TY - CONF A1 - Schumacher, Julia T1 - Photoperception in plant- and rock-associated black fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Sunlight-associated stresses are however multiple: high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses. Ascomycota dominating light-flooded habitats accurately sense and respond to changes in light using it as a cue to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships. Two species from two light-flooded habitats – phyllosphere and sun-exposed solid surfaces – were analysed for their photoreceptor distribution. In both habitats phototroph-associated and black [dihydroxynaphthalene (DHN) melanin-containing] fungi are prevalent. This diversity was sampled with the plant-associated fungus Botrytis cinerea (Leotiomycetes), while Knufia petricola (Eurotiomycetes) was included as a typical biofilm-former on sun-exposed solid surfaces e.g. rocks, building facades, roofs, and solar panels. The analysis has shown that genomes of black fungi contain more photoreceptors than animal pathogens and saprophytes such as Aspergillus nidulans and Neurospora crassa1,2. B. cinerea that causes the grey mould disease by infecting the above-ground parts of more than 200 dicots has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts1. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers of photoreceptors along with the same set of protective metabolites i.e. melanin, carotenoids and mycosporines2. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for sun-stressed fungi that receive nutrients through cooperation with phototrophs. CRISPR/Cas9-based genetic tools for manipulating K. petricola were established3 and are currently used for elucidating the functions of the different photoreceptors in the biology of rock-inhabiting fungi. This work was supported by the grant SCHU 2833/4-1 from the German Research Foundation (DFG) and internal funds of the BAM. T2 - 19th Congress of the European Society for Photobiology CY - Online meeting DA - 30.08.2021 KW - Fungi KW - Light KW - Extreme environments PY - 2021 AN - OPUS4-53191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Gorbushina, Anna A. T1 - How does light affect rock-inhabiting fungi? N2 - Sunlight is an almost unavoidable environmental cue and plays a fundamental role in the biology of pro- and eukaryotic organisms. To cope with sunlight-associated stresses e.g., high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses, it is important for organisms to accurately sense and respond to changes in light. The benefits of light are obvious for green organisms such as cyanobacteria, algae and plants which use light as an energy source (photosynthesis). Less apparent are other light-dependent processes such as light-driven DNA repair by photolyases (photoreactivation) or ion pumping by microbial opsins. Fungi that can share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess many proteins for absorbing UV/blue, green, red and far-red light, produce the black 1,8 dihydroxynaphthalene (DHN) melanin and orange-red carotenoids, and may live in multispecies biofilms. Here, we are addressing the question to which extent constitutive pigment formation (melanin and carotenoids) and responses mediated by the stress-activated mitogen-activated protein (MAP) kinase contribute to the observed light (UV-B) tolerance of K. petricola. T2 - 32nd Fungal Genetics Conference CY - Pacific Grove, CA, USA DA - 12.03.2024 KW - Knufia petricola KW - Black fungi KW - Light-induced stress PY - 2024 AN - OPUS4-59732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Looking through the eyes of fungi: from photoperception to photoresponses and beyond N2 - Sunlight is an almost unavoidable environmental cue and plays a fundamental role in the biology of pro- and eukaryotic organisms. To cope with sunlight-associated stresses e.g., high temperatures, UV radiation, accumulation of reactive oxygen species, desiccation, and osmotic stress, it is important for organisms to accurately sense and respond to changes in light. The benefits of light are obvious for green organisms such as cyanobacteria, algae and plants which use light as an energy source (photosynthesis). Fungi that can share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Examples are the plant pathogen Botrytis cinerea, the gray mold fungus, and the rock inhabitant Knufia petricola, a microcolonial black fungus which forms multispecies biofilms with bacteria and algae. T2 - 20th Symposium of the Research Training Group on Bioactive Peptides – The colorful tree of life CY - Berlin, Germany DA - 23.01.2024 KW - Black fungi KW - Melanin KW - Stress tolerance PY - 2024 AN - OPUS4-59543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cook, Jake Thomas A1 - Tonon, Chiara T1 - Assessment of concrete bioreceptivity in algal biofilm green façade systems N2 - Algal biofilm façades are an alternative to traditional green façades which can help to improve biodiversity and air quality within cities. They present a low maintenance approach in which subaerial algae are grown directly on concrete substrates. The intrinsic bioreceptivity of the substrate is a critical factor in successful facade colonisation. Existing research has identified several environmental and material properties which influence concrete bioreceptivity, however a consensus has yet to be made on which properties are most influential and how the interaction between properties may promote algal biofilm growth under specific conditions. T2 - International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 21.06.2023 KW - Concrete KW - Façade KW - Bio-receptive KW - Extracellular polymeric substances KW - Fractional factorial PY - 2023 UR - https://www.rilem.net/agenda/5th-international-conference-on-bio-based-building-materials-1501 AN - OPUS4-58976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Matthias, Richter A1 - Christoph, Grimmer T1 - Constant emitting reference material for emissions test procedures N2 - Since nowadays people spend most of their time indoors, a healthy environment is essential. Volatile organic compounds (VOCs) emitted from furniture and building materials are reported to cause health complaints. Therefore, the usage of low emitting materials will improve the indoor air quality. Quantitative VOC emission testing is usually conducted in emission test chambers under specified controlled conditions as described in DIN 16000-9 and DIN EN 16516. For reasons of quality control/quality assurance (QC/QA) and for a better comparability of test results from different laboratories, suitable emission reference materials (ERM) are needed. Here, it is important to have a homogenous material with known emission rates over a specific time. Different approaches can be found in literature, inter alia polymer films loaded with the target compound to be released again, or a lacquer material to which a VOC mixture is added. After curing of the lacquer, the material can be loaded into a test chamber. Drawback of those approaches are their relatively fast decreasing emission profiles. For QC/QA purposes according to the test standards, VOC sources with constant emission profiles are desirable. The EU-funded research project MetrIAQ “Metrology for the determination of emissions of dangerous substances from building materials into indoor air” is working on a multi-component ERM with an envisaged instability of ≤ 10 % in the emission rate over at least 14 days. Within a doctoral thesis porous materials are impregnated with VOCs. Supercritical CO2 is used as solvent. Thus, the impregnated material does not contain any solvent that may show a measurable amount of emission in the emission test chamber. Furthermore, CO2 has the benefits to have a good availability and low costs. For the selection of porous materials several properties like the pore size, the surface, and the interaction with the components in the atmosphere need to be considered. The impregnation method is optimised while the different porous materials are tested. For the selection of porous materials the pores need to be large enough for the VOC molecules, further influence of the pore size is tested. T2 - Healthy Buildings CY - Aachen, Germany DA - 11.06.2023 KW - VOC KW - Emission KW - Quality assurance KW - Reference material PY - 2023 AN - OPUS4-59842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja A1 - Gorbushina, Anna A1 - Plarre, Rüdiger A1 - Stephan, Ina T1 - Umweltsimulation an der BAM – Grundlegende Ansätze mit Beispielen aus der natürlichen Umwelt N2 - Drei grundlegend verschiedene Ansätze für Umweltsimulation werden an Beispielen illustriert: (i) Ganzheitlicher Ansatz - Nachstellen von Umweltmilieus im Labor Ziel ist hier das Nachstellen von (kombinierten) Umweltbedingungen im Labor; die Umweltparameter werden mit all ihren Wechselwirkungen aufgebracht. Hauptnutzen ist eine gegenüber der natürlichen Beanspruchung erhöhte Reproduzierbarkeit der Umweltbedingungen. Hat man sein Laborsetup entwickelt, ist es auf verschiedene Materialien anwendbar. Unter solchen Laborbedingungen ermittelte Lebensdauern sind dabei nicht auf die typischerweise sehr variablen Real-Umweltbedingungen übertragbar. (ii) Parametrisierter Ansatz - Ermittlung einzelner Materialempfindlichkeiten Hierbei werden im Labor die Wirkungen separater Umweltparameter auf Materialien nachgestellt. Für eine solche Separation der Einflussfaktoren ist insbesondere die Aufschlüsselung möglicher Wechselwirkungen der Umwelt-parameter (z.B. Mikroklima an bestrahlten Oberflächen) erforderlich. Einzelne (meist Alterungs-) Empfindlichkeiten können qualitativ nachgewiesen werden oder sogar – als Beanspruchungs-Wirkungs-Funktionen – quantifiziert werden, was einen wesentlichen Schritt in Richtung der Digitalisierung der Material¬prüfung darstellt. Insbesondere ist dann auch eine Lebensdauer-vorhersage für vorgegebene Zeitreihen der Beanspruchungs¬parameter umsetzbar. (iii) Rückwirkungen auf die Umwelt Umweltbeanspruchungen können zur Freisetzung von Schadstoffen in die Umwelt führen. Durch die Nachstellung kritischer, aber realitätsnaher Einsatzszenarien kann die Menge an freigesetzten Substanzen abgeschätzt werden. Egal, welcher Ansatz verfolgt wird – ein Vergleich mit der oder einer Real-beanspruchung ist unerlässlich, ebenso wie die Messdatenaufzeichnung (data logging) aller potenziell relevanten Beanspruchungsparameter während dieser Realbeanspruchung. Obwohl die naturnahe Umwelt – sowohl in der BAM als auch bei der GUS – gegenüber der technischen Umwelt eher untergeordnet auftritt, werden zur Illustration Beispiele aus der naturnahen Umwelt verwendet. T2 - 50. Jahrestagung der GUS CY - Online meeting DA - 23.03.2022 KW - Umweltsimulation PY - 2022 SN - 978-3-9818507-7-2 SP - 79 EP - 89 AN - OPUS4-55015 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis. The differences between the wild-type fungus and its melanin-deficient mutants were tested in geomicrobiological experiments and measured are now discussed in detail, with special accent on the possible effects of the mutation on EPS and other exuded substances. T2 - Departmental colloquium of the Tuscia University CY - Viterbo, Italy DA - 14.02.2020 KW - Ascomycetes KW - Fungal biofilms KW - Material surface colonisation KW - Genetics KW - Genomics KW - Extremophilic fungi PY - 2020 AN - OPUS4-50643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoregulation of Metabolism in Plant- & Rock-associated Black Fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from excess photosynthetic products. But to cope with sunlight-associated stresses it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The filamentous foliar plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideo- and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and photoregulation are important for fungi that avoid loss of energy and nutrients through cooperation with phototrophs. T2 - European Fungal Secondary Metabolism Symposium CY - Hannover, Germany DA - 30.09.2019 KW - Fungi KW - Secondary metabolism KW - Light regulation KW - Pigments PY - 2019 AN - OPUS4-49638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter A1 - Esparza, M. A1 - Davis, H. A1 - Margy, A. T1 - Infection stage and pathogen life cycle determine collective termite behaviour N2 - Social insects nesting in soil environments are in constant contact with entomopathogens and have evolved disease resistance mechanisms within a colony to prevent the occurrence and spread of infectious diseases. Among these mechanisms: mutual grooming reduces the cuticular load of pathogens, and burial of cadavers and cannibalism can prevent pathogens from replicating within the group. We explored how the rate and type of collective behavioural response is determined by stepwise infection dynamics operating at the level of the individual. Specifically, we infected the eastern subterranean termite Reticulitermes flavipes with different types of infectious particle and infection route of the entomopathogenic fungus Metarhizium anisopliae and recorded behavioural responses of nestmates to individuals at different times during the progression of infections. As expected, termites groomed conidia-exposed individuals significantly more than controls. Interestingly, grooming was significantly elevated after fungal germination than before, suggesting that pathogen growth cues act as strong stimulators of allogrooming. Conidia-exposed termites were cannibalized, but only after they became visibly ill. By contrast, termites did not groom blastospore-injected individuals more than controls at any time-point following infection. Instead, we found that blastospore-injected individuals were continually cannibalized at a low-level following injection with either viable or heat-killed blastospores, with a marked increase in cannibalism after termites injected with viable blastospores became visibly ill and were close to death. Together, these findings point to the importance of host condition as a cue for social hygienic behavior, and that the host itself appears to emit essential sickness cues that act as targets for its own sacrifice. This demonstrates that termites have independently evolved to both identify and destructively respond to sickness. T2 - VI Central European Meeting of the IUSSI 2019 CY - Wien, Austria DA - 19.03.2019 KW - Termite KW - Evolution KW - Social immunity PY - 2019 AN - OPUS4-49643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - The termites are a derived eusocial lineage of otherwise non-social cockroaches. Understanding the proximal and ultimate drivers of this major evolutionary transition represents an important goal in biology. One outstanding question concerns the evolution of termite immunity, which is thought to have undergone broad-sweeping adaptations in order to enhance group-level immune protection. To understand the evolutionary origins of termite immunity, we conducted qualitative and quantitative transcriptome analyses along a gradient of sociality. Firstly, we aimed to identify large-scale genetic shifts in immune traits linked to eusociality by comparing immune gene repertoires in solitary and subsocial cockroaches and across a range of eusocial termite lineages. Secondly, we compared the responses of a solitary cockroach, a subsocial wood-roach and different castes of a lower termite species to a non-specific immune challenge, in order to understand how sociality may have influenced the evolution of immune gene regulation. Firstly, we found that termites have a broadly representative repertoire of canonical immune genes as compared to gregarious cockroaches and subsocial wood-roaches. Secondly, with respect to immune challenge, the solitary cockroach and the subsocial wood-roach displayed a similarly comprehensive induced response, while the termite response was considerably dampened by comparison and strongly influenced by caste; with reproductives displaying a generally higher constitutive level of immune-gene expression compared to sterile castes. In summary we did not find termite eusociality to be associated with significant changes in immune gene diversity, but rather to be linked with significant modifications to the regulation of immunity following the origin of division of labour. T2 - Institute for Evolution and Biodiversity Lecture Series, Universität Münster CY - Münster, Germany DA - 20.02.2019 KW - Immunity KW - Evolution KW - Ecology KW - Termite KW - Molecular PY - 2019 AN - OPUS4-49644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - G-BOP kick-off meeting proposal ideas Ecology and evolution of termite immunity N2 - Results suggest a reduction in immune gene repertoires in termites and possible complementary expression between termite castes. With comparative genomics we will investigate the evolution of gene families related to immunity, try to understand where reductions and expansions take place and relate these changes to shifts in sociality and ecology. The role of TEs in expansions and contractions of immune gene families will be investigated. For these analyses, we propose to generate high quality, highly contiguous genomes of species from different levels of sociality, covering all major termite families. With comparative transcriptomics we will investigate the expression of immune genes in different castes. Via network analyses we will identify pathways indicated in differential immunity between castes and between species of different sociality levels. We will investigate how these pathways have been rewired along the transitions to higher levels of sociality and how, intra-specifically, they change between castes. T2 - Rundgespräch zur Vorbereitung eines SPP G-BOP - Genomic Basis Of Phenotypic Innovations in Insect Evolution CY - Zoologisches Forschungsmuseum, Bonn, Germany DA - 16.05.2019 KW - Bioinformatics KW - Evolution KW - Termites PY - 2019 AN - OPUS4-49645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - A broad suite of immune adaptations have evolved in social insects which hold close parallels with the immune systems of multicellular individuals. However, comparatively little is known about the evolutionary origins of immunity in social insects. We tackle this by identifying immune genes from 18 cockroach and termite species, spanning a gradient of social lifestyles. Termites have undergone contractions of major immune gene families during the early origin of the group, particularly in antimicrobial effector and receptor proteins, followed by later re-expansions in some lineages. In a comparative gene expression analysis, we find that reproductive individuals of a termite invest more in innate immune regulation than other castes. When colonies encounter immune-challenged nestmates, gene expression responses are weak in reproductives but this pattern is reversed when colony members are immune-challenged individually, with reproductives eliciting a greater response to treatment than other castes. Finally, responses to immune challenge were more comprehensive in both subsocial and solitary cockroaches compared to termites, indicating a reduced overall ability to respond to infection in termites. Our study indicates that the emergence of termite sociality was associated with the evolution of a tapered yet caste-adapted immune system. T2 - 112th Annual Meeting of the German Zoological Society CY - Jena, Germany DA - 10.09.2019 KW - Social KW - E$volution KW - Termite KW - Immunity PY - 2019 AN - OPUS4-49646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A Genetic Toolbox for Exploring the Life Style of the Rock-inhabiting Black Fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish sub-aerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of black yeasts such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis. For this environmental strain we developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence is paving the way for studying interactions of K. petricola and other black yeasts with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - VAAM symposium 'Molecular Biology of Fungi' CY - Göttingen, Germany DA - 19.09.2019 KW - Knufia petricola KW - Rock-inhabiting fungus KW - Genetics KW - Crispr-Cas9 PY - 2019 AN - OPUS4-49634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abdallah, Khaled A1 - Knabe, Nicole A1 - Breitenbach, Romy A1 - Dementyeva, Polina A1 - Voigt, Oliver A1 - Gerrits, Ruben A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Developing a genetic toolbox for Knufia petricola A95: a model for stress-tolerant and symbiose-competent rock-inhabiting fungi N2 - Black microcolonial fungi (MCF) are persistent inhabitants of rock surfaces in hostile desert environments. In these niches, MCF have evolved mineral-weathering and symbiotic capabilities as well as mechanisms to cope with multiple stresses such as solar irradiation, temperature extremes and low water activity. Due to their stress tolerance these ascomycetes are prominent in modern terrestrial ecosystems – like man-made material surfaces from roof to solar panels. MCF interactive capabilities support their facultative symbiotic relationships with cyanobacteria and ensure their rock-weathering geochemical activity. Using the rock-inhabiting fungus K. petricola A95 (Chaetothyriales), we developed transformation protocols and deleted genes responsible for production of the protective pigments melanins and carotenoids. To confirm that the mutant phenotypes were not due to hidden mutations, melanin synthesis was restored by complementing the mutants with the respective wild type genes. Strains of K. petricola carrying gene variants for fluorescent proteins EGFP and DsRed are available. We successfully labelled the cytoplasm, nuclei, peroxisomes and mitochondria. Targeted and ectopic integrations result in stable transformants suitable for further phenotypical characterization. As K. petricola is a non-pathogenic fungus with all characteristic features of MCF, including meristematic growth, melanized cell-walls, extracellular polymeric substances and extensive pigment production, our results will shed light on protective role of pigments during cell wall maturation and oxidative stress defence in rock-inhabiting MCF. Genes involved in environmental sensing or substrate and phototroph interactions are currently targeted. With the help of a mutant collection and fluorescently labelled K. petricola we will be able to investigate interactions of MCF with environmental stressors, mineral substrates, soil matrices and phototrophic symbionts. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - Knufia petricola KW - Genetics KW - Melanin PY - 2019 AN - OPUS4-49635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Heeger, Felix A1 - Whitfield, Daniel A1 - Knabe, Nicole A1 - Nai, Corrado A1 - Schumacher, Julia A1 - Broughton, William A1 - Cuomo, C. A1 - de Souza, E. A1 - Lespinet, O. A1 - Mazzoni, C. A1 - Monaghan, M. A1 - Gorbushina, Anna T1 - Exploring the genome of the black yeast Knufia petricola N2 - Black yeasts form a polyphyletic group of Ascomycota that colonize bare surfaces like rocks, facades of buildings, and solar panels. Their protective adaptations enable an adequate response to fluctuating and diverse temperature, water and UV radiation stresses. Together with bacteria and algae they form sub-aerial biofilms (SAB) this way discoloring and weathering the surfaces they grow on. Strain A95 of Knufia petricola (Eurotiomycetes, Chaetothyriales) displays both typical yeast-like cell growth and constitutive dihydroxynaphthalene (DHN) melanogenesis. Along with the cyanobacterium Nostoc punctiforme as photobiont, it is already used in a model system for studying SAB formation and bio-weathering. Applying the recently developed tools for the generation of deletion mutants will allow to define gene functions and to identify genes critical for abiotic and biotic interactions. We present a chromosome-level genome assembly and annotation for K. petricola A95. The genome was assembled with MaSuRCA using a hybrid assembly approach of Illumina MiSeq and PacBio SMRT sequencing data. The resulting assembly consists of 17 contigs including the complete mitochondrial genome and five complete chromosomes. It shows indication of repeat-induced point mutations (RIP). Supported by RNA sequencing data from eight different growth conditions, 10,994 genes were predicted with the BRAKER2 pipeline. Functional annotation of genes was obtained from general functional annotation databases and the fungal specific database FungiPath. Comparative analyses are in progress to identify genes specific to black yeasts, that may facilitate the survival on exposed surfaces. In sum, the genome sequence of K. petricola is a valuable resource to gain insight into the protein inventory and functional pathways of extremotolerant and symbiosis-capable fungi. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - Knufia petricola KW - Black fungus KW - Genome sequence PY - 2019 AN - OPUS4-49636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoregulation in Plant- & Rock-associated Black Fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from excess photosynthetic products. But to cope with sunlight-associated stresses it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The filamentous foliar plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideo- and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and photoregulation are important for fungi that avoid loss of energy and nutrients through cooperation with phototrophs. T2 - Scientific Colloquium at the Department of Genetics, University of Seville CY - Seville, Spain DA - 24.10.2019 KW - Light sensing KW - Knufia petricola KW - Botrytis cinerea PY - 2019 AN - OPUS4-49637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oberbeckmann, Sonja A1 - Gorbushina, Anna T1 - On the intersection of microbiome and material research: what can be achieved? N2 - Any surface in the environment acts as hotspot for microbial attachment and activity. These biofilms represent the interface between humans and the environment. While in the past biofilms were often seen as disturbance, we now start to understand the enormous potential of beneficial biofilms. They can be used in a broad range of applications and are sources for new microorganisms and traits. After all, biofilms represent a great example for a collaborative lifestyle. T2 - Bioeconomy Changemakers Festival, Hereon CY - Teltow, Germany DA - 14.03.2024 KW - Biofilm KW - Microbiome KW - Sustainability KW - Biosphere KW - Microplastics PY - 2024 AN - OPUS4-60202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kayser, Y. A1 - Pollakowski-Herrmann, Beatrix A1 - Hönicke, P. A1 - Friese, Carmen A1 - Seeger, Stefan A1 - Cara, E. A1 - Boarino, L. A1 - Gianotti, V. A1 - Laus, M. A1 - Beckhoff, Burkhard T1 - AEROMET – Traceable and reliable chemical analysis of aerosols by X-ray spectrometry N2 - Traceable and reliable chemical element analysis of aerosols by X-ray spectrometry was investigated using aerosol samples from field campaigns which have been measured in the GIXRF-beamline at BESSY. The reference-free XRF approach allows for a traceable analysis of the mass deposition. Traceable quantification by means of XRF can be transfered to benchtop instrumentation used in the laboratory Chemical and dimensional analysis of deposited aerosol allows for a comprehensive analysis of aerosols, e.g. for toxicity assessment and determination of the source The folowing elements could be identified and quantified in the field samples: Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, W, Pb. T2 - European Aerosol Conference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - TXRF KW - Element mass concetration KW - Ambient aerosol KW - Cascade impactor PY - 2019 AN - OPUS4-49583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bucar, K. A1 - Zitnik, M. A1 - Stabile, L. A1 - Ozan, J. A1 - Seeger, Stefan T1 - Performance of a Sharp GP2Y low-cost aerosol PM sensor N2 - Simple particulate matter sensors are gaining popularity due to their low price, easy handling and good temporal resolution. In this presentation, we report on the performance of a Sharp optical PM sensor GP2Y1010AU0F, which costs less than 15 €. The sensor is built around an infrared emitting diode (ILED) and a phototransistor detecting the light scattered from the aerosol particle. An electronic circuit shapes the detected light in a pulsed signal. The manufacturer advises sampling the output signal 280 microseconds after the ILED pulse. The measured output voltage is an indicator of dust concentration. We have built two identical simple PM monitoring devices using Raspberry Pi 3 computer interfacing the PM sensor with Microchip’s MCP3002 ADC via SPI. The ADC is capable of more than 100 ksamples/s at 10-bit resolution. The Rpi3 was pulsing the sensor at 10Hz, digitizing and saving the data and sending the results wirelessly. Sensor’s output pulse shape was sampled with 10 microsecond time steps and saved, thus making offline analysis possible. A time jitter of output pulses can be observed and suggests a peak fitting as a better approach to the signal readout compared to the single sampling at a fixed time after pulse triggering We compared both methods. T2 - European Aerosol Coference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - Aerosol KW - Low cost aerosol PM sensor KW - PM PY - 2019 AN - OPUS4-49581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -