TY - CONF A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Wilke, Olaf T1 - Volatile organic compounds from building products - Results from seven proficiency tests with emission test chambers conducted between 2008 and 2021 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test every two years using well-characterised test materials (one sealant, one furniture board and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 41 VOCs were included of which 37 gave test chamber air concentrations between 10 and 98 µg/m³. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Four compounds had higher concentrations between 250 and 1105 µg/m³. The relative standard deviations (RSD) of BAM proficiency tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 23% in 2021. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51%. T2 - Proficiency Testing in Analytical Chemistry, Microbiology and Laboratory Medicine CY - Windsor, United Kingdom DA - 25.09.2023 KW - Proficiency Test KW - VOC-Emission KW - Chamber-test PY - 2023 AN - OPUS4-59694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strzelczyk, Rebecca T1 - Zeolites loaded with VOCs as reference for material emissions testing N2 - Nowadays, people spend most of their time indoors. Thus, a good indoor air quality is important. Emissions of volatile organic compounds (VOCs) from furniture and building materials can cause health complaints1. Quantitative VOC-emission testing is carried out under standardized conditions in emission test chambers. In the presented project an emission reference material (ERM) is developed that emits a defined mixture of VOCs which is required for quality assurance and -control (QA/QC) measures. Porous materials (e.g zeolites, activated carbons, MOFs or aerogels) are used as reservoir materials and impregnated with VOC. The porous materials are selected, among others, by their pore size, pore size distribution, polarity and availability. Due to their regular pore structure zeolites are tested at first. For a prediction of the emission profile, the ERM is supposed to exhibit a constant emission rate over time. The aim is a stability of ≤ 10 % change in the emission rate over a minimum of 14 days. Method For impregnation, the material is placed into an autoclave inside a rotatable basket. The VOC is added and the autoclave is closed. Afterwards, CO2 is inserted. The closed system is then heated to the supercritical point of CO2 (31 °C, 73.75 bar). In this state, the CO2 acts as solvent for the VOC. By rotating the basket, the distribution of the VOC is ensured. After a few minutes, the pressure is decreased slowly and the CO2 is released. For the determination of the emission profile, the impregnated sample is placed into an emission test chamber. These chambers can be operated either with dry or humid air (50 ± 5 % rel. humidity). Every second to third day, air samples are taken and analyzed by gas chromatography. For an ideal impregnation, several different pressures and temperatures as well as impregnation times are tested. Results Two zeolite materials tested in dry air conditions reach emission profiles with a decrease of less than 10 % over 14 days (heptane and toluene, respectively). Further it was discovered that smaller pellets of the same zeolite show better results than bigger particles. When the pore size of a zeolite is too small, e.g. 0.3 nm, the VOC cannot be absorbed sufficiently. The main disadvantage of zeolites is their hygroscopicity because it has a large impact on the release of VOC when they are used in emission test chambers under standardized test conditions (23 °C, 50 % rel. humidity). Activated carbons have emission profiles with a larger change over 14 days. However, the high hydrophobicity allows measurements in humid air conditions which was not possible with the before mentioned hygroscopic zeolites. It is possible to impregnate powdered materials as well, and thus powdered non-hygroscopic (n.h.) zeolites were impregnated. Their emission profiles are comparable to those of the activated carbons. The use of methylated hygroscopic zeolites with a decrease in hygroscopicity did not yield successful emission measurements. The change over 14 days is calculated only for the stable phase (~250–300 h). The desired stability of ≤ 10 % change of the emission rate over 14 days could already be reached under dry testing conditions. Further investigations under humid conditions show that zeolites with high Si/Al-ratios are non-hygroscopic and comparable to activated carbons (20–30 % change). The next step is to reduce the change in the emission rate of these materials to the aimed ≤ 10 % over 14 days. T2 - Deutsche Zeolithtagung CY - Jena, Germany DA - 28.02.2024 KW - VOC KW - Emission KW - Quality assurance KW - Reference material KW - Zeolite PY - 2024 AN - OPUS4-59843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Measurement of sub-4 nm particle emission from FFF-3D printing with the TSI Nano Enhancer and the Airmodus Particle Size Magnifier N2 - The emission of ultrafine particles from small desktop Fused Filament Fabrication (FFF) 3D printers has been frequently investigated in the past years. However, the vast majority of FFF emission and exposure studies have not considered the possible occurrence of particles below the typical detection limit of Condensation Particle Counters and could have systematically underestimated the total particle emission as well as the related exposure risks. Therefore, we comparatively measured particle number concentrations and size distributions of sub-4 nm particles with two commercially available diethylene glycol-based instruments – the TSI 3757 Nano Enhancer and the Airmodus A10 Particle Size Magnifier. Both instruments were evaluated for their suitability of measuring FFF-3D printing emissions in the sub-4 nm size range while operated as a particle counter or as a particle size spectrometer. For particle counting, both instruments match best when the Airmodus system was adjusted to a cut-off of 1.5 nm. For size spectroscopy, both instruments show limitations due to either the fast dynamics or rather low levels of particle emissions from FFF-3D printing in this range. The effects are discussed in detail in this article. The findings could be used to implement sub-4 nm particle measurement in future emission or exposure studies, but also for the development of standard test protocols for FFF-3D printing emissions. KW - Air pollution KW - Ultrafine particles KW - Sub-4nm particles KW - FFF-3D printing KW - Emission testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595952 DO - https://doi.org/10.1080/02786826.2024.2320430 SN - 0278-6826 VL - 58 IS - 6 SP - 644 EP - 656 PB - Taylor & Francis CY - London AN - OPUS4-59595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rimon, Hasia A1 - Rabin, Ira ED - Fuller, R.E. ED - Lange, A. T1 - Conservation of the Dead Sea Scrolls N2 - The current state of preservation of the DSS results from the synergetic effect of various factors such as great age, post-discovery treatments, poor storage conditions, environmental influences and exhibitions. With rare exceptions, neither the initial state nor a list of the treatments performed on each DSS fragment is known. Reconstruction of the individual fragment history will have to rely upon advanced analytical techniques to identify the treatments and their effects. Management of the scrolls may be divided roughly into three periods: a) the scholarly archiving period, from 1948 to the mid-1960s; b) first attempts at conservation, from the mid-1960s to late-1980s; c) Israel Antiquities Authority Scrolls Lab, from 1991 onwards. KW - Preservation KW - Dead Sea Scrolls PY - 2023 SN - 2468-3027 VL - 3D SP - 102 EP - 105 PB - Brill CY - Leiden / Boston AN - OPUS4-58910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira ED - Russel, R.E. ED - Lange, A. T1 - Non-invasive Analytic Tools in Studies of Manuscripts N2 - Physico-chemical analyses of writing materials offer insight into various questions associated with historical, cultural, and conservational aspects of manuscript studies. The catalogue of questions that can be addressed with these methods includes authenticity, dating, the attribution of various parts of the text to different scribes and the relation between the primary and secondary texts. Similarly, preservation of the manuscripts requires knowledge of the composition of the original materials versus old repairs, identification of damage, as well as recognition of natural aging and degradation processes. The material sciences can contribute data about the chemical compositions of the writing materials, elucidation of the techniques of their production and the absolute age of organic components, as well as characterization of corrosion effects, evaluation of conservation treatment, and monitoring of the preservation state. KW - Material Analysis KW - Manuscripts PY - 2023 SN - 2468-3027 VL - 3D SP - 114 EP - 116 PB - Brill CY - Leiden / Boston AN - OPUS4-58912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira ED - Russel, R.E. ED - Lange, A. T1 - Ancient Inks N2 - In the last decade scientists and scholars have accumulated more knowledge on black ink used for writing in Antiquity and the early Middle Ages. Ready availability of non-destructive testing instruments employed in interdisciplinary projects on historic manuscripts have made it possible to determine the composition of ink and to compare it with the extant records. KW - Writing Ink KW - Antiquity PY - 2023 SN - 2468-3027 VL - 3D SP - 117 EP - 120 PB - Brill CY - Leiden / Boston AN - OPUS4-58913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira A1 - Caldararo, N. A1 - Rimon, H. ED - Russel, R.E. ED - Lange, A. T1 - The Role of DNA Analysis in the Study of the Biblical Manuscripts N2 - Interest in the type of skin used in scriptural materials and preparation methods increased from the nineteenth into the twentieth century. This was due partly to the number of newly discovered fragments and to the invention of new instruments and scientific procedures to identify animal skins and produce qualitative means to demonstrate specific preparation reagents and techniques. The invention of various means of analyzing the DNA of organic materials brought about a revolution in archaeology and in conservation. Difficulties in overcoming contamination of archaeological samples resulted in a number of controversies but also produced advances and improvement in the techniques of ancient DNA analysis and interpretation of results. KW - DNA KW - Dead Sea Scrolls KW - Parchment PY - 2023 SN - 2468-3027 VL - 3D SP - 120 EP - 123 PB - Brill CY - Leiden / Boston AN - OPUS4-58914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandt, S. A1 - Brozowski, F. A1 - Horn, Wolfgang A1 - Müller, B. T1 - Odour testing of building products: Examinations for an on-going development of the test standard ISO 16000-28 N2 - VOC-emissions and their odours from building products and furnishings present indoors should not have an impact on personal well-being or health. Odours can be measured by applying the standard ISO 16000-28. Indoor air determination of odour emissions from building products using test chambers. One of the described procedures is the assessment of perceived intensity using a comparative scale by a group of panellists. In this paper, the perceived intensity sampling procedure and its evaluation method are investigated and shown to need improvement. New technical developments in the methodology used to increase the reproducibility of measurement results are discussed. Since odour tests are used for labelling, they have a major influence on the assessment of construction products, similar to the procedure of the German Committee for Health Evaluation of Building Products (AgBB). In the original ISO standard, the evaluation is typically performed using a sampling container separated from the emission chamber. For a better sample presentation, an adapter was developed to connect the emission test chamber to the evaluation funnel and thus enable an odour assessment which is comparable to a direct measurement. The investigations show that losses of odourous substances can be greatly reduced, which is very desirable when seeking to obtain reliable results in odour measurement. Another experimental series was carried out to reduce the measurement effort in the evaluation of perceived intensity. Application of the developed greater than or less than/equal to. query could be helpful here. The results show that the query mostly leads to the same result as the evaluation of the perceived intensity using the method according to the standard but is much easier to perform. Overall, the results can contribute to improving the acceptance of the evaluation of perceived intensity using ISO 16000-28 and to determining odours from building materials increasingly more precisely. T2 - Healthy Buildings 2023 Europe CY - Aachen, Germany DA - 11.06.2023 KW - Building material KW - Odour KW - Perceived intensity KW - VOC KW - Emission test chamber PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580070 SP - 345 EP - 352 PB - ISIAQ (International Society of Indoor Air Quality and Climate) CY - Herndon, VA, USA AN - OPUS4-58007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tang, Chi-Long T1 - Sub-4 nm particles from FFF-3D printing measured with the TSI 1 nm CPC and the Airmodus A11 nCNC N2 - Concerns have been raised as Fused Filament Fabrication (FFF) desktop 3D printer emits harmful ultrafine particles (dP < 100 nm) during operation in indoor spaces. However, the vast majority of previous emission studies have neglected the possible occurrence of sub-4 nm particles by using conventional condensation particle counter (CPC) for detection. Thus, the total particle emission could be systematically underestimated. This study has compared two diethylene glycol (DEG) based instruments to evaluate their suitability for measuring organic FFF particles in the sub-4 nm size range either as particle counter or as a particle size spectrometer. T2 - European Aerosol Conference 2024 CY - Tampere, Finland DA - 25.08.2024 KW - Air pollution KW - Emission testing KW - FFF-3D printing KW - Sub-4nm particles KW - Ultrafine particles PY - 2024 AN - OPUS4-60930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -