectrometry N2 - The reliable measurement of very volatile organic compounds (VVOC) in indoor air by use of thermal desorption gas chromatography (TD-GC) in order to include them into evaluation schemes for building products even nowadays is a great challenge. For capturing these small molecules with carbon numbers ranging from C 1 –C 6 , strong adsorbents are needed. In the present study, recovery rates of nine suitable adsorbents of the groups of porous polymers, graphitised carbon blacks (GCB) and carbon molecular sieves (CMS) are tested against a complex test gas standard containing 29 VVOC. By consideration of the recovery and the relative humidity (50% RH), combinations of the GCB Carbograph 5TD, the two CMS Carboxen 1003 and Carbosieve SII as well as the porous polymer Tenax® GR were identified to be potentially suitable for sampling the majority of the VVOC out of the gas mix. The results reveal a better performance of the adsorbents in combination than being used alone, particularly under humid sampling conditions. The recovery rates of the chosen compounds on each adsorbent should be in the range of 80–120%. KW - VVOC KW - Indoor Air: Adsorbent performance KW - Recovery rate KW - Thermal desorption KW - Gas chromatography PY - 2020 DO - https://doi.org/10.1016/j.chroma.2020.461389 VL - 1626 SP - 1 EP - 9 PB - Elsevier AN - OPUS4-51106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Simon, Franz-Georg T1 - Detailed Investigation of Perfluoroalkyl Surfactant Contaminated Soil Samples by Combustion Ion Chromatography - Development of EOF and AOF as Reference Values in Environmental Analysis N2 - Per- and polyfluoralkyl surfactants (PFASs) are industrially produced surface chemicals used in daily applications that have gained public and political attention due their unnaturally high appearance in drinking water, nourishments and soils. Their chemical structures exhibit both lipophilic and hydrophilic properties, leading to a highly inert and persistent character. Various PFASs have shown to be bioaccumulative in plants and animals, and some have been characterized as highly toxic when ingested. When exposed to the environment, PFASs slowly get mobilized by natural water resources, leading to contamination of large areas of soil and natural water sources. While PFASs contamination of drinking water has been investigated intensively, perfluoralkyl contamination of soils has been rarely examined as of yet. At the same time, an increasing amount of PFASs contamination sites are being discovered worldwide, calling for a sophisticated strategy towards analytical characterization. Since the number of known PFASs already exceeds 4700, the established sum parameters like extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF) are key elements to fully survey the impact of exposure. Simultaneously, innovative soil remediation strategies are required to contain environmental destruction and to minimize further spreading of contaminants. Addressing these challenges requires suitable analytical devices that are capable of mobilizing PFASs in the solid as well as in the liquid phase. The use of combustion ion chromatography (CIC) enables analysis of both immobile and volatile PFASs and allows the detection of both total fluorine (TF) and EOF or AOF of a given soil or aqueous sample. Based on preliminary results, the clean-up of a PFAS contaminated solid matrix is monitored via EOF detection over time. Additionally, we demonstrate the pH dependency of hydrogen fluoride absorption on active carbon (AC) and found a simple organic additive to be an effective fluoride scavenger. The presented findings can be contributive with regard to future AOF/EOF sum parameter development and application. T2 - DECHEMA Symposium Strategien zur Boden- und Grundwassersanierung 2020 CY - Online meeting DA - 23.11.2020 KW - PFAS KW - SPE extraction KW - Combustion ion chromatography KW - Organo fluorine analysis KW - Soil extraction KW - Sewage extraction PY - 2020 AN - OPUS4-51978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg T1 - Reductive Defluorination and Mechanochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFASs): From Present Knowledge to Future Remediation Concepts N2 - Over the past two decades, per- and polyfluoroalkyl substances (PFASs) have emerged as worldwide environmental contaminants, calling out for sophisticated treatment, decomposition and remediation strategies. In order to mineralize PFAS pollutants, the incineration of contaminated material is a state-of-the-art process, but more cost-effective and sustainable technologies are inevitable for the future. Within this review, various methods for the reductive defluorination of PFASs were inspected. In addition to this, the role of mechanochemistry is highlighted with regard to its major potential in reductive defluorination reactions and degradation of pollutants. In order to get a comprehensive understanding of the involved reactions, their mechanistic pathways are pointed out. Comparisons between existing PFAS decomposition reactions and reductive approaches are discussed in detail, regarding their applicability in possible remediation processes. This article provides a solid overview of the most recent research methods and offers guidelines for future research directions. KW - PFAS KW - Reductive defluorination KW - Reductive decomposition KW - Mechanochemistry KW - Remediation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513811 DO - https://doi.org/10.3390/ijerph17197242 VL - 17 IS - 19 SP - 1 EP - 22 PB - MDPI AG CY - Basel AN - OPUS4-51381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiebel, J. A1 - Noack, J. A1 - Rödiger, S. A1 - Kammel, A. A1 - Menzel, Friederike A1 - Schwibbert, Karin A1 - Weise, Matthias A1 - Weiss, R. A1 - Böhm, A. A1 - Nitschke, J. A1 - Elimport, A. A1 - Roggenbuck, D. A1 - Schierack, P. T1 - Analysis of three-dimensional biofilms on different material surfaces N2 - Biofilms cause complications and high costs in both industry and medicine. Of particular interest are bacterial infections of prosthetic materials, which usually cannot be eliminated due to the high antibiotic resistance known for bacteria forming biofilms. The search for new materials and coatings with lower colonization potential and antibacterial activity is of great importance to reduce biofilm formation. However, there is no standardized procedure to examine the colonization characteristics of bacteria in the Biofilm state in situ. Here, we describe an automated epifluorescence microscopy system for the semi-quantitative analysis of three-dimensional (3D) biofilms on various surfaces. To analyze adherent bacteria, three materials (glass, steel and titanium) were incubated with bacteria in a flow chamber system. After fluorescence staining of the bacteria, automated image capturing, quantification of the bacteria, measurement of the colonized area and determination of the 3D biofilm height were carried out by using novel software. Furthermore, the materials were examined for their surface topography using white light scanning interferometry. Titanium compared to glass showed a significantly higher number of adherent bacteria. We argue that this was due to the higher microroughness of titanium. The colonized area was in accordance with the number of adherent bacteria and was also significantly larger on titanium coupons compared to glass. Maximum 3D biofilm height on glass coupons was significantly lower compared to the ones on steel and titanium. This novel method enables the standardized, automated investigation of the colonization with bacteria on different materials. This approach can considerably support the characterization of new material surfaces and their innovative coatings by analyzing the amount of attached Bacteria and thickness of biofilms in situ and eliminates the need of conventional cultivation. KW - Biofilm KW - Bacterial adhesion KW - Biofilm quantification KW - Automated analysis PY - 2020 DO - https://doi.org/10.1039/D0BM00455C SP - 1 EP - 11 PB - Royal Society of Chemistry AN - OPUS4-50815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). In adaptive laboratory evolution experiments we cultured selected model soil microorganism with representative biocides under selection regimes with increasing and stable biocide concentrations followed by antibiotic and biocide cross-resistance determination. Moreover, we investigate if the selected biocides affect the rates of de novo mutations and HGT of plasmids that carry resistance genes among soil microorganism. Our results show only small increases of biocide resistance during serial transfers under increasing biocide concentrations. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, our results indicate that a stable low-level biocide regime did not select for high level cross-resistance to antibiotics and other biocides. Moreover, material preservatives affected the rates of HGT via conjugation and the mutation rates at sub-inhibitory concentrations. The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 4th Evo Eco PhD Meeting CY - Lutherstadt Wittenberg DA - 04.03.2020 KW - Microbiology KW - Biocides KW - Horizontal gene transfer HGT KW - Resistance evolution KW - Antimicrobial resistance PY - 2020 AN - OPUS4-51313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Drescher, P. A1 - Fischer, M. A1 - Fürhapper, C. A1 - Gunschera, J. A1 - Hill, R. A1 - Melcher, E. A1 - Wegner, R. A1 - Wilken, U. A1 - Wittenzellner, J. T1 - Suitability of analytical methods to determine tebuconazole, propiconazole and permethrin in aged wood samples N2 - The suitability of common analytical methods for the determination of active substances from wood preservatives in aged wood samples was investigated during an interlaboratory study. Permethrin, propiconazole and tebuconazole were quantified in 1.5 and 8 year-old wood samples by gas chromatography and liquid chromatography. Generally, the applied Methods yielded reliable results for these samples. However, wood components can coelute with propiconazole and tebuconazole during liquid chromatography. Optimization of separation might be required if UV detection is applied. KW - Wood samples KW - Biocides KW - Analytical methods PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503959 DO - https://doi.org/10.1007/s00107-020-01496-y VL - 78 IS - 2 SP - 271 EP - 279 PB - Springer CY - Heidelberg AN - OPUS4-50395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiner, V. C. A1 - Fernandez, D. A1 - Vermeirssen, E. L. M. A1 - Bandow, Nicole A1 - Munoz, K. A1 - Schäfer, R. B. T1 - Corrigendum to “Calibration and field application of passive sampling for episodic exposure to polar organic pesticides in streams” [Environ. Pollut. 194 (2014) 196-202] N2 - The authors regret that the sampling rates were miscalculated as a result of flaws in the R script. Using a R script algorithm (Schreiner et al., 2020) sampling rates changed up to 45% (Table 1). KW - Passive sampling KW - Pesticides PY - 2020 DO - https://doi.org/10.1016/j.envpol.2020.115335 SN - 0269-7491 VL - 265 IS - Part B SP - 115335 EP - 115335 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-51227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulze-Makuch, D. A1 - Haque, S. A1 - Beckles, D. A1 - Schmitt-Kopplin, P. A1 - Harir, M. A1 - Schneider, Beate A1 - Stumpp, C. A1 - Wagner, D. T1 - A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water N2 - Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed. KW - Water stable isotope analysis KW - Mud volcanoe fluids KW - Metabolomics PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2019.136087 VL - 707 SP - 136087 PB - Elsevier B.V. AN - OPUS4-50499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Many-sided DHN melanin – spotlight on its function in microcolonial black fungi N2 - Dihydroxynaphthalene (DHN) melanin is produced by different Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g. in melanized reproduction, survival and/or infection structures. Remarkable is the regulation of the DHN melanogenesis in the foliar plant pathogen Botrytis cinerea: it involves two differently expressed PKSs providing the precursor in conidia and sclerotia, respectively (Schumacher 2016, Mol Microbiol). In contrast, a polyphyletic group of Ascomycetes (microcolonial fungi/ black yeast) dwelling in hostile habitats such as bare rock surfaces in hot and cold deserts, exhibits constitutive melanogenesis. Here, DHN melanin builds a protective layer around all vegetative cells thus contributing to the survival of diverse environmental stresses even without specialized reproduction structures. As part of our continuing research on microcolonial rock-inhabiting fungi, we chose the genetically amenable Knufia petricola strain A95 (Nai et al. 2013, Fungal Genet Biol; Noack-Schönmann et al. 2014, AMB Express) for detailed studies. DHN-deficient mutants generated by targeted mutation of biosynthetic genes were studied with regard to the architecture of the cell wall and the EPS (extracellular polymeric substances) matrix, attachment to and weathering of olivine, as well as the tolerance to abiotic and biotic stresses. We will discuss the critical role of the outer cell surface (DHN melanin and EPS) in adhesion to the substrate and subsequent damage of the colonized surface. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - fungus KW - melanin KW - pigmentation PY - 2020 AN - OPUS4-50591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Genetic manipulation of the microcolonial black fungus Knufia petricola N2 - Microcolonial black fungi, a polyphyletic group of ascomycetes, exhibit constitutive melanin formation, yeast-like growth and high stress tolerances. They dominate – often together with bacteria and algae in sub-aerial biofilms – a range of hostile environments including natural and man-made ones, from salterns to dishwashers, roofs and solar panels. Because of lacking genetic tools and the slow growth of most isolates, the genetic bases for these specific properties are largely unknown. The rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales) exhibits all characteristics of microcolonial black fungi and was selected as recipient for genetic engineering to study gene functions and genetic interactions. Different variants of green and red fluorescent proteins were successfully expressed indicating that fluorescence microscopy using genetically encoded fluorescent proteins and fluorescent dyes enables various cell biology approaches. Furthermore, genes of biosynthetic pathways (DHN melanin, carotenoids, uracil, adenine) were successfully mutated by applying traditional gene replacement and plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9 or silenced by RNA interference (RNAi). The availability of this advanced and efficient genetic toolbox and the annotated genome sequence of strain A95 makes K. petricola an excellent model for exploring the secrets of microcolonial black fungi. T2 - Departmental colloquium of the Tuscia University CY - Viterbo, Italy DA - 14.02.2020 KW - black fungus KW - genetics KW - Crispr/Cas9 PY - 2020 AN - OPUS4-50592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Light sensing in plant- and rock-associated black fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. But to cope with sunlight-associated stresses [e.g. high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses] it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black [dihydroxynaphthalene (DHN) melanin-containing] fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers ofPRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for fungi that receive nutrients through cooperation with phototrophs. Genetic tools for manipulating K. petricola exist and will be used to test this idea. KW - Botrytis cinerea KW - DHN melanin KW - Knufia petricola KW - Phyllosphere KW - Rock biofilm PY - 2020 DO - https://doi.org/10.1016/j.funbio.2020.01.004 VL - 124 IS - 5 SP - 407 EP - 417 AN - OPUS4-50786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Selbmann, L. A1 - Benkő, Z. A1 - Coleine, C. A1 - de Hoog, S. A1 - Donati, C. A1 - Druzhinina, I. A1 - Emri, T. A1 - Ettinger, C. L. A1 - Gladfelter, A. S. A1 - Gorbushina, Anna A1 - Grigoriev, I. V. A1 - Grube, M. A1 - Gunde-Cimerman, N. A1 - Karányi, Z. A. A1 - Kocsis, B. A1 - Kubressoian, T. A1 - Miklós, I. A1 - Miskei, M. A1 - Muggia, L. A1 - Northen, T. A1 - Novak-Babič, M. A1 - Pennacchio, C. A1 - Pfliegler, W. P. A1 - Pòcsi, I. A1 - Prigione, V. A1 - Riquelme, M. A1 - Segata, N. A1 - Schumacher, Julia A1 - Shelest, E. A1 - Sterflinger, K. A1 - Tesei, D. A1 - U’Ren, J. M. A1 - Varese, G. C. A1 - Vázquez-Campos, X. A1 - Vicente, V. A. A1 - Souza, E. M. A1 - Zalar, P. A1 - Walker, A. K. A1 - Stajich, J. E. T1 - Shed Light in the DaRk LineagES of the Fungal Tree of Life—STRES N2 - The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the “Shed light in The daRk lineagES of the fungal tree of life” (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments. KW - Adaptation KW - Black fungi KW - Dothideomycetes KW - Eurotiomycetes KW - Extremophiles KW - Genomics KW - Metabolomics KW - Secondary metabolites KW - Stress conditions KW - Transcriptomics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519328 DO - https://doi.org/10.3390/life10120362 VL - 10 IS - 12 SP - 362 PB - MDPI CY - Basel AN - OPUS4-51932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -