TY - JOUR A1 - Abis, M. A1 - Bruno, M. A1 - Kuchta, K. A1 - Simon, Franz-Georg A1 - Grönholm, R. A1 - Hoppe, M. A1 - Fiore, S. T1 - Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe JF - Energies N2 - In 2018, the production of Municipal SolidWaste (MSW) in EU-28 reached 250.6 Mt, with the adoption of different management strategies, involving recycling (48 wt %), incineration and thermal valorization (29 wt %) and landfilling (23 wt %). This work was based on the analysis of the baseline situation of MSW management in EU-28 in 2018, considering its progress in 2008–2018, and discussed the possible improvement perspectives based on a framework involving incineration and recycling as the only possible alternatives, specifically evaluating the capability of already-existing incineration plants to fulfill the EU needs in the proposed framework. The results of the assessment showed two main crucial issues that could play a pivotal role in the achievement of Circular Economy action plan targets: the need to increase the recycling quotas for specific MSW fractions through the separate collection, and therefore the improvement of definite treatment process chains; the optimization of the recovery of secondary raw materials from incineration bottom ash, involving the Recycling of ferrous and nonferrous metals and the mineral fraction. Both issues need to find an extensive application across all member states to decrease the actual differences in the adoption of sustainable MSW management options. KW - Bottom ash KW - Circular economy KW - Waste treatment KW - Recycling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520285 DO - https://doi.org/10.3390/en13236412 SN - 1996-1073 VL - 13 IS - 23 SP - 6412 EP - 6412 PB - MDPI CY - Basel AN - OPUS4-52028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abis, M. A1 - Bruno, M. A1 - Simon, Franz-Georg A1 - Grönholm, R. A1 - Hoppe, M. A1 - Kuchta, K. A1 - Fiore, S. T1 - A Novel Dry Treatment for Municipal Solid Waste Incineration Bottom Ash for the Reduction of Salts and Potential Toxic Elements JF - Materials N2 - The main obstacle to bottom ash (BA) being used as a recycling aggregate is the content of salts and potential toxic elements (PTEs), concentrated in a layer that coats BA particles. This work presents a dry treatment for the removal of salts and PTEs from BA particles. Two pilotscale abrasion units (with/without the removal of the fine particles) were fed with different BA samples. The performance of the abrasion tests was assessed through the analyses of particle size and moisture, and that of the column leaching tests at solid-to-liquid ratios between 0.3 and 4. The results were: the particle-size distribution of the treated materials was homogeneous (25 wt % had dimensions <6.3 mm) and their moisture halved, as well as the electrical conductivity of the leachates. A significant decrease was observed in the leachates of the treated BA for sulphates (44%), chlorides (26%), and PTEs (53% Cr, 60% Cu and 8% Mo). The statistical analysis revealed good correlations between chloride and sulphate concentrations in the leachates with Ba, Cu, Mo, and Sr, illustrating the consistent behavior of the major and minor components of the layer surrounding BA particles. In conclusion, the tested process could be considered as promising for the improvement of BA valorization. KW - Bottom ash KW - Dry treatment KW - Potential toxic elements KW - Salts PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527963 DO - https://doi.org/10.3390/ma14113133 SN - 1996-1944 VL - 14 IS - 11 SP - 3133 PB - MDPI CY - Basel AN - OPUS4-52796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandow, N. A1 - Aitken, M. D. A1 - Geburtig, Anja A1 - Kalbe, Ute A1 - Piechotta, Christian A1 - Schoknecht, Ute A1 - Simon, Franz-Georg A1 - Stephan, Ina T1 - Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives? JF - Materials N2 - The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented. KW - Environmental simulations KW - Polymer-based products KW - Artificial weathering KW - Degradation KW - Leaching KW - Soil contact PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509310 DO - https://doi.org/10.3390/ma13122709 SN - 1996-1944 VL - 13 IS - 12 SP - Paper 2709, 22 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blasenbauer, D. A1 - Huber, F. A1 - Lederer, J. A1 - Quina, M. A1 - Blanc-Biscarat, D. A1 - Bogush, A. A1 - Bontempi, E. A1 - Blondeau, J. A1 - Chimenos, J. A1 - Dahlbo, H. A1 - Fagerqvist, J. A1 - Giro-Paloma, J. A1 - Hjelmar, O. A1 - Hyks, J. A1 - Keaney, J. A1 - Lupsea-Toader, M. A1 - O’Caollai, C. A1 - Orupõld, K. A1 - Pajak, T. A1 - Simon, Franz-Georg A1 - Svecova, L. A1 - Syc, M. A1 - Uvang, R. A1 - Vaajasaari, K. A1 - van Caneghem, J. A1 - van Zomeren, A. A1 - Vasarevičius, S. A1 - Wégner, K. A1 - Fellner, J. T1 - Legal situation and current practice of waste incineration bottom ash utilisation in Europe JF - Waste Management N2 - Almost 500 municipal solid waste incineration plants in the EU, Norway and Switzerland generate about 17.6 Mt/a of incinerator bottom ash (IBA). IBA contains minerals and metals. Metals are mostly separated and sold to the scrap market and minerals are either disposed of in landfills or utilised in the construction sector. Since there is no uniform regulation for IBA utilisation at EU level, countries developed own rules with varying requirements for utilisation. As a result from a cooperation network between European experts an up-to-date overview of documents regulating IBA utilisation is presented. Furthermore, this work highlights the different requirements that have to be considered. Overall, 51 different parameters for the total content and 36 different parameters for the emission by leaching are defined. An analysis of the defined parameter reveals that leaching parameters are significantly more to be considered compared to total content parameters. In order to assess the leaching behaviour nine different leaching tests, including batch tests, up-flow percolation tests and one diffusion test (monolithic materials) are in place. A further discussion of leaching parameters showed that certain countries took over limit values initially defined for landfills for inert waste and adopted them for IBA utilisation. The overall utilisation rate of IBA in construction works is approximately 54 wt%. It is revealed that the rate of utilisation does not necessarily depend on how well regulated IBA utilisation is, but rather seems to be a result of political commitment for IBA recycling and economically interesting circumstances. KW - Bottom ash KW - Leaching tests KW - Utilisation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500161 DO - https://doi.org/10.1016/j.wasman.2019.11.031 SN - 0956-053X VL - 102 SP - 868 EP - 883 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, M. A1 - Abis, M. A1 - Simon, Franz-Georg A1 - Grönholm, R. A1 - Hoppe, M. A1 - Fiore, S. T1 - Material flow, economic and environmental assessment of municipal solid waste incineration bottom ash recycling potential in Europe JF - Journal of Cleaner Production N2 - In 2018 municipal solid waste (MSW) incineration in Europe produced nearly 19 Mt of bottom ash (BA); only 46 %-wt. was treated, often in poorly performing plants, leaving behind 10 Mt of untreated and unrecovered BA, destined to landfill. This work was based on the inventory of BA across Europe, and on the hypothesis to achieve complete BA valorisation through two assumptions: treating 100% BA and minimizing the loss of valuable fractions due to technical limitations of state-of-the-art processes in comparison to advanced innovative processes. The research involved three phases: characterization of potential secondary raw materials (metals and mineral fraction) currently lost from untreated (the surplus compared to treatment capacity) and unrecovered BA (the fine fraction) through material flow analysis; environmental assessment (energy balance and net GHG emissions) of complete BA valorisation; investigation of the economic feasibility of complete BA Valorisation through state-of-the-art technologies. The resulting 2.14 Mt loss of valuable materials included 1 Mt Mineral fraction and 0.97 Mt ferrous metals, mostly from untreated BA, and 0.18 Mt non-ferrous metals, mostly from unrecovered BA. The energy balance and GHGs emissions required by the treatment of the currently untreated and unrecovered fractions of BA resulted in energy and GHGs emissions savings. Economic profitability was driven by iron and copper recycling and avoided landfill fees. Profitability was achieved by two thirds of considered countries (average values: NPV 83 M€, ROI 20%, payback time 11 years) with BA mass flow exceeding 0.02 Mt. KW - Bottom ash KW - Circular Economy KW - Thermal treatment PY - 2021 DO - https://doi.org/10.1016/j.jclepro.2021.128511 SN - 0959-6526 VL - 317 SP - 1 EP - 13 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-53051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chubarenko, B. A1 - Domnin, D. A1 - Simon, Franz-Georg A1 - Scholz, Philipp A1 - Leitsin, V. A1 - Tovpinets, A. A1 - Karmanov, K. A1 - Esiukova, E. T1 - Change over Time in theMechanical Properties of Geosynthetics Used in Coastal Protection in the South-Eastern Baltic JF - Journal of Marine Science and Engineering N2 - The most massive design on the Baltic shore used geosynthetic materials, the landslide protection construction in Svetlogorsk (1300 m long, 90,000 m2 area, South-Eastern Baltic, Kaliningrad Oblast, Russian Federation) comprises the geotextile and the erosion control geomat coating the open-air cliff slopes. Due to changes in elastic properties during long-term use in the open air, as well as due to its huge size, this structure can become a non-negligible source of microplastic pollution in the Baltic Sea. Weather conditions affected the functioning of the structure, so it was assessed that geosynthetic materials used in this outdoor (open-air) operation in coastal protection structures degraded over time. Samples taken at points with different ambient conditions (groundwater outlet; arid places; exposure to the direct sun; grass cover; under landslide) were tested on crystallinity and strain at break. Tests showed a 39–85% loss of elasticity of the polymer filaments after 3 years of use under natural conditions. Specimens exposed to sunlight are less elastic and more prone to fail, but not as much as samples taken from shaded areas in the grass and under the landslide, which were the most brittle. KW - Geosynthetics KW - Microplastic KW - Degradation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567978 UR - https://www.mdpi.com/2077-1312/11/1/113 DO - https://doi.org/10.3390/jmse11010113 SN - 2077-1312 VL - 11 IS - 1 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-56797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chubarenko, B. A1 - Kileso, A. A1 - Esiukova, E. A1 - Pinchuk, V. A1 - Simon, Franz-Georg T1 - Dataset on geosynthetic material debris contamination of the South-East Baltic shore JF - Data in Brief N2 - The database gives information on the contamination of the shore of the South-Eastern Baltic with the debris of geosynthetic materials for the period 2018–2020. This new type of coastal pollution enters the natural environment due to the destruction of coastal protection structures and construction activities. The database contains sections: (1) a list of types of geosynthetic material residues, their photographic images and photographs illustrating examples of finds in natural conditions [1 List_geosynthetic_debris_SEB], (2) monitoring data on the contamination of the beach strip with the debris of geotextiles, braids from gabions, geocontainers (big bags), geocells and geogrids for the beaches of the South-Eastern Baltic for the period 2018–2020 [2 Monitoring_geosynthetic_debris_SEB]; (3) statistical distributions of the found geosynthetic debris by size [3 Scales_geosynthetic_debris_SEB] and (4) results of test surveys on the shores of Lithuania and Poland adjacent to Kaliningrad Oblast. All data refer to the beaches of the Kaliningrad Oblast (Russia), including the Russian parts of the Vistula and Curonian Spits, but also contains information on a one-time assessment of the pollution of the beaches of the adjacent territories: the Polish shore from the Poland-Russia border on the Vistula Spit to the mouth of the Vistula River, the Lithuanian shore from the border Lithuania-Russia on the Curonian Spit to the border of Latvia-Lithuania. Materials were collected during field surveys within the ERANET-RUS_Plus joint project EI-GEO, ID 212 (RFBR 18-55-76002 ERA_a, BMBF 01DJ18005). KW - Geosynthetics KW - Geotextiles KW - Contamination KW - Marine littering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541947 DO - https://doi.org/10.1016/j.dib.2021.107778 SN - 2352-3409 VL - 40 SP - 1 EP - 7 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-54194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, E. A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Determination of organically bound fluorine sum parameters in river water samples - Comparison of combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) JF - Analytical and bioanalytical chemistry N2 - In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically Bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples fromriver Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum Parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 μg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14–0.81% of TF (determined using CIC) and EOF 0.04–0.28% of TF (determined using HR-CSGFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in Risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surface waters PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515351 DO - https://doi.org/10.1007/s00216-020-03010-y SN - 1618-2650 VL - 413 IS - 28 SP - 103 EP - 115 PB - Springer CY - Berlin AN - OPUS4-51535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gleis, Markus A1 - Simon, Franz-Georg T1 - Schwermetallbelastung und Behandlung von Aschen aus Abfallverbrennungsanlagen JF - Wasser und Abfall N2 - Die Thermische Abfallbehandlung in Abfallverbrennungsanlagen sorgt für eine Inertisierung des Restmülls bei gleichzeitiger Minimierung von abgas- und abwasserseitigen Emissionen. Da der Großteil der Rückstände in verwertbare Sekundärprodukte überführt wird, fördert die thermische Abfallbehandlung die Verwirklichung einer Circular Economy in Europa. KW - Rostasche KW - Circular Economy KW - Ersatzbaustoffe PY - 2021 SN - 1436-9095 VL - 23 IS - 3 SP - 48 EP - 52 PB - Springer Vieweg CY - Wiesbaden AN - OPUS4-52344 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodgkinson, I. A1 - Maletz, R. A1 - Simon, Franz-Georg A1 - Dornack, C. T1 - Mini-review of waste-to-energy related air pollution and their limit value regulations in an international comparison JF - Waste Management & Research N2 - The concept of circular economy supports mitigation of climate change and other environmental pressures to the planet. Circulating materials in anthropogenic processes come with the risk of accumulating hazardous substances and compounds. In this concept, waste incineration or waste-to-energy (WtE) is a necessary technology to remove these compounds from the life cycle. In this mini-review, contaminants of major importance in the flue gas from waste incineration plants and their environmental impact are discussed. Air pollution of WtE is often seen as the most relevant environmental impact of this treatment option. The emission values parameter set for different countries is presented and compared. The most stringent legally set of emission values could be found in parts of Europe and South Korea. Japan also permits similar strict values when authorising individual incineration plants. In North America, the values are partially less strict as the best available technologies in Europe suggest being possible. Emerging economies, such as India and China, have shown efforts to improve their environmental protection standards but still have room to improve. This could be set in relation to other industrial emitting processes and therefore could be used to assess the relevance of this industry sector to the national emission inventories. KW - Waste incineration KW - Waste-to-energy KW - Limit values KW - Regulation KW - Emission KW - Air pollution control PY - 2021 DO - https://doi.org/10.1177/0734242X211060607 SN - 0734-242X SN - 1096-3669 VL - 40 IS - 7 SP - 849 EP - 858 PB - Sage Publishing CY - London AN - OPUS4-53858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Schatten, R. A1 - Simon, Franz-Georg A1 - Terytze, K. T1 - Novelle der BBodSchV – Perspektiven für die Verwertung von Bodenmaterial JF - altlasten spektrum N2 - Der Verwertung von Bodenmaterialien wird auf Grund des Volumens dieses Stoffstromes eine hohe umweltpolitische Bedeutung beigemessen. Dabei ist unter Gewährleistung des Vorsorge- und Nachhaltigkeitsprinzips eine möglichst hochwertige Verwertung anzustreben, um natürliche Ressourcen zu schonen und die Beseitigung von Abfällen weitestgehend zu vermeiden. Die vorgesehene Novelle der BBodSchV enthält in den Paragraphen 6 bis 8 neue Vorgaben hinsichtlich des Auf- und Einbringens von Bodenmaterialien unterhalb oder außerhalb einer durchwurzelbaren Bodenschicht. So soll die Möglichkeit eingeräumt werden, Bodenmaterialien mit Feststoffgehalten von regulierten Stoffen zwischen dem einfachen und doppelten Vorsorgewert einer weiteren Verwertung zuzuführen unter der Voraussetzung, dass die Eluatwerte eingehalten werden. Im Rahmen eines Forschungsvorhabens des Umweltbundesamtes (FKZ: 3716 74 203 0) wurden unterschiedliche Bodenmaterialien (Baggergut, Bankettschälgut, Stadt- und Auenböden, Bergematerial), die unter diese Kriterien fallen, mit besonderem Fokus auf PAK hinsichtlich ihres Verwertungspotentials untersucht. Dabei wurden auch die Auswirkungen der Umstellung des Elutionsverfahrens von einem Wasser-Feststoffverhältnis (W/F) von 10 l/kg auf ein W/F von 2 l/kg auf die Einstufung von Bodenmaterialien betrachtet. Insbesondere für die Stoffgruppe der PAK konnte gezeigt werden, dass sich mit Verabschiedung der neuen Regelungen zusätzliche Verwertungsmöglichkeiten von Bodenmaterialien außerhalb der durchwurzelbaren Bodenschicht eröffnen und deren Deponierung teilweise vermieden werden kann. KW - Bodenmaterialien KW - Verwertung KW - Novelle BBodSchV KW - Vorsorgewerte KW - Eluatwerte KW - PAK PY - 2020 SN - 0942-3818 VL - 2020 IS - 4 SP - 133 EP - 140 PB - Erich Schmidt Verlag CY - Berlin AN - OPUS4-51090 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Potential use of incineration bottom ash in construction – Evaluation of the environmental impact JF - Waste and Biomass Valorization N2 - Knowledge of the long-term leaching behavior of potentially harmful substances is crucial for the assessment of the environmental compatibility of reusing municipal solid-waste incineration bottom ash (MSWI BA) in construction, i.e., as a road base layer. BA fractions obtained from wet-processing aiming at the improvement of environmental quality were used to investigate the mobility of relevant substances. Eluates from laboratory-scaled leaching procedures (column percolation and lysimeters) were analyzed to learn about the long-term release of substances. Unsaturated conditions and artificial rainwater (AR) were used in the lysimeter tests to simulate field conditions. In addition, batch test eluates were generated at usual liquid-to-solid ratios (L/S) for compliance testing purposes. A variety of cations and anions was measured in the eluates. The wet treatment reduces the leaching of chloride and particularly sulfate by more than 60%. The release of typical contaminants for the treated MSWI BA such as the heavy metals Cu and Cr was well below 1% in the conducted leaching tests. An increase in the Sb concentration observed in the lysimeter experiments starting at L/S 0.75 L/kg and in the column experiment at L/S 4 L/kg is assumed to be related to decreasing concentrations of Ca and thus to the dissolution of sparingly soluble calcium antimonate. The same leaching mechanism applies with V, but the concentration levels observed are less critical regarding relevant limit values. However, on the long term the behavior of Sb could be problematic for the application of MSWI BA in construction. KW - MSWI bottom ash KW - Leaching KW - Batch tests KW - Lysimeter KW - Antimony PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508421 DO - https://doi.org/10.1007/s12649-020-01086-2 SN - 1877-2641 VL - 11 IS - 12 SP - 7055 EP - 7065 PB - Springer AN - OPUS4-50842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lederer, J. A1 - Syc, M. A1 - Simon, Franz-Georg A1 - Quina, M. A1 - Hyks, J. A1 - Huber, F. A1 - Funari, V. A1 - Fellner, J. A1 - Braga, R. A1 - Bontempi, E. A1 - Bogush, A. A1 - Blasenbauer, D. T1 - What waste management can learn from the traditional mining sector: Towards an integrated assessment and reporting of anthropogenic resources JF - Waste management N2 - Many organizations in Europe collect data and perform research on municipal solid waste and the secondary raw materials that can be produced from them through recycling, urban mining, or landfill mining.However, the information generated and presented thereby is often highly aggregated, while research activities are many a time isolated. Both reduce the usability of the data and information generated. In order to better structure the knowledge generation on secondary raw materials production from municipal solid waste, we suggest to learn from the traditional raw materials mining Industry how to perform an integrated assessment and reporting of anthropogenic resources. This is exemplarily shown for the case of the anthropogenic resource municipal solid waste incineration bottom ash and airpollution control residues. A network of expert institutions from countries throughout Europe was build up to compile the information on legal and technological aspects for the recovery of different secondary raw materials from these residues, including construction minerals, metals, and salts. We highlight in our article the strength of the combined knowledge of an expert network not only on legal and technological, but also local and site-specific aspects of the recovery of secondary raw materials. By doing so, we hope to kick-off a discussion for how to organize and implement a structure for a better management of knowledge on anthropogenic resources, in order to provide a sustainable supply of secondary raw materials for a greener and more circular economy. KW - Waste management KW - Resources KW - Mining PY - 2020 DO - https://doi.org/10.1016/j.wasman.2020.05.054 VL - 113 SP - 154 EP - 156 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maisels, A. A1 - Hiller, A. A1 - Simon, Franz-Georg T1 - Chemisches Recycling für Kunststoffe: Status und Perspektiven JF - Chemie Ingenieur Technik N2 - Das mechanische Recycling von Kunststoffen ist seit Jahren großtechnisch etabliert, hat aber technische und ökonomische Grenzen. Durch Verfahren des chemischen Recyclings gelangt man zurück zu Monomeren oder den Rohstoffen, so dass am Ende wieder Neuware für alle Einsatzgebiete von Kunststoffen entsteht. Die Vielfalt von chemischen Recyclingverfahren ist groß. Die Kapazitäten der Anlagen sind heute noch gering und die Wirtschaftlichkeit wird stark vom Ölpreis beeinflusst. Die Rentabilitätsgrenze liegt derzeit bei einem Preis zwischen 50 und 60 US-$ pro Barrel. KW - Chemisches Recycling KW - Oxyfuel-Verbrennung KW - Pyrolyse KW - Solvolyse PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535952 DO - https://doi.org/10.1002/cite.202100115 SN - 0009-286X SN - 1522-2640 VL - 93 IS - 11 SP - 1742 EP - 1750 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-53595 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maisels, A. A1 - Hiller, A. A1 - Simon, Franz-Georg T1 - Chemical Recycling for Plastic Waste: Status and Perspectives JF - ChemBioEng Reviews N2 - Industrial-scale mechanical recycling of plastics has been established for years, but has technical and economic limits. Chemical recycling processes lead back to monomers or to the raw materials, so that in the end new goods can be produced for all areas of application of plastics. The variety of chemical recycling processes is large. The capacities of the plants are still low today. The profitability of the plants is strongly influenced by the price of oil; the profitability limit is currently between 50 and 60 US $ per barrel. KW - Chemical recycling KW - Plastic waste KW - Circular economy KW - Pyrolysis KW - Solvolysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565700 DO - https://doi.org/10.1002/cben.202200024 SN - 2196-9744 VL - 9 IS - 6 SP - 541 EP - 555 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-56570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mueller, Axel A1 - Becker, Roland A1 - Dorgerloh, Ute A1 - Simon, Franz-Georg A1 - Braun, Ulrike T1 - The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics JF - Environmental Pollution N2 - Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy. Pellets were exposed to water containing BTEX and the ethers at 130-190 mg/L for up to two weeks. Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's Kow and was significant for BTEX and marginal for the ethers. Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer. KW - BTEX KW - Polypropylene KW - Polystyrene KW - Sorption KW - Degradation PY - 2018 DO - https://doi.org/10.1016/j.envpol.2018.04.127 SN - 0269-7491 VL - 240 SP - 639 EP - 646 PB - Elsevier CY - Amsterdam AN - OPUS4-44990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Werner Wolfgang A1 - Simon, Franz-Georg A1 - Wöhlecke, Andreas T1 - 30 Jahre BAM-Zulassung (in der Deponietechnik): material- und prüftechnische Entwicklungen T1 - 30 years of BAM approvals (in landfill technology): material and testing developments JF - Bautechnik N2 - Vor 30 Jahren wurde die erste BAM-Zulassung für ein Geokunststoffprodukt in der Deponietechnik ausgestellt. Seither wurden immer wieder eigene wissenschaftliche Untersuchungen durchgeführt, neue Forschungsergebnisse herangezogen und die Prüftechnik weiterentwickelt, um die Eignung und Funktionsdauer von Kunststoffdichtungsbahnen, Schutzschichten, Kunststoff-Dränelementen, geotextilen Filtern oder Bewehrungsgittern beurteilen zu können. Einige dieser Entwicklungen werden hier diskutiert. KW - Deponie KW - Geokunststoffe KW - Kunststoffdichtungsbahnen KW - Langzeitverhalten PY - 2019 DO - https://doi.org/10.1002/bate.201900076 VL - 96 IS - 12 SP - 912 EP - 918 PB - Ernst & Sohn CY - Berlin AN - OPUS4-49973 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pienkoß, Fabian A1 - Abis, M. A1 - Bruno, M. A1 - Grönholm, R. A1 - Hoppe, M. A1 - Kuchta, K. A1 - Fiore, S. A1 - Simon, Franz-Georg T1 - Heavy metal recovery from the fine fraction of solid waste incineration bottom ash by wet density separation JF - Journal of Material Cycles and Waste Management N2 - This work is aimed at exploring the recovery of heavy metals from the fine fraction of solid waste incineration bottom ash. For this study, wet-discharged bottom ash fine-fraction samples from full-scale treatment plants in Germany and Sweden were analyzed. The potential for the recovery of heavy metal compounds was investigated through wet density-separation with a shaking table. The feed materials were processed without any pre-treatment and the optimum processing conditions were determined by means of design of experiments. Tilt angle and stroke frequency were identified as the most relevant parameters, and the optimum settings were − 7.5° and 266 rpm, respectively. The obtained balanced copper enrichments (and yields) were 4.4 (41%), 6.2 (28%) and 2.4 (23%). A maximum copper enrichment of 14.5 with 2% yield was achieved, providing a concentrate containing 35.9 wt.% relevant heavy metal elements. This included 26.3 wt.% iron, 4.3 wt.% zinc and 3.8 wt.% copper. In conclusion, density separation with shaking tables can recover heavy metals from bottom ash fine fractions. Medium levels of heavy metal enrichment (e.g., for Cu 2.7–4.4) and yield (Cu: 26–41%) can be reached simultaneously. However, the separation performance also depends on the individual bottom ash sample. KW - Bottom ash KW - Density separation KW - Circular economy KW - Design of experiments PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538569 DO - https://doi.org/10.1007/s10163-021-01325-1 SN - 1438-4957 SN - 1611-8227 VL - 24 SP - 364 EP - 377 PB - Springer Nature CY - Heidelberg AN - OPUS4-53856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pienkoß, Fabian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Nassmechanische Aufbereitung von Bauschutt‐Brechsand mit der Setztechnik – ein Schritt auf dem Weg zum Ersatzbaustoff T1 - Wet-Mechanical Processing of Crushed-Sand from Construction-Waste - A First Step Towards a Circular Building Material JF - Chemie Ingenieur Technik N2 - Das Recycling von gemischten Baustoffen führt neben der Herstellung von Gesteinskörnungen parallel zu einem stärker schadstoffbelasteten Stoffstrom, der circa ein Drittel der ursprünglichen Masse ausmacht. Dieser sogenannte Brechsand endet derzeit in der Deponierung und wird somit der Kreislaufwirtschaft entzogen. Der vorliegende Beitrag untersucht nun die Aufbereitung dieses Materials unter Verwendung einer Setzmaschine im Pilotmaßstab. Hierbei wird die Eignung dieser Technik evaluiert und das Aufbereitungsprodukt als möglicher Ersatzbaustoff untersucht. N2 - Besides the generation of aggregates, recycling of mixed construction and demolition waste leads to a more polluted side stream accounting for up to one third of the input materials. This so-called crushed sand often ends up in landfills and is hence lost for a circular economy. This article reports about the processing of this material using a pilot plant jig. The suitability of jigging technology is evaluated, and the product is analyzed as possible circular building material. KW - Aufbereitung KW - Ersatzbaustoff KW - Kreislaufwirtschaft KW - Setzmaschine KW - Umweltverträglichkeit PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585978 DO - https://doi.org/10.1002/cite.202300019 SN - 0009-286X VL - 95 IS - 12 SP - 1916 EP - 1924 PB - Wiley VHC-Verlag AN - OPUS4-58597 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Schinnen, Andrea A1 - Riedel, Maren A1 - Sommerfeld, Thomas A1 - Sawal, G. A1 - Bandow, N. A1 - Vogel, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Investigation of pH-dependent extraction methods for PFAS in (fluoropolymer-based) consumer products: A comparative study between targeted and sum parameter analysis JF - Chemosphere N2 - Here, we report a comparative study of different sum parameter analysis methods for the extraction of per- and polyfluoroalkyl substances (PFAS) from manufactured consumer products, which can be measured by combustion ion chromatography (CIC). Therefore, a hydrolysis-based extraction method was further developed, which accounts for the addition of hydrolyzable covalently bound polyfluoroalkylated side-chain polymers (SFPs) to the extractable organic fluorine portion of the mass balance proposed as "hydrolyzable organically bound fluorine" (HOF). To test this hypothesis, the method was applied to 39 different consumer products containing fluoropolymers or monomeric PFAS taken from four different categories: outdoor textiles, paper packaging, carpeting, and permanent baking sheets. We also evaluated the method's efficiency by extracting four synthesized fluorotelomer polyacrylate reference compounds. The total fluorine (TF) and extractable organically bound fluorine (EOF) values were measured through CIC using established protocols. The TF values ranged from sub-ppb to %-levels, depending on the compound class. All samples showed results for hydrolyzed organofluorine (HOF) between 0.03 and 76.3 μg/g, while most EOF values were lower (