TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank A1 - Kanaris, Orestis T1 - Consequences of BAC tolerance for selection and evolution in the presence of antibiotics N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance. Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work at BAM we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Within our group, I mainly focus on the following two questions: How does phenotypic heterogeneity in bacteria affect the ability to survive treatment with biocides? And what are the consequences of phenotypic heterogeneity for the evolution of resistance to biocides and antibiotics? I will share published and unpublished results which demonstrate that phenotypic heterogeneity can enable the survival of biocide treatment and, through this, facilitate the evolution of AMR. On the other hand, we find that adaptation to a biocide can unexpectedly impair the ability to evolve resistance against an antibiotic. T2 - FEMS summer school for postdocs 2022: Microbial Evolvability Mechanisms: Resistance, Biology, and Strategies to Defeat and Detect CY - Split, Croatia DA - 27.04.2022 KW - Disinfection KW - Biocides KW - Evolution KW - Resistance KW - Biocide tolerance PY - 2022 AN - OPUS4-54846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - A presentation given at the VAAM conference 2022, summarizing our findings published in the research paper "Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection" T2 - Annual conference of the association for general and applied microbiology (VAAM) 2022 CY - Düsseldorf, Germany DA - 21.02.2022 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance KW - Disinfection PY - 2022 AN - OPUS4-54437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter A1 - Esparza, M. A1 - Davis, H. A1 - Margy, A. T1 - Infection stage and pathogen life cycle determine collective termite behaviour N2 - Social insects nesting in soil environments are in constant contact with entomopathogens and have evolved disease resistance mechanisms within a colony to prevent the occurrence and spread of infectious diseases. Among these mechanisms: mutual grooming reduces the cuticular load of pathogens, and burial of cadavers and cannibalism can prevent pathogens from replicating within the group. We explored how the rate and type of collective behavioural response is determined by stepwise infection dynamics operating at the level of the individual. Specifically, we infected the eastern subterranean termite Reticulitermes flavipes with different types of infectious particle and infection route of the entomopathogenic fungus Metarhizium anisopliae and recorded behavioural responses of nestmates to individuals at different times during the progression of infections. As expected, termites groomed conidia-exposed individuals significantly more than controls. Interestingly, grooming was significantly elevated after fungal germination than before, suggesting that pathogen growth cues act as strong stimulators of allogrooming. Conidia-exposed termites were cannibalized, but only after they became visibly ill. By contrast, termites did not groom blastospore-injected individuals more than controls at any time-point following infection. Instead, we found that blastospore-injected individuals were continually cannibalized at a low-level following injection with either viable or heat-killed blastospores, with a marked increase in cannibalism after termites injected with viable blastospores became visibly ill and were close to death. Together, these findings point to the importance of host condition as a cue for social hygienic behavior, and that the host itself appears to emit essential sickness cues that act as targets for its own sacrifice. This demonstrates that termites have independently evolved to both identify and destructively respond to sickness. T2 - VI Central European Meeting of the IUSSI 2019 CY - Wien, Austria DA - 19.03.2019 KW - Termite KW - Evolution KW - Social immunity PY - 2019 AN - OPUS4-49643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - The termites are a derived eusocial lineage of otherwise non-social cockroaches. Understanding the proximal and ultimate drivers of this major evolutionary transition represents an important goal in biology. One outstanding question concerns the evolution of termite immunity, which is thought to have undergone broad-sweeping adaptations in order to enhance group-level immune protection. To understand the evolutionary origins of termite immunity, we conducted qualitative and quantitative transcriptome analyses along a gradient of sociality. Firstly, we aimed to identify large-scale genetic shifts in immune traits linked to eusociality by comparing immune gene repertoires in solitary and subsocial cockroaches and across a range of eusocial termite lineages. Secondly, we compared the responses of a solitary cockroach, a subsocial wood-roach and different castes of a lower termite species to a non-specific immune challenge, in order to understand how sociality may have influenced the evolution of immune gene regulation. Firstly, we found that termites have a broadly representative repertoire of canonical immune genes as compared to gregarious cockroaches and subsocial wood-roaches. Secondly, with respect to immune challenge, the solitary cockroach and the subsocial wood-roach displayed a similarly comprehensive induced response, while the termite response was considerably dampened by comparison and strongly influenced by caste; with reproductives displaying a generally higher constitutive level of immune-gene expression compared to sterile castes. In summary we did not find termite eusociality to be associated with significant changes in immune gene diversity, but rather to be linked with significant modifications to the regulation of immunity following the origin of division of labour. T2 - Institute for Evolution and Biodiversity Lecture Series, Universität Münster CY - Münster, Germany DA - 20.02.2019 KW - Immunity KW - Evolution KW - Ecology KW - Termite KW - Molecular PY - 2019 AN - OPUS4-49644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - G-BOP kick-off meeting proposal ideas Ecology and evolution of termite immunity N2 - Results suggest a reduction in immune gene repertoires in termites and possible complementary expression between termite castes. With comparative genomics we will investigate the evolution of gene families related to immunity, try to understand where reductions and expansions take place and relate these changes to shifts in sociality and ecology. The role of TEs in expansions and contractions of immune gene families will be investigated. For these analyses, we propose to generate high quality, highly contiguous genomes of species from different levels of sociality, covering all major termite families. With comparative transcriptomics we will investigate the expression of immune genes in different castes. Via network analyses we will identify pathways indicated in differential immunity between castes and between species of different sociality levels. We will investigate how these pathways have been rewired along the transitions to higher levels of sociality and how, intra-specifically, they change between castes. T2 - Rundgespräch zur Vorbereitung eines SPP G-BOP - Genomic Basis Of Phenotypic Innovations in Insect Evolution CY - Zoologisches Forschungsmuseum, Bonn, Germany DA - 16.05.2019 KW - Bioinformatics KW - Evolution KW - Termites PY - 2019 AN - OPUS4-49645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - The termites are a derived eusocial lineage of otherwise non-social cockroaches. Understanding the proximal and ultimate drivers of this major evolutionary transition represents an important goal in biology. One outstanding question concerns the evolution of termite immunity, which is thought to have undergone broad-sweeping adaptations in order to enhance group-level immune protection. To understand the evolutionary origins of termite immunity, we conducted qualitative and quantitative transcriptome analyses along a gradient of sociality. Firstly, we aimed to identify large-scale genetic shifts in immune traits linked to eusociality by comparing immune gene repertoires in solitary and subsocial cockroaches and across a range of eusocial termite lineages. Secondly, we compared the responses of a solitary cockroach, a subsocial wood-roach and different castes of a lower termite species to a non-specific immune challenge, in order to understand how sociality may have influenced the evolution of immune gene regulation. Firstly, we found that termites have a broadly representative repertoire of canonical immune genes as compared to gregarious cockroaches and subsocial wood-roaches. Secondly, with respect to immune challenge, the solitary cockroach and the subsocial wood-roach displayed a similarly comprehensive induced response, while the termite response was considerably dampened by comparison and strongly influenced by caste; with reproductives displaying a generally higher constitutive level of immune-gene expression compared to sterile castes. In summary we did not find termite eusociality to be associated with significant changes in immune gene diversity, but rather to be linked with significant modifications to the regulation of immunity following the origin of division of labour. T2 - BeGenDiv Annual Genomics Symposium 2018 CY - Berlin, Germany DA - 02.10.2018 KW - Evolution KW - Immunity KW - Termite PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471581 AN - OPUS4-47158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Schreiber, Frank T1 - Biocide resistance evolution of corrosion causing sulfate reducing bacteria N2 - SRB are environmentally and industrially important microorganisms. The disadvantage of their metabolic activity (e.g. sulfate reduction) results in the formation of toxic sulfide that leads to microbial influenced corrosion. SRB have been responsible for biocorrosion of ferrous metal. One of mitigation strategy is the use of biocides. However, it has been shown that various bacteria develop antimicrobial resistance due to excessive use of biocides. Thus, a deeper understanding of the evolution of biocide resistance of SRB is necessary. Three commonly used biocides, THPS, BAC, and GLUT were applied to investigate the susceptibility of Desulfovibrio alaskensis G20.The minimum inhibitory and bactericidal concentration and the killing kinetics of the three biocides was determined. These results will be used to conduct evolution experiments to determine the evolution of resistance towards biocides of SRBs. The outcome of this work can be helpful to improve the management of MIC treatments. T2 - Panel, Pitch & Popcorn by EUROMIC CY - Online meeting DA - 21.06.2021 KW - Biocide KW - Evolution KW - Mircobially influcenced corrosion KW - Sulfate reducing bacteria PY - 2021 AN - OPUS4-56940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - EVOCIDE: Preserving disinfectant efficacy by predicting evolution: exposing the principles of disinfectant survival and adaptation in bacteria N2 - Presentation of the EVOCIDE research proposal work programme.EVOCIDE seeks to gain a systems level understanding of disinfectant survival and evolution in bacteria. T2 - Joint Group Seminar Rolff-McMahon-Armitage-Steiner CY - Berlin, Germany DA - 20.12.2023 KW - Disinfectants KW - Evolution KW - Microbiology KW - Bacteria KW - Biocides PY - 2023 AN - OPUS4-59224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -