TY - JOUR A1 - He, Shulin A1 - Johnston, P. R. A1 - Kuropka, B. A1 - Lokatis, S. A1 - Weise, C. A1 - Plarre, Rüdiger A1 - Kunte, Hans-Jörg A1 - McMahon, Dino Peter T1 - Termite soldiers contribute to social immunity by synthesizing potent oral secretions N2 - The importance of soldiers to termite Society defence has long been recognized, but the contribution of soldiers to other societal functions, such as colony immunity, is less well understood. We explore this issue by examining the role of soldiers in protecting nestmates against pathogen infection. Even though they are unable to engage in grooming behaviour, we find that the presence of soldiers of the Darwin termite, Mastotermes darwiniensis, significantly improves the survival of nestmates following entomopathogenic infection. We also show that the copious exocrine oral secretions produced by Darwin termite soldiers contain a high concentration of Proteins involved in digestion, chemical biosynthesis, and immunity. The oral secretions produced by soldiers are sufficient to protect nestmates against infection, and they have potent inhibitory activity against a broad spectrum of microbes. Our findings support the view that soldiers may play an important role in colony immunity, and broaden our understanding of the possible function of soldiers during the origin of soldier-first societies. KW - External KW - Social KW - Immunity KW - Soldier KW - Antimicrobial KW - Proteome PY - 2018 U6 - https://doi.org/10.1111/imb.12499 SN - 1365-2583 SN - 0962-1075 VL - 27 IS - 5 SP - 564 EP - 576 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-45726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Davis, Hannah A1 - Meconcelli, Stefania A1 - Radek, R. A1 - McMahon, Dino Peter T1 - Termites shape their collective behavioural response based on stage of infection N2 - Social insects employ a range of behaviours to protect their colonies against disease, but little is known about how such collective behaviours are orchestrated. This is especially true for the social Blattodea (termites). We developed an experimental approach that allowed us to explore how the social response to disease is co-ordinated by multistep host-pathogen interactions. We infected the eastern subterranean termite Reticulitermes flavipes with the entomopathogenic fungus Metarhizium anisopliae, and then, at different stages of infection, reintroduced them to healthy nestmates and recorded behavioural responses. As expected, termites groomed pathogen-exposed individuals significantly more than controls; however, grooming was significantly elevated after fungal germination than before, demonstrating the importance of fungal status to hygienic behaviour. Significantly, we found that cannibalism became prevalent only after exposed termites became visibly ill, highlighting the importance of host condition as a cue for social hygienic behaviour. Our study reveals the presence of a coordinated social response to disease that depends on stage of infection. Specifically, we show how the host may play a key role in triggering its own sacrifice. Sacrificial self-flagging has been observed in other social insects: our results demonstrate that termites have independently evolved to both recognize and destructively respond to sickness. KW - Social KW - Immunity KW - Cannibalism KW - Entomopathogen PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-463239 SN - 2045-2322 VL - 8 SP - 14433, 1 EP - 10 PB - Nature CY - London AN - OPUS4-46323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - A broad suite of immune adaptations have evolved in social insects which hold close parallels with the immune systems of multicellular individuals. However, comparatively little is known about the evolutionary origins of immunity in social insects. We tackle this by identifying immune genes from 18 cockroach and termite species, spanning a gradient of social lifestyles. Termites have undergone contractions of major immune gene families during the early origin of the group, particularly in antimicrobial effector and receptor proteins, followed by later re-expansions in some lineages. In a comparative gene expression analysis, we find that reproductive individuals of a termite invest more in innate immune regulation than other castes. When colonies encounter immune-challenged nestmates, gene expression responses are weak in reproductives but this pattern is reversed when colony members are immune-challenged individually, with reproductives eliciting a greater response to treatment than other castes. Finally, responses to immune challenge were more comprehensive in both subsocial and solitary cockroaches compared to termites, indicating a reduced overall ability to respond to infection in termites. Our study indicates that the emergence of termite sociality was associated with the evolution of a tapered yet caste-adapted immune system. T2 - 112th Annual Meeting of the German Zoological Society CY - Jena, Germany DA - 10.09.2019 KW - Social KW - E$volution KW - Termite KW - Immunity PY - 2019 AN - OPUS4-49646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -