TY - CONF A1 - Bonnerot, Olivier A1 - Bosch, S. A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Scientific service project Z02 at the CSMC: Material-science methods of reconstructing the history of manuscripts N2 - Z02 is one of the three technically supporting projects at the CSMC. In collaboration with Z01 and Z03, it aims at bridging the gap between humanities and natural sciences and technology. To that purpose, we set up a laboratory with a range of high-end instruments, most of them mobile, allowing thorough non-destructive analysis of manuscripts. In addition to working on constantly improving the laboratory and the methods of analysis, a substantial part of our activities is dedicated to service, by supporting different research projects conducted at the center. In this talk, we will present our equipment and the possibilities offered by the different techniques available regarding the different kinds of missions: typology and classification of inks, provenance studies, recovery of faded inscriptions and palimpsests, reconstruction of the history of manuscripts, authentication and dating. We will give a brief overview of our past and ongoing activities in the frame of the second phase of the CSMC. Finally, a selection of three projects will be presented in greater detail to highlight the possibilities of our laboratory and the diversity of missions which can be carried out: - Support of project C08 on East Frankish manuscripts containing collections of formulae - Identifying color materials applied in Muhammad Juki's Shahnamah with non-invasive combined methods - Checking for the presence of metals in the Herculaneum papyri T2 - 3rd International Conference on Natural Sciences and Technology in Manuscript Analysis CY - Hamburg, Germany DA - 13.06.2018 KW - CSMC KW - Manuscript KW - Ink KW - Pigment PY - 2018 AN - OPUS4-45504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Stege, H. A1 - Bretz, S. A1 - Hahn, Oliver T1 - Capabilities and limitations of handheld Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for the analysis of colourants and binders in 20th-century reverse paintings on glass N2 - A non-invasivemethod has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings “Zwei Frauen am Tisch” (1920–22), “Bäume” (1946) (both by Heinrich Campendonk), “Lofoten” (1933) (Edith Campendonk-van Leckwyck) and “Ohne Titel” (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra fromthe paintingswith spectra frompure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts.We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings. KW - DRIFTS KW - Painting KW - Non-invasive KW - Pigment PY - 2018 DO - https://doi.org/10.1016/j.saa.2018.01.057 SN - 1873-3557 VL - 195 SP - 103 EP - 112 PB - Elsevier B.V. AN - OPUS4-44023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bosch, S. A1 - Colini, C. A1 - Hahn, Oliver A1 - Janke, A. A1 - Shevchuk, I. ED - Friedrich, M. ED - Quenzer, J. ED - Wandrey, I. T1 - The Atri fragment revisited I: Multispectral imaging and ink identification N2 - This paper reports the outcome of an interdisciplinary team’s application of multispectral imaging techniques and material analysis to a music fragment from the first decades of the fifteenth century: Atri, Archivio Capitolare, Museo della Basilica Cattedrale, Biblioteca del Capitolo della Cattedrale, Frammento 17. This important parchment leaf has rarely been investigated since its discovery 45 years ago. Thanks to the applied techniques and methods (such as the evaluation of the data using the fingerprint model), it is now possible to discuss new evidence supporting conclusions regarding the fragment’s origin and afterlife. KW - Archaeometry KW - Cultural heritage KW - Non-destructiv testing PY - 2018 SN - 1867-9617 VL - 2018 IS - 11 SP - 141 EP - 156 PB - Universität Hamburg CY - Hamburg AN - OPUS4-45741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Material studies of historic inks: From antiquity to the Middle Ages N2 - While studying the history of inks, division 4.5 of the BAM (Bundesanstalt für Materialforschung und Prüfung) together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink, and a subsequent in-depth analysis using several spectroscopic techniques. One of them, X-ray Fluorescence (XRF) aims primarily at establishing the fingerprints of inks containing metals, making it possible to distinguish among different inks. Our research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo) as well as other medieval Jewish and Armenian communities. The presentation shows the panorama of historic inks and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Age. T2 - Kolloqium CY - KIT, Germany DA - 17.05.2019 KW - historic inks PY - 2019 AN - OPUS4-48131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Material studies of the Dead Sea Scrolls N2 - Our study is dedicated to non-destructive characterization of the support and the inks of the DSS. To that aim we use micro-XRF, 3D- SY-XRF, different IR methods including synchrotron radiation based reflectance spectroscopy, optical and electron microscopy. The lecture discusses advantages and the shortcomings of the non-destructive testing approach. T2 - Seminar CY - Freie Universität Berlin, Germany DA - 04.02.2019 KW - Dead Sea Scrolls PY - 2019 AN - OPUS4-48132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brozowski, E. A1 - Colini, C. A1 - Hahn, Oliver A1 - Rabin, Ira ED - Ayo, Charles K. T1 - Scientific investigations on paper and writing materials of Mali: A pilot study N2 - The investigation of physical properties and chemical composition generates data important for answering cultural-historical questions that cannot be solved by historical and philological methods alone. Due to technological developments, technical diagnostics in art and culture are in ever-greater demand in such fields of transdisciplinary research. Natural sciences play auxiliary role in the studies of manuscripts. The success of their contribution depends strongly on the formulation of the question, the choice of the methods to obtain the requested answer, and appropriate reference databases. First, report was given on the measurements performed on local raw materials, such as, plants, minerals and animals, which constitute the reference session. Then, the first results of the scientific analysis of several fragments from the Malian manuscript collections were present. KW - Manuscripts KW - Inks KW - Colorants KW - Non-destructive testing PY - 2019 DO - https://doi.org/10.5897/JASD2017.0453 SN - 2141-2189 VL - 11 IS - 3 SP - 28 EP - 50 PB - Academic Journals CY - Nairobi, Kenya AN - OPUS4-48100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Evolution of writing black inks N2 - Our research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo) as well as other medieval Jewish and Armenian communities. The presentation shows the panorama of historic inks and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Age. T2 - Elephantine Salon CY - Ägyptisches Museum Berlin, Germany DA - 22.03.2019 KW - Carbon ink KW - Iron-gall ink KW - Historic ink PY - 2019 AN - OPUS4-48134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Analyzing historic inks: From antiquity to the Middle Ages. N2 - While studying the socio-geographic history of inks, division 4.5 of the Bundesanstalt für Materialforschung und Prüfung (BAM) together with the Centre for the Study of Manuscript Cultures (CSMC) in Hamburg has developed a non-invasive protocol for ink analysis. It consists of a primary reflectographic screening to determine the type of the ink (soot, tannin or iron-gall) and a subsequent in-depth analysis using several spectroscopic techniques: X-ray fluorescence (XRF), Infrared and Raman spectroscopies. The first of them, XRF elemental analysis aims at establishing the unique fingerprints of inks containing metals or trace elements in carbon inks. In addition, we use Raman analysis to identify so-called mixed inks, an ink category that received little attention so far. Finally, with the help of IR spectroscopy we obtain information about the ink binders. T2 - Coptic Literature in Context. The Contexts of Coptic Literature Late Antique Egypt in a dialogue between literature, archaeology and digital humanities CY - Rom, Italy DA - 25.02.2019 KW - Ink PY - 2019 AN - OPUS4-48135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Evolution of writing black inks N2 - The evolution and socio-geographic distribution of writing inks from Late Antiquity to the Middle Ages are one of the foci of our investigative work at the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin and the Centre for the Study of Manuscript Cultures, Hamburg University. This presentation will examine the inks used by Jews in the in different geographical zones try to correlate the results of the material analysis with written records and existing traditions. We will compare the inks proposed by Maimonides, who lived in 12th-century Egypt, with the considerations of Rashi, who lived in 11th-century northern France, and see that they both advocated use of the inks commonly known and produced in their respective regions. It is Maimonides who proposes to add tannins to the soot inks, but rejects the metallic salt, both of which were practices that were well attested in contemporary Arabic recipes for making ink. In contrast, Rashi was favourable to employing the plant inks in use in contemporary Northern Europe. T2 - Jewish-Christian Relations from the Mediterranean to the Indian Ocean: Evidence from Material Culture CY - Bochum, Germany DA - 26.03.2019 KW - Ink KW - Jewish cultures PY - 2019 AN - OPUS4-48136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Material analysis of manuscripts: methodological introduction N2 - Natural sciences play auxiliary role in the studies of manuscripts. The success of their contribution depends strongly on the formulation of the question and the choice of the methods to obtain the requested answer. Therefore, one should try to go beyond the understanding of the basic principles of the scientific analysis. We will start with a glance at the basic principles of the techniques used in the material science for determination of the elemental composition (X-ray emission) and molecular composition (FTIR & Raman). We will move then to the bench and mobile equipment commonly used in the field of cultural heritage. At the end we will choose a question to be answered and design an ideal experiment that will be modified according to the limitations dictated by on-site conditions. In the ateliers in the afternoon we will a) compare two XRF devices that differ in their spatial resolution; b) use a high resolution microscope (Keyence) to obtain a close look at writing surfaces and materials; c) we will learn to determine the type of the inks with the help of another microscope (DinoLite AD413T-12V), a usb microscope with visible, UV and NIR illumination; d) we will learn to use FTIR-ATR device for determination of the type of the writing surface; e) We will use mobile Raman device for identification of pigments. T2 - Summer School: Manusciences19 CY - Frejus, France DA - 10.03.2019 KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Parchment N2 - This lecture will present history of parchment based on written sources and chemical examination of antique, medieval and modern parchment. Our studies of the Dead Sea Scrolls writing surfaces show that they can be divided roughly into three groups: leather, parchments of a light tint, and those of various shades of brown. The latter ones are invariably tanned, whereas the middle group is characterized by the presence of various inorganic salts. Some of the pale parchments, among them the Temple Scroll (11Q19), are remarkably similar to medieval European parchment. Therefore we have formulated the working theory that in the Judaea of the Hellenistic period two different parchment-making traditions existed side by side: an ‘eastern’ one (represented by the tanned parchments of Qumran, closely resembling Aramaic documents from the fifth century BC, and a ‘western’ one (represented by the untanned/lightly tanned ones similar to early Christian Greek parchments). This division has found support during our studies of the Geniza fragments, in which Babylonian and Palestinian traditions seem to follow the “eastern” and “western” technologies, respectively. T2 - Sumer School: Manusciences19 CY - Frejus, France DA - 10.03.2019 KW - Parchment KW - Leather KW - Tanning PY - 2019 AN - OPUS4-48138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Inks and pigments N2 - The writing materials used in various cultures and epochs can be divided into two groups. The first comprises materials that write themselves, producing script by rubbing their own material off onto the writing surface. It includes charcoal, graphite, chalk, raddle, and metal styluses. Depending on the material and consistency, these are cut or pressed to make styluses and then used for writing. The second group comprises all coloring liquids that are applied to the writing surface with a quill, pen, or printing block. It includes inks made from dye solutions (for example, tannin inks) and those made from pigment dispersions (for example, sepia, soot, and bister inks). The latter are sometimes also rubbed as pastes into letters incised into the writing surface, where they increase visual contrast. Due to the variety of recipes and the natural origin of raw materials, there is a wide range of different components and impurities in writing materials. Soluble inks (Tinten) Soluble inks are based mainly on dyes forming a water solution. Colored inks were manufactured with different plant or insect dyes (e.g. Brazil wood, kermes). To stabilize the volatile material, the dyes were mixed with a mordant (e.g., alum). Brown plant inks – best-known as blackthorn or Theophilus’ inks – are usually produced from the blackthorn bark and wine. In the early European Middle Ages, inks of this kind were widely used in the production of manuscripts in monasteries. Usually, they are light brown, so sometimes small amounts of iron sulfate were added, which led to what was called an “imperfect” iron gall ink. The difference between “classic” iron gall ink and such imperfect ink is therefore not clear: the distinction is not possible, especially with the naked eye. Dispersion inks (Tuschen) According to its generic recipe, one of the oldest black writing materials is produced by mixing soot with a binder dissolved in a small amount of water. Thus, along with soot, binders such as gum arabic (ancient Egypt) or animal glue (China) are among the main components of soot inks. From Pliny’s detailed account of the manufacture of various soot-based inks, we learn that, despite its seeming simplicity, producing pure soot of high quality was not an easy task in Antiquity. Therefore, we expect to find various detectable additives that might be indicative of the time and place of production. One such carbon ink requires the addition of copper sulfate . The experimental discovery of this ink in 1990 led to a misleading expression “metal ink” that is sometimes found in the literature. Colored dispersion inks based on pigments such as orpiment, cinnabar, or azurite have been known since Antiquity. Natural or artificially produced minerals are finely ground and dispersed in a binding medium. As in soot inks, water-soluble binders such as gum arabic or egg white were used. Iron gall ink (Eisengallustinten) Iron gall inks are a borderline case between these two groups. They are produced from four basic ingredients: galls, vitriol as the main source of iron, gum arabic as a binding media, and an aqueous medium such as wine, beer, or vinegar. By mixing gallic acid with iron sulfate, a water-soluble ferrous gallate complex is formed; this product belongs to the type “soluble inks”. Due to its solubility, the ink penetrates the writing support’s surface, making it difficult to erase. Exposure to oxygen leads to the formation of insoluble black ferric gallate pigment, i.e., “dispersion ink”. Natural vitriol consists of a varying mixture of metal sulfates. Since for ink making it was obtained from different mines and by various techniques, inks contain many other metals, like copper, aluminum, zinc, and manganese, in addition to the iron sulfate. These metals do not contribute to color formation in the ink solution, but possibly change the chemical properties of the inks. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Ink KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver T1 - Paper: history, manufacture, properties N2 - The lecture traces the origins of paper, the manufacture and the spread from China to the Middle East and Europe. Though technological progress considerably affected each step of the manufacture of paper, the essence of the invention remains unchanged until today. The process of manufacturing handmade paper can be divided into a number of steps: - choosing the raw material (e.g. cellulose from wood, cotton, rags) - beating and grinding the fibres into small pieces - producing a liquid pulp of the desired texture - treating the pulp with various additives - filling the pulp suspension into a paper mould - draining the water - pressing and drying to get the actual sheet - various post-production treatments We will see how the manufacturing process is reflected in the properties of the paper and its degradation. A special attention will be paid to the instrumental analysis for identification of the paper types. Also watermark play an important role in the studies of the manuscripts. A short overview will be offered at the ends of the lecture. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nöller, Renate A1 - Feldmann, Ines A1 - Kasztovszky, Z. A1 - Szőkefalvi-Nagy, Z. A1 - Kovács, I. T1 - Characteristic Features of Lapis Lazuli from Different Provenances, Revised by µXRF, ESEM, PGAA and PIXE N2 - The objective of this study is to find out, to what extent the geochemical characteristics of lapis lazuli can be utilized in respect to its provenance. A wide range of variables is taken into consideration depending on the quantity of samples analysed from a specific geological region and the methods applied. In order to provide evidence, a multi-technique analytical approach using µXRF, ESEM, PGAA and PIXE is applied to samples from the most famous deposits of lapis lazuli. Special elements determined as fingerprints are compared in relation to the forming conditions obvious in textural features. The results and statistical output allow a differentiation that enables an optimized local classification of the blue stone. An absolute requirement for all geo-tracing performed on blue colored cultural objects of unknown provenance is awareness of the limits of analysis. The possible sources of lapis lazuli are tested by analysing the blue pigment used as paint on murals and ink on manuscripts from the Silk Road. KW - Lapis lazuli KW - Micro-XRF KW - ESEM KW - PGAA KW - PIXE KW - Pigment analyses KW - Provenance studies PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491181 DO - https://doi.org/10.17265/2328-2193/2019.02.003 SN - 2328-2193 VL - 7 IS - 2 SP - 57 EP - 69 PB - David CY - New York, NY AN - OPUS4-49118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahrig, M. A1 - Torge, Manfred T1 - 3D inspection of the restoration and conservation of stained glass windows using high resolution structured light scanning N2 - The initial focus of this research was on the development of a general workflow for the documentation and monitoring of historical stained glass windows using structured light scanning. Therefore windows from different churches, time periods and with different corrosion and damage phenomena were scanned before and after conservation measures. To evaluate the execution of the restoration measures the data was compared using 3D inspection software to examine the differences in geometry between the two scans. Various problems had to be solved, for example, how to deal with heavily reflective surfaces and the extreme contrast between light and dark surfaces, as seen in the borders between ‘Schwarzlot’ painting and plain glass. The application of materials for matting the surfaces, such as Cyclododecane spray, was impossible due to the high accuracy of the surface measurement required for 3D inspection. Regarding the contrast differences of the surfaces, the creation of exposure fusions and the use of polarization filters to reduce reflections were tested. In addition to the general problems encountered when recording translucent surfaces, the historical glasses caused additional problems in calculating surface comparisons. For example, the windows have to be moved and turned around several times, both during the conservation process and while scanning, causing deformations of the geometry due to the flexible lead rods allowing a certain degree of movement. T2 - 27th CIPA International Symposium “Documenting the past for a better future” CY - Ávila, Spain DA - 01.09.2019 KW - Stained glass KW - Restoration and conservation KW - Structured light scanning KW - 3D inspection KW - Glass scanning PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491286 DO - https://doi.org/10.5194/isprs-archives-XLII-2-W15-965-2019 VL - XLII-2/W15 SP - 965 EP - 972 PB - International Society of Photogrammetry and Remote Sensing (ISPRS) CY - Hannover AN - OPUS4-49128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Steger, Simon T1 - Non-invasive spectroscopic investigation of cultural artefacts: shedding light on modern reverse glass paintings N2 - This thesis addresses the development of a methodological approach for the non-invasive identification of colourants and for the classification of binding media in reverse glass paintings from the early 20th century. For this purpose, mobile and miniaturized devices were used to measure the paintings in situ. The methodology includes X-ray fluorescence (XRF), VIS spectroscopy (VIS), Raman spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). In a first step the capabilities of DRIFTS for binding media classification and pigment identification were tested. DRIFTS enables, besides Raman spectroscopy, the collection of molecular information of a substance that can be used as characteristic fingerprint spectrum. However, the simultaneous collection of both specular (surface) and diffuse (volume) reflection leads to complicated mixed DRIFT spectra, that can vary strongly for one substance depending on the dominant fraction of reflected light. Specular reflection causes several spectral distortions like inverted bands, band shifts and derivative-like features whereas pure diffuse reflections leads to an intensity enhancement of combination bands and overtones. Both specular and diffuse reflection cannot be optically separated, and their proportion depends on material properties like the absorption coefficient and the refractive index as well as on Parameters like surface roughness, porosity, grain size and angle of incidence and detection. A direct comparison of DRIFT spectra with IR spectra of other methods (e.g. transmission, ATR) is not possible, hence the creation of DRIFTS databases was needed. The next step was the complimentary utilization of Raman spectroscopy and DRIFTS for the dentification of synthetic organic colourants. Such colourants are in the further chapters called synthetic organic pigments (SOP) even when it’s not always entirely clear if they are soluble dyes or pigments that are practically insoluble in the medium in which they are incorporated. Raman spectroscopy is generally the method of choice when dealing with SOP, but fluorescence can hamper the Raman spectrum severely, inhibiting the proper identification of the pigment. DRIFTS was successfully applied and several SOP like synthetic alizarin (PR83), the yellow azo pigments (e.g. PY1) or the red and orange β-naphthol pigments (e.g. PR3) could be identified in the paintings solely by means of DRIFTS. The holistic methodological sequence was defined after the successful establishment of DRIFTS as serious analytical alternative. As the time is always the most limiting factor for in situ measurement campaigns in museums, the 9 sequence needs to be time saving but also efficient. The methodology starts with quick measurements by XRF and VIS to get a first idea of the pigment composition, followed by the validation of the results with the vibrational spectroscopies for selected points. Measurements of reverse glass paintings by Carlo Mense and Wassily Kandinsky were conducted to test the entire procedure. A high number of pigments could be identified, including several rare ones like strontium white (SrSO4), PR60 and PB52. The binding media were classified using the previously recorded references. The results were set in the art historian context and were discussed in a multidisciplinary way. The influence of Asian art, especially of Chinese reverse glass paintings as source of inspiration for artists of the “Blauer Reiter” collective (e.g. Wassily Kandinsky, Gabriele Münter, Franz Marc und Heinrich Campendonk) is shown. Non-invasive measurements of two Chinese reverse glass paintings from the late 19th and early 20th century were conducted, enabling a comparison of the palettes of Chinese and European painters. The Chinese palette includes heavy use of red lead and orpiment, pigments that were hardly sed in Europe anymore. More modern pigments like zinc white, cadmium yellow, viridian, chromates, cobalt blues or SOP were not found at all in the Chinese paintings. KW - Reverse glass painting KW - Raman spectroscopy KW - DRIFTS KW - Non invasive analysis PY - 2020 SP - 12 EP - 104 CY - Hamburg AN - OPUS4-51160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira T1 - XRF ink Analysis of some Herculaneum papyri N2 - Recent research has suggested that some of the inks used in Herculaneum papyri do not consist of pure carbon. Starting from this finding, in June 2018 a preliminary campaign of analysis by means of X-Ray fluorescence (XRF) of external portions removed mechanically from their original rolls in the eighteenth century (the so-called scorze) took place at the Biblioteca Nazionale at Naples. Also in this case, the aim of the survey was to investigate the ink composition in order to detect possible traces of metal. This article sums up the results of this survey. KW - Herculaneum papyri KW - Ink KW - XRF PY - 2020 SP - 50 EP - 52 AN - OPUS4-51193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Ghigo, Tea A1 - Torallas, S. T1 - Between Literary and Documentary Practices: The Montserrat Codex Miscellaneus (Inv. Nos. 126‐178, 292, 338) and the Material Investigation of Its Inks N2 - The Montserrat Codex Miscellaneus (TM 59453/LDAB 552) has been the subject of numerous studies since the publication of ist first text by its owner, father Ramon Roca-Puig. Scholars have dealt with the content of its texts, as well as interrogated its origin and materiality. It is a fourth-century papyrus single quire codex, which contains texts in both Latin and Greek. It has been argued that it belonged to the Bodmer library, connected to a Pachomian library in the Thebaid. In this paper we want to contribute to the material study of the codex by presenting the first results of an archaeometric analysis performed upon the inks. The Analysis was carried out within the framework of the ‘PAThs’ project based at Sapienza University of Rome, and executed with the close cooperation of DVCTVS, a team of scholars who curate the Roca-Puig collection. The results obtained have not only cast light on the history of production of the codex, but also, and perhaps most importantly, point out that a meaningful interpretation of the analytical data is only possible through an interdisciplinary collaboration between the humanities and the natural sciences. KW - Interdisciplinary approach KW - Codex Miscellaneus KW - Palaeography KW - Book production KW - Archaeometry KW - Ink analysis PY - 2020 SP - 101 EP - 114 AN - OPUS4-51004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Ghigo, Tea A1 - Rabin, Ira T1 - Gaining Perspective into the Materiality of Manuscripts: The Contribution of Archaeometry to the Study of the Inks of the White Monastery Codices N2 - An interdisciplinary approach to the study of manuscript traditions is here applied to the analysis of the leaves from the White Monastery, one of the greatest centres of literary production in Late Antique Egypt. In the framework of the ‘PAThs’ project, archaeometric analyses complement the information pieced together by a range of disciplines in the field of humanities. The use of different complementary analytical techniques provides information on the type of ink used and its elemental composition, unveiling interesting details regarding the materials and methodology of manufacturing of writing media. Moreover, this contribution takes a step forward and discusses the possible existence of a regional arrangement in the elemental composition revealed in the inks studied. KW - Manuscript making KW - Archaeometry KW - Ink analysis KW - Interdisciplinary approach KW - Coptic studies PY - 2020 SP - 273 EP - 282 AN - OPUS4-51003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahrig, M. A1 - Torge, Manfred T1 - 3D Inspection of the restoration and conservation of stained glass N2 - The initial focus of this research was on the development of a general workflow for the documentation and monitoring of historical stained glass windows using structured light scanning. Therefore windows from different churches, time periods and with different corrosion and damage phenomena were scanned before and after conservation measures. T2 - 27th CIPA International Symposium “Documenting the past for a better future” CY - Ávila, Spain DA - 01.09.2019 KW - Stained glass KW - Restoration and conservation KW - Structured light scanning KW - 3D inspection KW - Glass scanning PY - 2019 AN - OPUS4-49600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -