TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A genetic toolbox for exploring the life style of the rock-inhabiting black fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence of the strain A95 is paving the way for studying interactions of K. petricola with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - black fungi KW - genomics KW - genetics PY - 2020 AN - OPUS4-50593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Shevchuk, I. A1 - Glaser, L. A1 - Dupont, A.-L. A1 - Rouchon, V. A1 - Cohen, Zina A1 - Rabin, Ira T1 - Are X-rays safe for manuscripts’ materials? N2 - In the last decade, applications of X-rays to the study of manuscripts significantly spread in both diversity and extent. They range from writing material analysis, mostly with X-ray fluorescence (XRF), permitting non-invasive characterization of inks and pigments used, to the investigation of the origin of writing supports. In addition, XRF mapping has proved to be an invaluable tool for recovering erased text. Finally, computed-tomography (CT) has shown potential in virtually unrolling rolls, making text readable without using-damaging mechanical methods. Despite their growing use, little attention has been paid to the side effects of such analytical tools. We observed irreversible parchment colour changes during some experiments on dead-sea scrolls with synchrotron radiation sources. Furthermore, partial photo-reduction of iron under high intensity beam during X-ray absorption near edge structure spectroscopy (XANES) measurements of iron-gall ink on paper has been reported several times [5,6]. Such phenomena have mostly been overlooked so far, although there is an increasing awareness of the necessity to study them. We conducted experiments at the Deutsches Elektronen-Synchrotron (DESY) facilities to investigate X-ray induced structural alteration of paper and parchment to see whether the presence of absorption centres (ink and pigments) has an impact. In addition to better understanding degradation processes, we are aiming to define an appropriate methodology of analysis of manuscripts with a tolerable risk of damage. The first results concerning X-ray induced damage of cellulose materials have already been presented at the Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A). We are focusing here on the results on parchment materials. T2 - Cultural and Natural Heritage Workshop CY - Grenoble, France DA - 22.01.2020 KW - X-rays KW - Manuscripts KW - Parchment KW - Synchrotron PY - 2020 AN - OPUS4-50305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Richter, Anja A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on femtosecond laser-induced periodic surface structures N2 - Biofilm formation in industrial or medical settings is usually unwanted and leads to serious health problems and high costs. Inhibition of initial bacterial adhesion prevents biofilm formation and is, therefore, a major mechanism of antimicrobial action of surfaces. Surface topography largely influences the interaction between bacteria and surfaces which makes topography an ideal base for antifouling strategies and eco-friendly alternatives to chemical surface modifications. Femtosecond laser-processing was used to fabricate sub-micrometric surface structures on silicon and stainless steel for the development of antifouling topographies on technical materials. T2 - Future Tech Week 2020 CY - Online meeting DA - 21.09.2020 KW - Laser-induced periodic surface structures (LIPSS) KW - Bacterial adhesion KW - Biofilm growth KW - Structural color KW - Femtosecond laser processing PY - 2020 UR - http://futuretechweek.fetfx.eu/wp-content/uploads/gravity_forms/2-5432af7ecff9e0243d7383ab3f931ed3/2020/09/BioCombs4Nanofibers_Poster-for-Future_Tech_Week_2020_08-09-2020_with_Reprint-permission_for_upload.pdf AN - OPUS4-51233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raedel, Martina A1 - Bücker, Michael A1 - Feldmann, Ines A1 - Reimann, M. T1 - Conservation of damaged architectural aluminum elements N2 - Aluminum is an often-used building material in modern architecture. In recent years buildings from the 1950th and 1960th are increasingly subject of conservation works including the aluminum parts. Typical surface damages are signs of corrosion caused by weathering processes or scratches in the anodized layer due to extensive wear. To repair damaged aluminum surfaces, there are usually two options: smaller areas are repaired by using a touch-up pen, for larger damages it is necessary to remove the anodized layer completely. Both possibilities are disadvantageous for the objects; the touch-up pen often does not match the color together with an insufficient corrosion protection, while newly anodized layers often differ in color and gloss from the original surface. For this reason, a research project was initiated to develop a mobile method to repair anodized aluminum parts. The first step focusses on the mobile anodization process by using the electrolyte with a gel substrate. Different cathodic materials are to be tested together with appropriate cooling material. The anodized area should be isolated to protect undamaged areas. Examinations of the produced layers are conducted by using Keyence microscope, eddy current testing and ESEM analysis. Further steps are to transform the coloring and sealing process for mobile application. Color could be applied by using a brush or by spray while the sealing process could be performed with water vapor. An heatable putty knife could be used, if heating up the area will be necessary. Once the application process is developed, the anodization will be tested on samples with artificial damages, fixed in horizontal and vertical positions. The stability of the anodized surface will be examined by accelerated ageing in a climate chamber and outdoor weathering. The electrolyte (diluted sulfuric acid) was combined with a gel binder to enable a mobile application. Several thickening agents were tested concerning their conductivity and stability in acid systems. Anodization tests with different cathodic material and shapes were conducted. The temperature during anodization was controlled and adjusted if necessary. The anodized area was restricted by using either a lacquer, an adhesive or a removable silicon barrier. The fist results show the feasibility of the method on enclosed areas. The achieved thickness was measured by eddy current testing and the structure was controlled by ESEM analysis. The examinations show a connection between thickness and porosity of the anodized layers and the temperature during the application process. Next steps are testing mobile coloring and sealing methods followed by mobile anodization on artificial damaged areas. T2 - Metal 2019 CY - Neuchâtel, Switzerland DA - 02.09.2019 KW - Mobile anodisation KW - Aluminium KW - Conservation KW - Damage repair PY - 2020 UR - https://www.lulu.com/shop/claudia-chemello-and-laura-brambilla-and-edith-joseph/metal-2019-proceedings-of-the-interim-meeting-of-the-icom-cc-metals-working-group-september-2-6-2019-neuch%C3%A2tel-switzerland-ebook/ebook/product-24517161.html AN - OPUS4-51479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Simon, Franz-Georg T1 - Detailed Investigation of Perfluoroalkyl Surfactant Contaminated Soil Samples by Combustion Ion Chromatography - Development of EOF and AOF as Reference Values in Environmental Analysis N2 - Per- and polyfluoralkyl surfactants (PFASs) are industrially produced surface chemicals used in daily applications that have gained public and political attention due their unnaturally high appearance in drinking water, nourishments and soils. Their chemical structures exhibit both lipophilic and hydrophilic properties, leading to a highly inert and persistent character. Various PFASs have shown to be bioaccumulative in plants and animals, and some have been characterized as highly toxic when ingested. When exposed to the environment, PFASs slowly get mobilized by natural water resources, leading to contamination of large areas of soil and natural water sources. While PFASs contamination of drinking water has been investigated intensively, perfluoralkyl contamination of soils has been rarely examined as of yet. At the same time, an increasing amount of PFASs contamination sites are being discovered worldwide, calling for a sophisticated strategy towards analytical characterization. Since the number of known PFASs already exceeds 4700, the established sum parameters like extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF) are key elements to fully survey the impact of exposure. Simultaneously, innovative soil remediation strategies are required to contain environmental destruction and to minimize further spreading of contaminants. Addressing these challenges requires suitable analytical devices that are capable of mobilizing PFASs in the solid as well as in the liquid phase. The use of combustion ion chromatography (CIC) enables analysis of both immobile and volatile PFASs and allows the detection of both total fluorine (TF) and EOF or AOF of a given soil or aqueous sample. Based on preliminary results, the clean-up of a PFAS contaminated solid matrix is monitored via EOF detection over time. Additionally, we demonstrate the pH dependency of hydrogen fluoride absorption on active carbon (AC) and found a simple organic additive to be an effective fluoride scavenger. The presented findings can be contributive with regard to future AOF/EOF sum parameter development and application. T2 - DECHEMA Symposium Strategien zur Boden- und Grundwassersanierung 2020 CY - Online meeting DA - 23.11.2020 KW - PFAS KW - SPE extraction KW - Combustion ion chromatography KW - Organo fluorine analysis KW - Soil extraction KW - Sewage extraction PY - 2020 AN - OPUS4-51978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - Wurzler, Nina A1 - von der Au, Marcus A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Examination of biological samples by means of single-cell ICP-ToF-MS N2 - Up to now, different analytical methods for single cell analysis exist focusing on key features such as size, shape, morphology and elemental composition. The combination of the latest ICP-MS techniques - ICP-ToF-MS - together with the latest developments in the field of sample delivery - micro droplet generator (MDG) – will allow a Deep insight into the composition and size of cells. Microbiologically influenced corrosion (MIC) is an oxidation of metals affected by the presence or activity (or both) of microorganisms e.g. Shewanella Putrefaciens in biofilms on the surface of the corroding material. As this can happen for example in the soil on iron pipes of water pipes, in oil tanks or on steel sheet piling, there is great interest in MIC research, not only from various industrial sectors, but also from the environmental aspect. T2 - SALSA - Make & Measure CY - Online Meeting DA - 15.10.2020 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - MDG ICP-ToF-MS KW - Microdroplet generator PY - 2020 AN - OPUS4-52441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin A1 - Adam, Christian T1 - Gypsum plasterboard recycling - a sustainable approach N2 - Gypsum (calcium sulfate dihydrate) has excellent building material properties and has been widely used in constructions in the last decades in many countries. Accordingly, an increase of waste gypsum in C&D waste is expected in the upcoming years. On one hand, sulfates are unwanted in other secondary building materials (particularly in recycled concrete aggregates) and should be minimized for quality reasons. On the other hand, used gypsum from CDW can also be used in gypsum production if the high quality requirements for the recycled gypsum – especially regarding the sorting accuracy - are met. A large percentage of the gypsum from buildings was installed as gypsum plasterboards in interior fittings so far. Gypsum plasterboards are comparatively simple to remove and to separate during selective dismantling. Therefore, a high sorting purity can be achieved. In addition, techniques for the recycling of gypsum plasterboards already exist and high quality standards can be achieved. Also, the reuse in gypsum production has been improved in the last decade. Furthermore, an environmental evaluation of the whole process of gypsum plasterboard recycling and reuse showed that this approach can be environmentally advantageous. Therefore, a closed-loop recycling of gypsum plasterboards is feasible. This poster will show the development of gypsum consumption in different countries as well as a prognosis for the upcoming of gypsum in CDW in the future decades in Germany. Furthermore, a simplified scheme of the recycling process and selected results from an environmental evaluation will be presented. T2 - Conference on Mining the European Anthroposphere: Poster session CY - Bologna, Italy DA - 20.02.2020 KW - LCA KW - Gypsum recycling PY - 2020 AN - OPUS4-51435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Leaching behavior of Antimony in MSWI bottom ash N2 - Bottom ash (BA) from municipal solid waste incineration (MSWI) contains harmful substances such as heavy metals, chloride and sulfate which are mobilized in contact with water. Standardized leaching tests are used to measure the extent of mobilization. It is known that fresh bottom ash displays elevated concentrations of various heavy metals such as lead or zinc due to the formation of hydroxo complexes as a result of high pH values of 12 and above. Storage of BA is accompanied by ageing processes, mainly the reaction of CaO and Ca(OH)2 with CO2 leading to lower pH values in contact with water around 11. Usually heavy metals concentrations are minimum at these conditions. Knowledge of the long-term leaching behavior of potentially harmful substances is crucial for the assessment of the environmental compatibility of reusing municipal solid-waste incineration bottom ash (MSWI BA) in construction, i.e., as a road base layer. BA fractions obtained from wet-processing aiming at the improvement of environmental quality were used to investigate the mobility of relevant substances. Eluates from laboratory-scaled leaching procedures (column percolation and lysimeters) were analyzed to learn about the long-term release of substances. Unsaturated conditions and artificial rainwater were used in the lysimeter tests to simulate field conditions. In addition, batch test eluates were generated at usual liquid-to-solid ratios (L/S) for compliance testing purposes. A variety of cations and anions was measured in the eluates. The wet treatment reduces the leaching of chloride and particularly sulfate by more than 60%. The release of typical contaminants for the treated MSWI BA such as the heavy metals Cu and Cr was well below 1% in the conducted leaching tests. An increase in the Sb concentration was observed in the lysimeter experiments starting at L/S 0.75 L/kg and in the column experiment at L/S 4 L/kg is assumed to be related to decreasing concentrations of Ca and thus to the dissolution of sparingly soluble calcium antimonate. The same leaching mechanism applies with V, but the concentration levels observed are less critical regarding relevant limit values. However, on the long term the behavior of Sb could be problematic for the application of MSWI BA as secondary building material. T2 - MINEA Final Conference CY - Bologna, Italy DA - 20.02.2020 KW - Antimony KW - Bottom ash KW - Leaching KW - Solubility PY - 2020 AN - OPUS4-50450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, Emily A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Organically bound fluorine in river water - A methode comparison of CIC and HR-CS-GFMAS N2 - Abstract: Since it is unknown for many applications, which PFASs are used and how they enter the environment, target analysis-based methods reach their limits. The two most frequently used sum parameters are the adsorbable organically bound fluorine (AOF) and the extractable organically bound fluorine (EOF). Both can be quantified using either combustion ion chromatography (CIC) or high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). Here we provide an insight on the advantageous and disadvantageous of both sum parameters and both detection methods. Our study is based on the analysis of surface water samples. Next to total fluorine (TF) analysis, AOF and EOF were determined as well as CIC and HR-CS-GFMAS are compared and results are comparatively discussed. Fluorine mass balancing revealed that, the AOF/TF proportion was higher than the EOF/TF proportion. The AOF made up 0.14–0.81% of TF and the EOF 0.04–0.28% of TF. Although, organically bound fluorine represents only a small portion of TF, PFASs are of worldwide concern, because of their extreme persistence and their bioaccumulation potential. The EOF-HR-CS-GFMAS method turned out to be more precise and sensitive than the AOF-CIC method and is a promising tool for future monitoring studies/routine analysis of PFASs in the environment. T2 - SALSA Make and Measure 2020: Advanced Characterization of Materials CY - Online meeting DA - 15.10.2020 KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surfacewaters PY - 2020 AN - OPUS4-52451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Jann, Oliver A1 - Richter, Matthias T1 - Towards an efficient procedure for the analysis of VVOC emissions N2 - This poster summarizes the points that need to be addressed towards the standardization of an efficient procedure for the analysis of VVOC emissions: Standard mixture generation and investigations on mutual reactivity, selection of an appropriate sorbent combination, water management and choice of a suited GC column. T2 - Indoor Air 2020: The 16th conference of the international society of indoor air quality and climate CY - Online meeting DA - 01.11.2020 KW - VVOCs KW - Analytical method KW - ISO 16000-6 KW - EN 16516 PY - 2020 AN - OPUS4-52023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -