TY - JOUR A1 - Abdallah, Khaled A1 - Stock, S. C. A1 - Heeger, Felix A1 - Koester, M. A1 - Nájera, F. A1 - Merino, C. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. A1 - Dippold, M. A. T1 - Nitrogen Gain and Loss Along an Ecosystem Sequence: From Semi-desert to Rainforest JF - Frontiers in Soil Science N2 - Plants and microorganisms, besides the climate, drive nitrogen (N) cycling in ecosystems. Our objective was to investigate N losses and N acquisition strategies along a unique ecosystem-sequence (ecosequence) ranging from arid shrubland through Mediterranean woodland to temperate rainforest. These ecosystems differ in mean annual precipitation, mean annual temperate, and vegetation cover, but developed on similar granitoid soil parent material, were addressed using a combination of molecular biology and soil biogeochemical tools. Soil N and carbon (C) contents, δ15N signatures, activities of N acquiring extracellular enzymes as well as the abundance of soil bacteria and fungi, and diazotrophs in bulk topsoil and rhizosphere were determined. Relative fungal abundance in the rhizosphere was higher under woodland and forest than under shrubland. This indicates toward plants' higher C investment into fungi in the Mediterranean and temperate rainforest sites than in the arid site. Fungi are likely to decompose lignified forest litter for efficient recycling of litter-derived N and further nutrients. Rhizosphere—a hotspot for the N fixation—was enriched in diazotrophs (factor 8 to 16 in comparison to bulk topsoil) emphasizing the general importance of root/microbe association in N cycle. These results show that the temperate rainforest is an N acquiring ecosystem, whereas N in the arid shrubland is strongly recycled. Simultaneously, the strongest 15N enrichment with decreasing N content with depth was detected in the Mediterranean woodland, indicating that N mineralization and loss is highest (and likely the fastest) in the woodland across the continental transect. Higher relative aminopeptidase activities in the woodland than in the forest enabled a fast N mineralization. Relative aminopeptidase activities were highest in the arid shrubland. The highest absolute chitinase activities were observed in the forest. This likely demonstrates that (a) plants and microorganisms in the arid shrubland invest largely into mobilization and reutilization of organically bound N by exoenzymes, and (b) that the ecosystem N nutrition shifts from a peptide-based N in the arid shrubland to a peptide- and chitin-based N nutrition in the temperate rainforest, where the high N demand is complemented by intensive N fixation in the rhizosphere. KW - Nitrogen KW - Rhizosphere KW - Microbial abundance KW - Natural abundance of 15N KW - Nitrogen fixation KW - Nitrogen uptake PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543708 DO - https://doi.org/10.3389/fsoil.2022.817641 SN - 2673-8619 VL - 2 SP - 1 EP - 14 PB - Frontiers Media CY - Lausanne AN - OPUS4-54370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landsberger, B A1 - Frauendorf, H A1 - Adler, C A1 - Plarre, Rüdiger ED - Nilsen, L ED - Rossipal, M T1 - Capability and Limitations of Anoxic Treatments for Protecting Museum Collections T2 - Integrated Pest Management (IPM) for Cultural Heritage. Proceedings from the 4th International Conference in Stockholm. N2 - Without precaution, insects may cause serious damage to museum collections. Quarantine of potentially infested objects can be logistically challenging. Anoxia under controlled Nitrogen atmosphere is a most gentle but also time-consuming method to eradicate insect pests in all kinds of different materials. Treatment results are usually affected by duration, temperature, humidity and residual oxygen content. During a two-year research project, 34 relevant pest insect species of all developmental stages were tested in different materials (wood, paper, wool) to monitor treatment success and to determine optimum treatment parameters. Duration of treatment ranged from one to three weeks at temperatures of 20–27 °C. As expected, results showed significant differences in mortality among tested species. Highest tolerance of hypoxic conditions was found in elder larvae of Hylotrupes bajulus. Although this species is an unlikely museum pest, it may serve as an overall most tolerant reference. Anobiids and other wood boring beetles are more often an issue related to cultural heritage. A combination of three weeks exposure time at maximum 0.5% residual oxygen and 24 °C, alternatively 1% residual oxygen and 27 °C are recommended for infested artefacts. Imbedding materials in general had no influence on mortality. This study was funded by Deutsche Bundesstiftung Umwelt (DBU). T2 - 4th International Conference Integrated Pest Management (IPM) for Cultural Heritage CY - Stockholm, Sweden DA - 21.05.2019 KW - Controlled atmosphere KW - Museum insect pest KW - Anoxia KW - Nitrogen PY - 2019 SN - 978-91-7209-845-9 SP - 202 EP - 210 AN - OPUS4-50349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landsberger, B. A1 - Frauendorf, H. A1 - Adler, C. A1 - Plarre, Rüdiger T1 - Capability and limitation of anoxic treatments in museum collections protection N2 - Without precaution, insects may cause serious damage to Museum collections. Quarantine of potentially infested objects can be logistically challenging. Anoxia under controlled nitrogen atmosphere is a most compatible but also time-consuming method to eradicate insect pests in all kinds of different materials. Treatment results are usually effected by duration, temperature, humidity and residual oxygen content. During a two-year research project, 34 relevant pest insect species of all developmental stages were tested in several different materials (wood, paper, wool) to monitor treatment success and to determine optimum treatment parameters. Duration of Treatment ranged from one to three weeks at temperatures of 20 - 27 °C. As expected, results showed significant differences in mortality among tested species. Highest tolerance of hypoxic conditions was found in older larvae of Hylotrupes bajulus. However, this species is an unlikely museum pest. Anobiids and other wood boring beetles are more often an issue related to cultural heritage. Tested imbedding materials in general had no mortality lowering influence. A combination of three weeks exposure time at up to 0.5 % residual oxygen and at 24 °C and 50 % RH is recommended for infested artefacts. T2 - 12th International Working Conference on Stored Product Protection (IWCSPP) CY - Berlin, Germany DA - 07.10.2018 KW - Anoxia KW - Nitrogen KW - Cultural Heritage KW - Hylotrupes bajulus PY - 2018 AN - OPUS4-46255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Adam, Christian T1 - Effect of Nitrification Inhibitor on Nitrogen Forms in Soil analyzed by Nitrogen K edge micro XANES Spectroscopy N2 - Specific co-fertilization of nutrients can enhance their plant-availability and thus the yield of plants. To investigate this effect, we performed a pot experiment with three different P-fertilizers and ammonium nitrate sulfate as a co-fertilizer, without and with a nitrification inhibitor (NI), and analyzed the form of nitrogen (N) in the soil via novel X-ray spectroscopic method. The application of NI with the N fertilizer led to a higher dry matter yield of maize. Novel N K-edge micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy identified that the application of a NI promotes the temporary formation of a non-exchangeable N in detectable hot-spots in the soil. The subsequent slow release and prolonged availability of N during plant growth leads to higher yield. It can be concluded that NIs lead to a temporary fixation of ammonium-N in a pool that can be accessed by plant roots. Those types of available nutrient pools meet the idea of so-called “next generation fertilizers” as plants have access to nutrients according to their current demand. T2 - Workshop for X-ray and neutron imaging applications in soil sciences CY - Lund, Sweden DA - 17.06.2019 KW - Nitrogen KW - Phosphorus recycling KW - Fertilizer KW - XANES spectroscopy KW - Pot experiment PY - 2019 AN - OPUS4-48237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -