TY - CONF A1 - Roesch, Philipp A1 - Vogel, Christian A1 - Wittwer, Philipp A1 - Simon, Franz-Georg T1 - Analysis of PFAS in Environmental Samples and Materials - Different Approaches via Fluorine K-Edge XANES Spectroscopy and Combustion Ion Chromatography N2 - Per- and polyfluoroalkyl substances (PFAS) have emerged over the course of the last twenty years as a global pollution issue. Altogether, there are currently more than 4700 known but only partly characterized fluorinated compounds identified by the Organization for Economic Cooperation and Development (OECD), as shown by a recently published classification proposal. The ongoing production of new, yet unrestricted PFAS alternatives has become a major challenge for environmental routine analytics, since the state-of-the-art method LC-MS/MS relies on structural information and availability of isotope standards of the targeted compound. First reported by Miyake et al., fluorine sum parameters like adsorbable organic fluorine (AOF), extractable organic fluorine (EOF) and total fluorine (TF) can be applied to survey and detect the presence of large amounts of unidentified organofluorine compounds in environmental matrices. Today fluorine sum parameters have been established as a useful supplement to classic target-analytical approaches of PFAS and were implemented for the first time as a sum value “PFAS-total” in the recently revised Drinking Water Directive (2020/2184) by the European Commission. In contrast, X-ray absorption near-edge structure (XANES) spectroscopy has been widely applied to identify low concentration of element-specific contamination without pre-treatment in environmental samples in the past. The XANES approach enables a penetration depth of approx. 1 µm (at fluorine K-edge energy; depending on the matrix) which is significantly deeper than for X-ray photoelectron spectroscopy (XPS; penetration depth approx. 10 nm). Furthermore, the method is fast, non-destructive and only simple preparation of the samples is required. In our work, we combined both F-XANES spectroscopy and combustion ion chromatography (CIC) in order to present a new analytical perspective on the investigation of PFAS in environmental media and material samples. T2 - SETAC Europe 2022 - 32nd Annual Meeting CY - Kopenhagen, Dänemark DA - 15.05.2022 KW - Sum parameter analysis KW - EOF KW - CIC KW - Fluor XANES KW - PFAS analysis PY - 2022 AN - OPUS4-54884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp T1 - PFAS Sum Parameter and Structural Analysis N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms (see Figure 1) and which include more than 4730 compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. To get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. Therefore, an overview is given on various analytical techniques for PFAS in environmental samples and their application possibilities discussed for different kind of PFAS compounds T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy KW - Soil PY - 2022 AN - OPUS4-55743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Microspectroscopy reveals dust-derived apatite grains in highly-weathered soils from the Kohala climosequence on Hawaii N2 - Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to colocation with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. T2 - BESSY Science Seminar CY - Online meeting DA - 01.04.2022 KW - Phosphorus KW - Soil KW - X-ray diffraction KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Fertilizer KW - Raman spectroscopy KW - infrared spectroscopy PY - 2022 AN - OPUS4-54584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Diffusive Gradients in Thin-films (DGT) technique as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. As a result of the perpetual use of PFAS containing products, effluents and sewage sludge from wastewater treatment plants (WWTPs) have been observed to be an important pathway for PFAS into the environment. In Germany, phosphorus and other nutrients from sewage sludge and wastewater should be recycled in WWTPs of cities with a large population. However, it is not clear if PFAS contamination from wastewater and sewage sludge end up in novel wastewater-based fertilizers. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS-MS quantification. However, for screening of PFAS contaminations in sewage sludge or wastewater-based fertilizers also passive sampler based on the Diffusive Gradients in Thin-films (DGT) technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyse the “total” amount of PFAS on the passive sampler. Here, we show results from the DGT method in comparison to those of the extractable organic fluorine (EOF) method for a variety of wastewater-based fertilizers. Additionally, we analysed the adsorption of PFAS on the weak anion exchanger (WAX) based DGT passive sampler binding layer by infrared and fluorine K-edge X-ray adsorption near-edge structure (XANES) spectroscopy. T2 - SETAC Europe 2022 CY - Copenhagen, Denmark DA - 15.05.2022 KW - Passive sampling KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Wastewater PY - 2022 AN - OPUS4-54883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Ludwig, S. A1 - Roesch, Philipp A1 - Vigelahn, L. A1 - Wittwer, Philipp A1 - Birke, V. A1 - Simon, Franz-Georg T1 - Mechanochemical Remediation of Per- and Polyfluoroalkyl Substanzes (PFAS) in Soils N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of anionic, cationic, or zwitterionic organofluorine surfactants used in the formulations of thousands of products and consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment. Because PFAS have been extensively used in a variety of AFFF products they can be found in soils from industrial and military installations. Current decontamination strategies of PFAS-burdened soils mainly consist of adsorption methods using adsorbents for fixation of PFAS in the ground. A second option is the utilization of a “pump and treat” process, cycling polluted soils through a washing plant leading to the concentration of the pollutants in the fine fraction. Only a subsequent, high-energy consuming pyrolysis process guarantees the total destruction of all fluorinated organic contaminants. Both approaches are cost-intensive and not intended for the direct decomposition of all PFAS contaminants. Hence, there is a great demand for innovative developments and chemical treatment technologies, dealing with new strategies of tackling the PFAS problem. Previously, mechanochemical treatment of polychlorinated organic compounds in soils showed an efficient dechlorination. Thus, we investigated mechanochemical treatment of PFAS contaminated soils with various additives in a ball mill and analyzed the PFAS defluorination with gas chromatography mass spectrometry (GCMS) and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively, as well es the fluoride mineralization by ion chromatography (IC) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Mechanochemical treatment KW - XANES spectroscopy PY - 2022 AN - OPUS4-55742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - Sequential Extraction of Incineration Bottom Ash: Conclusions Regarding Ecotoxicity N2 - The classification of incineration bottom ash (IBA) as hazardous or non-hazardous according to ecotoxic hazard property HP14 is still under debate. In this context, only the compounds of Zn and Cu with the hazard statement code H410 are of relevance. With an approach based on the grouping of substances, it was shown that such substances are either readily water-soluble or slightly and sparingly soluble. The concentrations of readily soluble Cu and Zn compounds in IBA are far below the cut-off value of 0.1%. Slightly and sparingly soluble Zn and Cu compounds could be quantified in the first fraction of a four-step sequential extraction procedure. With the results from the complete sequence, the dimensionless synthesis toxicity index (STI) was calculated and was in the range of 494 to 1218 for the four investigated IBA samples. It was concluded that IBA can usually be classified as non-hazardous. KW - Incineration bottom ash KW - Hazard properties KW - Ecotoxicity KW - Sequential extraction PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605070 DO - https://doi.org/10.3390/app14135541 SN - 2076-3417 VL - 14 IS - 13 SP - 1 EP - 12 PB - MDPI AN - OPUS4-60507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Huthwelker, T. A1 - Borca, C. A1 - Simon, Franz-Georg T1 - Levels of per- and polyfluoroalkyl substances (PFAS) in various wastewater-derived fertilizers - Analytical investigations from different perspectives N2 - Solid wastewater-based fertilizers were screened for per- and polyfluoroalkyl substances (PFAS) by the extractable organic fluorine (EOF) sum parameter method. The EOF values for ten sewage sludges from Germany and Switzerland range from 154 to 7209 mg kg−1. For thermal treated sewage sludge and struvite the EOF were lower with values up to 121 mg kg−1. Moreover, the application of PFAS targeted and suspect screening analysis of selected sewage sludge samples showed that only a small part of the EOF sum parameter values can be explained by the usually screened legacy PFAS. The hitherto unknown part of EOF sum parameter contains also fluorinated pesticides, pharmaceutical and aromatic compounds. Because these partly fluorinated compounds can degrade to (ultra-)short PFAS in wastewater treatment plants they should be considered as significant sources of organic fluorine in the environment. The combined results of sum parameter analysis and suspect screening reveal the need to update current regulations, such as the German fertilizer ordinance, to focus not solely on a few selected PFAS such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) but consider an additional sum parameter approach as a more holistic alternative. Moreover, diffusion gradient in thin-films (DGT) passive samplers were utilized as an alternative simplified extraction method for PFAS in solid wastewater-based fertilizers and subsequently quantified via combustion ion chromatography. However, the DGT method was less sensitive and only comparable to the EOF values of the fertilizers in samples with >150 mg kg−1, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. KW - Combustion ion chromatography KW - Per- and polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583429 DO - https://doi.org/10.1039/d3va00178d SN - 2754-7000 VL - 2 IS - 10 SP - 1436 EP - 1445 PB - Royal Society of Chemistry (RSC) CY - London AN - OPUS4-58342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ronen, A. A1 - Vogel, Christian A1 - Leube, Peter A1 - Ben Efraim, R. A1 - Nir, O. A1 - Chaudhary, M. A1 - Futterlieb, M. A1 - Panglisch, S. T1 - DEFEAT-PFAS: Detection, Quantification, and Treatment of Per- and Polyfluoroalkyl Substances (PFAS) in Groundwater N2 - The research project focuses on tackling the detection, measurement, and elimination of per- and polyfluoroalkyl substances (PFAS) from polluted groundwater, with a particular emphasis on addressing short (C4-C7) and ultrashort (C1-C3) chain PFAS. Given the widespread use of PFAS in various products, they are commonly found in groundwater near industrial and military sites in Germany and Israel. Moreover, recent regulations limiting the use of long chain PFAS have led industries to shift towards shorter chain alternatives. Hence, our efforts are geared towards refining detection, quantification, and removal methods for short and ultrashort chain PFAS. In terms of detection, ww are developing passive sampling devices capable of collecting and tracking the temporal distribution of PFAS species in groundwater. This will enable us to analyze contaminations in German and Israeli groundwater using cutting-edge analytical techniques. Additionally, contaminated groundwater will undergo a two-stage treatment process aimed at concentrating the relatively low PFAS concentrations using innovative membrane technologies such as closed-circuit reverse osmosis and mixed matrix composite nanofiltration membrane adsorbers. Subsequently, the streams containing higher PFAS concentrations will be treated through coagulation, with the remaining PFAS being adsorbed onto carbonaceous nanomaterials. The outcome of this research will include the creation of advanced tools for detecting, measuring, and eliminating PFAS from polluted groundwater, while also enhancing our understanding of the scope of these contaminations. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 UR - https://indico.scc.kit.edu/event/4029/attachments/7552/12045/Proceedings_Ger-Isr-Coop_Status-Seminar-2024.pdf SP - 33 EP - 36 AN - OPUS4-60331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ronen, A. A1 - Panglisch, S. A1 - Vogel, Christian A1 - Leube, Peter A1 - Ben Efrain, R. A1 - Nir, O. A1 - Chaudhary, M A1 - Futterlieb, M. T1 - Detection, Quantification and Treatment of Per and Polyfluoroalkyl substances (PFAS) in Groundwater N2 - The research project focuses on tackling the detection, measurement, and elimination of per- and polyfluoroalkyl substances (PFAS) from polluted groundwater, with a particular emphasis on addressing short (C4-C7) and ultrashort (C1-C3) chain PFAS. Given the widespread use of PFAS in various products, they are commonly found in groundwater near industrial and military sites in Germany and Israel. Moreover, recent regulations limiting the use of long chain PFAS have led industries to shift towards shorter chain alternatives. Hence, our efforts are geared towards refining detection, quantification, and removal methods for short and ultrashort chain PFAS. In terms of detection, ww are developing passive sampling devices capable of collecting and tracking the temporal distribution of PFAS species in groundwater. This will enable us to analyze contaminations in German and Israeli groundwater using cutting-edge analytical techniques. Additionally, contaminated groundwater will undergo a two-stage treatment process aimed at concentrating the relatively low PFAS concentrations using innovative membrane technologies such as closed-circuit reverse osmosis and mixed matrix composite nanofiltration membrane adsorbers. Subsequently, the streams containing higher PFAS concentrations will be treated through coagulation, with the remaining PFAS being adsorbed onto carbonaceous nanomaterials. The outcome of this research will include the creation of advanced tools for detecting, measuring, and eliminating PFAS from polluted groundwater, while also enhancing our understanding of the scope of these contaminations. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 AN - OPUS4-60328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg A1 - Vogel, Christian A1 - Leube, Peter T1 - Detektion, Quantifizierung und Entfernung von insbesondere ultrakurzkettigen PFAS in Grundwasser N2 - Da PFAS in großem Umfang in einer Vielzahl von Produkten verwendet wurde, sind sie im Grundwasser in der Nähe vieler industrieller und militärischer Anlagen weltweit zu finden. Darüber hinaus führten neue Vorschriften und Beschränkungen für die Verwendung von langkettigen PFAS zu einer vermehrten Produktion kurzkettiger Alternativen. Ultrakurzkettige PFAS (≥C3) können natürliche und anthropogene Barrieren durchdringen und schließlich in Trinkwasserquellen gelangen. Zudem entfernen die meisten gängigen Trinkwasser-aufbereitungsverfahren die ultrakurzkettigen PFAS nicht ausreichend. Im Kooperationsprojekt DEFEAT-PFAS wird daher das Ziel verfolgt, Wissenslücken über Nachweis, Quantifizierung und Entfernung von kurz- (C4-C7) und ultrakurzkettige (C1-C3) PFAS, in kontaminiertem Grundwasser zu schließen. Die israelischen und deutschen Projektpartner entwickeln dafür analytische Methoden and selektive Passivsammler, um das zeitliche Profil von PFAS-Spezies im Grundwasser zu erfassen und überwachen. Darüber hinaus ein zweistufiges Verfahren entwickelt, welches darauf ausgelegt ist, die relativ niedrigen PFAS-Konzentrationen im Grundwasser durch neuartige Membranverfahren, Umkehrosmose im Batchbetrieb mit geschlossenem Kreislauf sowie Verbund-Nanofiltrationsmembranen, zu konzentrieren. Anschließend werden die PFAS angereicherten Konzentrate mittels Koagulation behandelt und das verbleibende PFAS an kohlenstoffhaltigen Nanomaterialien adsorbiert. T2 - Workshop des Netzwerks Perflusan CY - Karlsruhe, Germany DA - 18.06.2024 KW - Grundwasser KW - Per- und Polyfluoroierte Alkylsubstanzen (PFAS) PY - 2024 AN - OPUS4-60334 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leube, Peter A1 - Vogel, Christian A1 - Simon, Franz-Georg T1 - Quantification of ultrashort per- and polyfluoroalkyl substances (PFAS) in water samples via headspace gas chromatographymass spectrometry (GC-MS) - a method development N2 - Ultrashort PFAS (≤ 3 carbon atoms) were overlooked for a long time in analytical monitoring. Beside through the use of these substances, they contribute to the PFAS background in the environment through (environmental/ bio-) degradation and incomplete destruction3 of PFAS with longer carbon chains or other fluorinated compounds. As part of the German-Israeli Cooperation in Water Technology Research project „Detection, quantification, and treatment of per- and polyfluoroalkyl substances in groundwater“ (DEFEAT-PFAS), we are developing an as simple as possible direct headspace (HS-)GC-MS method to detect trifluoroacetic acid (TFA) and perfluoropropanioc acid (PFPrA), as well as trifluoroethanol (TFEtOH), pentafluoropropanol(PFPrOH) and hexafluoroiospropanol (HFIP) in water samples. Here we present the results of the PFAS mentioned in spiked ultrapure water solutions. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Gas chromatography - mass spectrometry (GC-MS) PY - 2024 AN - OPUS4-60330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp T1 - Summenparameter in der PFAS-Analytik - CIC & HR-GFMAS Methodenvergleich N2 - Gastvortrag auf der 43. Sitzung des Fachbeirates Bodenuntersuchungen über Summenparameter in der PFAS-Analytik und den CIC & HR-GFMAS Methodenvergleich. T2 - 43. Sitzung des Fachbeirates Bodenuntersuchungen CY - Online meeting DA - 18.02.2021 KW - PFAS KW - Analytik KW - CIC KW - HR-GF-MAS KW - Summenparameter PY - 2021 AN - OPUS4-52148 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ben Efraim, R. A1 - Vogel, Christian A1 - Leube, Peter A1 - Nir, O. A1 - Chaudhary, M. A1 - Futterlieb, M. A1 - Panglisch, S, A1 - Ronen, A, T1 - Comparison of PFAS Adsorption and Electro-Sorption Using Pristine and Functionalized MWCNTs N2 - Per- and polyfluoroalkyl substances (PFAS) have been extensively utilized in various industrial processes, resulting in elevated concentrations in landfills and drinking water reservoirs. Despite recognizing that shortchained PFAS are harmful, they are often overlooked. Short-chain PFAS are more challenging to remove via adsorption and membrane separation processes, and their detection is complex, thus creating a critical gap in understanding their environmental impact. To improve their environmental monitoring, we aim to improve short-chain PFAS adsorption and electro-sorption on novel carbon-based adsorbers such as pristine and functionalized multi-walled carbon nanotubes (MWCNTs) and assess their adsorption mechanisms. Based on the obtained result, we aim to develop a PFAS passive sampling device. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sorption PY - 2024 AN - OPUS4-60329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Dombinov, V. A1 - Vogel, Christian A1 - Willbold, S. A1 - Levandowski, G. V. A1 - Meiller, M. A1 - Müller, F. A1 - Zang, J. W. A1 - da Fonseca-Zang, W. A. A1 - Jablonowski, N. D. A1 - Schrey, S. D. A1 - Adam, Christian T1 - Soybean Fertilized by P-Phases from Bagasse-Based Materials: P-Extraction Procedures, Diffusive Gradients in Thin Films (DGT), and X-ray Diffraction Analysis (XRD) N2 - The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plant nutrients, which allow the ash to be used as a crop fertilizer. However, the concentration and extractability of phosphorus (P), an essential plant nutrient, are low in bagasse ash. To increase the P content, we co-gasified and co-combusted bagasse with P-rich chicken manure. The resulting ash was thermochemically post-treated with alkali additives (Na2SO4 and K2SO4) to increase the availability of P to plants. We aimed to: (i) investigate the effect of thermochemical post-treatment of co-gasification residue and co-combustion ash on P availability to soybeans, (ii) explore the potential of chemical extraction methods (citric acid, neutral ammonium citrate, formic acid, and Mehlich-I) and diffusive gradients in thin films (DGT) to predict the availability of P to soybeans, and (iii) identify the responsible P-phases using X-ray diffraction . We evaluated P availability to soybeans growing in Brazilian Oxisol soil in two independent greenhouse pot experiments. The positive effect of thermochemical treatment on P availability from gasification residue was confirmed through the observation of increased P uptake and biomass in soybean plants. These findings were confirmed by chemical extraction methods and DGT. The gasification residue contained whitlockite as its main P-bearing phase. Thermochemical post-treatment converted whitlockite into highly soluble CaNaPO4. In contrast, co-combustion ash already contained highly soluble Ca(Na,K)PO4 as its main P-bearing phase, making thermochemical post-treatment unnecessary for increasing P availability. In conclusion, increased extractability and availability of P for soybeans were closely connected to the formation of calcium alkali phosphate. Our findings indicate that this combined methodology allows for the prediction of P-fertilization effects of ash. KW - Sugar cane bagasse KW - Chicken manure ash KW - Thermochemical treatment KW - Nutrient KW - Plant availability PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509735 DO - https://doi.org/10.3390/agronomy10060895 VL - 10 SP - 895 EP - 6 PB - MDPI AN - OPUS4-50973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gentzmann, Marie A1 - Schraut, Katharina A1 - Vogel, Christian A1 - Gäbler, H.-E. A1 - Huthwelker, T. A1 - Adam, Christian T1 - Investigation of scandium in bauxite residues of different origin N2 - This paper focuses on the scandium speciation in bauxite residues of different origin. Insights into mineralchemical similarities and differences of these materials will be presented and links to their natural geological background discussed. The presented research should provide fundamental knowledge for the future development of efficient and viable technologies for Sc-recovery from bauxite residues derived from different bauxites and accumulating at different localities. In total, five bauxite residues were investigated which originated from Greece, Germany, Hungary and Russia (North Ural & North Timan) using a combination of different analytical tools. Those included: laser ablation inductively coupled plasma mass spectrometry, X-ray absorption near Edge structure (XANES) spectroscopy, μ-Raman spectroscopy as well as scanning electron microscopy and electron microprobe analyses. X-ray fluorescence and inductively coupled plasma mass spectrometry were used to determine the overall chemical composition. The investigated samples were found to exhibit a relatively homogenous distribution of Sc between the larger mineral particles and the fine-grained matrix except for Al-phases like diaspore, boehmite and gibbsite. These phases were found to be particularly low in Sc. The only sample where Sc mass fractions in Al-phases exceeded 50 mg/kg was the Russian sample from North Ural. Fe-phases such as goethite, hematite and chamosite (for Russian samples) were more enriched in Sc than the Al-phases. In fact, in Greek samples goethite showed a higher capacity to incorporate or adsorb Sc than hematite. Accessory minerals like zircon, rutile/anatase and ilmenite were found to incorporate higher mass fractions of Sc (>150 mg/kg), however, those minerals are only present in small amounts and do not represent major host phases for Sc. In Russian samples from North Ural an additional Ca–Mg rich phase was found to contain significant mass fractions of Sc (>500 mg/kg). μ-XANES spectroscopy was able to show that Sc in bauxite residue occurs adsorbed onto mineral surfaces as well as incorporated into the crystal lattice of certain Fe-phases. According to our observations the bauxite type, i.e. karstic or lateritic, the atmospheric conditions during bauxitization, i.e. oxidizing or reducing, and consequently the dominant Sc-bearing species in the primary Bauxite influence the occurrence of Sc in bauxite residues. In karstic bauxites, underlying carbonate rocks can work as a pH-barrier and stabilize Sc. This prevents the Sc from being mobilized and removed during bauxitization. Hence, karstic bauxites are more prone to show a Sc enrichment than lateritic bauxites. Reducing conditions during bauxitization support the incorporation of Sc into clay minerals such as chamosite, which can dissolve and reprecipitate during Bayer processing causing Sc to be redistributed and primarily adsorb onto mineral surfaces in the bauxite residue. Oxidizing conditions support the incorporation of Sc into the crystal lattice of Fe-oxides and hydroxides, which are not affected in the Bayer process. The genetic history of the bauxite is therefore the major influential factor for the Sc occurrence in bauxite residues. KW - Sc recovery KW - Scandium KW - Bauxite Residue KW - Red Mud KW - XANES PY - 2021 DO - https://doi.org/10.1016/j.apgeochem.2021.104898 SN - 0883-2927 VL - 126 SP - 104898 PB - Elsevier Ltd. AN - OPUS4-52123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Vogel, Christian A1 - Kalbe, Ute T1 - Antimony and vanadium in incineration bottom ash – leaching behavior and conclusions for treatment processes N2 - Due to its large mineral fraction, incineration bottom ash (IBA) from municipal solid waste incineration is an interesting raw material that can be used for road construction or to produce secondary building materials. However, leaching chloride, sulfate, and potentially harmful heavy metals may cause problems in using IBA in civil engineering. Investigating leaching behavior is crucial for the assessment of the environmental compatibility of IBA applications. Various test procedures are available for that purpose. In the present study, a long-term leaching test of a wet-mechanically treated IBA was performed in a lysimeter for almost six years. While concentrations of chloride, sulfate and the majority of the heavy metals started to decrease rapidly with progressive liquid-to-solid ratio (L/S), antimony (Sb) and vanadium (V) behaved differently. At the beginning of the lysimeter test, the Sb and V concentrations were low, but after approximately one year of operation at an L/S ratio of around 0.8 L/kg, a steady increase was observed. It was shown that this increase is the result of low Ca concentrations due to the formation of CaCO3. With the data, the solubility products from Ca-antimonate and Ca-vanadate were calculated. The unusual leaching behavior of Sb and V should be kept in mind when considering field scenarios and evaluating the impact on the environment. KW - Bottom ash KW - Lysimeter KW - Leaching of waste materials KW - Secondary building materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534317 DO - https://doi.org/10.31025/2611-4135/2021.15115 SN - 2611-4135 VL - 16 SP - 75 EP - 81 PB - CISA CY - Padua AN - OPUS4-53431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg T1 - Investigation of PFAS Contaminated Solid Matrices by Combustion Ion Chromatography (CIC) - Development of EOF and AOF as Sum Parameters in Environmental Analysis N2 - Per- and polyfluoralkyl surfactants (PFAS) are industrially produced surface chemicals used in daily applications that have gained public and political attention due their unnaturally high appearance in drinking water, nourishments and soils.[1] Their chemical structures exhibit both lipophilic and hydrophilic properties, leading to a highly inert and persistent character.[2] Various PFAS have shown to be bioaccumulative in plants and animals, and some have been characterized as highly toxic when ingested.[3] When exposed to the environment, PFAS slowly get mobilized by natural water resources, leading to contamination of large areas of soil and natural water sources.[4] While PFAS contamination of drinking water has been investigated intensively, perfluoralkyl contamination of soils has been rarely examined as of yet. At the same time, an increasing amount of PFAS contamination sites are being discovered worldwide, calling for a sophisticated strategy towards analytical characterization.[5] Since the number of known PFAS already exceeds 4700, the established sum parameters like extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF) are key elements to fully survey the impact of exposure.[6] Simultaneously, innovative soil remediation strategies are required to contain environmental destruction and to minimize further spreading of contaminants.[7] Addressing these challenges requires suitable analytical devices that are capable of mobilizing PFAS in the solid as well as in the liquid phase. The use of combustion ion chromatography (CIC) enables analysis of both immobile and volatile PFAS and allows the detection of both total fluorine (TF) and EOF or AOF of a given soil or aqueous sample. Based on preliminary results, the clean-up of a PFAS contaminated matrix is monitored via EOF detection over time. Additionally, we tested the effectiveness of urea (CH₄N₂O) as fluoride scavenger with the aim to improve the separation of inorganic and organic fluorine and therefore, to improve AOF accuracy. The presented findings can be contributive with regard to future AOF/EOF sum parameter development and application. T2 - Eurosoil 2021 CY - Online meeting DA - 23.08.2021 KW - PFAS KW - Sum parameter analyis KW - Combustion ion chromatography PY - 2021 AN - OPUS4-53195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Application of Diffusive Gradients in Thin-films (DGT) and spectroscopic techniques to analyze phosphorus in soils N2 - A wide range of analytical methods are used to estimate the plant-availability of soil phosphorus (P). Previous investigations showed that analytical methods based on the Diffusive Gradients in Thin films (DGT) technique provide a very good correlations to the amount of bioavailable nutrients and pollutants in environmental samples (Davison 2016, Vogel et al. 2017). However, the DGT results do not identify which P compound of the soil has the high bioavailability. But there are various spectroscopic techniques (infrared, Raman, P K-edge and L-edge XANES and P NMR spectroscopy) available to characterize P species in soils. Therefore, spectroscopic investigation of DGT binding layers after deployment allow us to determine the specific compounds. Nutrients such as phosphorus and nitrogen are often, together with other elements, present as molecules in the environment. These ions are detectable and distinguishable by infrared, P K- and L-edge X-ray absorption near-edge structure (XANES) and NMR spectroscopy, respectively. Additionally, microspectroscopic techniques make it also possible to analyze P compounds on the DGT binding layer with a lateral resolution down to 1 μm2. Therefore, species of elements and compounds of e.g. a spatial soil segment (e.g. rhizosphere) can be mapped and analyzed, providing valuable insight to understand the dynamics of nutrients in the environment. T2 - SPP1685 Closing Conference: New Approaches to Ecosystem Nutrition - Phosphorus and Beyond CY - Freiburg, Germany DA - 25.10.2021 KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Passive sampling PY - 2021 AN - OPUS4-53641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, Emily A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Organically bound fluorine in river water - A methode comparison of CIC and HR-CS-GFMAS N2 - Abstract: Since it is unknown for many applications, which PFASs are used and how they enter the environment, target analysis-based methods reach their limits. The two most frequently used sum parameters are the adsorbable organically bound fluorine (AOF) and the extractable organically bound fluorine (EOF). Both can be quantified using either combustion ion chromatography (CIC) or high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). Here we provide an insight on the advantageous and disadvantageous of both sum parameters and both detection methods. Our study is based on the analysis of surface water samples. Next to total fluorine (TF) analysis, AOF and EOF were determined as well as CIC and HR-CS-GFMAS are compared and results are comparatively discussed. Fluorine mass balancing revealed that, the AOF/TF proportion was higher than the EOF/TF proportion. The AOF made up 0.14–0.81% of TF and the EOF 0.04–0.28% of TF. Although, organically bound fluorine represents only a small portion of TF, PFASs are of worldwide concern, because of their extreme persistence and their bioaccumulation potential. The EOF-HR-CS-GFMAS method turned out to be more precise and sensitive than the AOF-CIC method and is a promising tool for future monitoring studies/routine analysis of PFASs in the environment. T2 - SALSA Make and Measure 2020: Advanced Characterization of Materials CY - Online meeting DA - 15.10.2020 KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surfacewaters PY - 2020 AN - OPUS4-52451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Huthwelker, T. A1 - Simon, Franz-Georg T1 - Fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy as a novel tool for the characterization of per- and polyfluoroalkyl substances (PFAS) in soils and sludges N2 - Per- and polyfluoroalkyl substances (PFAS) have been used extensively in the past because of their inert chemical character and resistance to degradation by environmental influences. Since the beginning of their commercial use, PFAS have been widely exposed to the environment by application of PFAS in consumer products or as foaming agent in firefighting foams, thus several cases of contaminated soils sites have been reported. Since the number of known PFAS already exceeds 4700, their characterization and direct analysis is challenging given the current available techniques. Here, we introduce the novel fluorine (F) K-edge X-ray absorption near-edge structure (XANES) spectroscopy as a tool to analyze PFAS and inorganic fluorine compounds in contaminated soils and sewage sludges. While F K-edge bulk-XANES spectroscopy provide us information on the overall fluorine bonding in a sample micro X-ray fluorescence (XRF) in combination with F K-edge micro-XANES spectroscopy can also detect minor fluorine compounds and PFAS hotspots in investigated soils and sludges. Additionally, we used the combustion ion chromatography (CIC) to analyze the total amount of all PFAS as a sum parameter (extractable organic fluoride: EOF) in soils and sewage sludges. During combustion in the CIC, the PFAS in the sample get destroyed at temperatures of approx. 1000 °C and converted in inorganic fluorides that subsequently gets quantified by ion chromatography. Thus, for the first time we successfully combined F K-edge XANES spectroscopy and CIC as analytical tools to detect and quantify PFAS contaminants in soils and sewage sludges. T2 - SETAC Europe CY - Online meeting DA - 03.05.2021 KW - Sewage sludge KW - Combustion ion chromatography KW - Soil KW - X-ray absorption near-edge structure (XANES) spectroscopy PY - 2021 AN - OPUS4-52563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -