TY - CONF A1 - Schreiber, Frank A1 - Schmidt, Selina A1 - Boenke, V. A1 - Stephan, Ina T1 - Development of a laboratory method to assess resistance development of microorganisms to biocides – An update N2 - This presentation describes our efforts at BAM towards the development of a laboratory method to assess resistance development of microorganisms to biocides. T2 - The International Biodeterioration Research Group (IBRG) spring meeting 2023 CY - Online meeting DA - 05.03.2023 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-57858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis A1 - Schreiber, Frank T1 - Consequences of tolerance to disinfectants on the evolution of antibiotic resistance in E. coli N2 - Biocides are used as disinfectants and preservatives; one important active substance in biocides is benzalkonium chloride (BAC). BAC-tolerant bacterial strains can survive short treatments with high concentrations of BAC. BAC tolerance and resistance have been linked to antibiotic resistance. Here, the selection dynamics between a BAC-tolerant Escherichia coli strain and a sensitive wild type were investigated under four conditions: in the absence of antibiotics and in the presence of three different sub-inhibitory concentrations of the antibiotic ciprofloxacin in liquid cultures. The wild type was selected over the BAC-tolerant strain in the absence of antibiotics, while the BAC-tolerant strain was selected over the wild type at all ciprofloxacin concentrations investigated, with a minimum selection concentration (MSC) of 1/10th of the minimum inhibitory concentration (MIC) of the wild type. Furthermore, the evolvability of resistance of the two strains to inhibitory concentrations of ciprofloxacin was assessed by performing a serial dilution evolution experiment with gradually increasing ciprofloxacin concentrations. The wild type had a higher probability to develop resistance to ciprofloxacin than the tolerant strain. By the end of the evolution experiment both strains evolved to grow at the highest ciprofloxacin concentration investigated, which was 2048 ×MIC of the wild type. The importance of these results is highlighted by the fact that concentrations of ciprofloxacin well above the calculated MSC can be found in environmental samples such as hospital wastewaters and livestock slurry. In turn, BAC is used as a disinfectant in the same settings. Thus, the selection of BAC-tolerant strains at sub-inhibitory concentrations of ciprofloxacin can contribute to the stabilization and spread of BAC-tolerance in natural populations. The prevalence of such strains can impair the effects of BAC disinfections. T2 - µClub seminar series CY - Berlin, Germany DA - 15.12.2023 KW - Antimicrobial resistance PY - 2023 AN - OPUS4-59222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Anne-Christine A1 - Schreiber, Frank T1 - Co-selection for biocide and antibiotic resistance in microbial wastewater communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. They play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP Here, we want to investigate co-selection processes of antibiotic resistance in natural WWTP microbial communities upon biocide exposure. Microbial communities were sampled at the WWTP Ruhleben in Berlin and characterized regarding their susceptibility against different clinically relevant antibiotics. To investigate the link between biocide exposure and antibiotic resistance, changes in the susceptibility level after exposure to environmentally relevant concentrations of the commonly used biocide didecyldimethylammonium chloride (DDAC) will be determined by enumerating resistant and non-resistant E. coli on selective plates with and without antibiotics and DDAC. In case of antibiotics, clinical breakpoint concentrations according to EUCAST will be used to discriminate between susceptible and resistant strains. In case of DDAC (and biocides in general), clinical breakpoints do not exist. Therefore, we determined a cut-off concentration at which the majority of naturally-occurring E. coli strains cannot grow anymore based on (I) the MIC (minimal inhibitory concentration) distribution, and (II) by plating wastewater communities onto selective indicator agar plates loaded with increasing DDAC concentration. Additionally, antibiotic cross-resistance will be determined by spotting single colonies, isolated from DDAC-selective plates onto antibiotic plates. The results of our experiments will help to determine selective concentrations and to estimate the risk of antibiotic co-selection and cross-resistance in microbial WWTP communities upon biocide exposure. T2 - Annual Conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2023 AN - OPUS4-58510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Risk Assessment of Biocide Resistance N2 - This presentation details approaches for the risk assessment of biocide resistance. Different methods are presented to acquire the necessary data for such risk assessments. T2 - OECD, 7th Meeting of the Working Party on Biocides CY - Leiden, Netherlands DA - 18.09.2023 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-59062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - Time-kill kinetics reveal heterogeneous tolerance to disinfectants N2 - Background. Disinfection is an important mitigation strategy to control and prevent the spread of infections. Incomplete or incorrect usage of disinfection may promote evolution of resistance against disinfectants and antibiotics. Ideally, disinfection reduces the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Objective. In this study, we investigated six active substances of disinfectants, preservatives, and antiseptics against a population of E. coli to identify the presence of a tolerant subpopulation. Methods. We performed time-kill experiments and analyzed the data with a mathematical model to statistically infer whether the data is best explained by the presence of a tolerant subpopulation. Results. The analysis identified bimodal kill kinetics for benzalkonium chloride, didecyldimethylammonium chloride, and isopropanol. In contrast, kill kinetics by chlorhexidine, glutaraldehyde, and hydrogen peroxide were best explained by unimodal kill kinetics. These findings have implications for the risk of disinfection failure. In addition, we are currently performing adaptive laboratory evolution (ALE) experiments with the different disinfectants to investigate the potential consequences of tolerant sub-populations for the evolution of antimicrobial resistance and tolerance. T2 - Vereinigung Allgemeiner und Angewandter Mikrobiobiologie Jahreskongress 2023 CY - Göttingen, Germany DA - 10.09.2023 KW - Biocide KW - Desinfectant KW - E.coli PY - 2023 AN - OPUS4-58470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schreiber, Frank T1 - Time-kill kinetics reveal heterogeneous tolerance to disinfectants N2 - Background. Disinfection is an important mitigation strategy to control and prevent the spread of infections. Incomplete or incorrect usage of disinfection may promote evolution of resistance against disinfectants and antibiotics. Ideally, disinfection reduces the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Objective. In this study, we investigated six active substances of disinfectants, preservatives, and antiseptics against a population of E. coli to identify the presence of a tolerant subpopulation. Methods. We performed time-kill experiments and analyzed the data with a mathematical model to statistically infer whether the data is best explained by the presence of a tolerant subpopulation. Results. The analysis identified bimodal kill kinetics for benzalkonium chloride, didecyldimethylammonium chloride, and isopropanol. In contrast, kill kinetics by chlorhexidine, glutaraldehyde, and hydrogen peroxide were best explained by unimodal kill kinetics. These findings have implications for the risk of disinfection failure. In addition, we are currently performing adaptive laboratory evolution (ALE) experiments with the different disinfectants to investigate the potential consequences of tolerant sub-populations for the evolution of antimicrobial resistance and tolerance. T2 - FEMS Conference CY - Hamburg, Germany DA - 10.07.2023 KW - Biocide KW - Desinfectant KW - E.coli PY - 2023 AN - OPUS4-58471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Phenotypic and evolutionary responses of bacteria to disinfection N2 - Disinfectants are important to prevent the transmission of pathogens, especially in the face of the current antibiotic resistance crisis. The crisis is further exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfectant application, persistence to disinfectants and its role for the evolution of tolerance and cross-resistance to antibiotics has not been studied. Our work shows that E. coli displays persistence against several widely used disinfectants, including benzalkonium chloride (BAC), didecyldimethylammoniumchlorid (DDAC) and isopropanol. The molecular mechanism of BAC persistence is triggered in stationary phase and affected by several antibiotic persister genes (hipA, tisB, tolC, relA, spoT). Experimental evolution and population dynamic modeling show that repeated failure of disinfection due to persisters rapidly selects for BAC tolerance underpinned by reduced cell surface charge due to mutations in genes related to lipid A acylation (lpxML). Furthermore, evolved BAC tolerance affects the susceptibility to antibiotics, leading to positive selection of disinfectant tolerant strains at environmentally relevant antibiotic concentrations and variations in evolvability of antibiotic resistance due to epistatic effects. These results highlight the need for faithful application of disinfectants to steward their efficacy and the efficacy of antibiotics. A better understanding of the bacterial response to disinfectants is crucial to understand and avert the ongoing antimicrobial resistance crisis. T2 - Gordon Research Conference - Molecular mechanisms of evolution CY - Easton, MA, United States DA - 25.06.2023 KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2023 AN - OPUS4-57861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Gustiherdini, Cahyaruri A1 - Lewerenz, Dominique A1 - Kanaris, Orestis A1 - Schreiber, Frank T1 - The disinfectant glutaraldehyde induces antibiotic tolerance N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Gordon Research Conference - Molecular Mechanisms in Evolution CY - Easton, Massachusetts, United States DA - 25.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics PY - 2023 AN - OPUS4-58033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaut, Valerie A1 - Schreiber, Frank A1 - Vareschi, Silvia T1 - Antibiotic tolerance of biofilms emerging fro multicellular effects of antibiotic efflux N2 - The overarching goal of this project is to develop a predictive model for efflux-mediated antimicrobial tolerance in bacterial multicellular assemblies. Our central hypostasis is that efflux pump activity causes emergent antibiotic tolerance of multicellular bacterial populations, through the interplay of efflux mediated spatial interactions and efflux-linked persistence. To test this hypothesis, we will use a combination of microscopy, microbial killing assays, computational modelling, and data analysis, integrating information from 3 types of multicellular assembly: colonies, cell-to-cell interactions in a monolayer microfluidic device, and 3D flow chamber biofilms. Building on our preliminary observations, we will experimentally characterize the link between colony structure and spatial patterns of efflux gene expression in strains that differ in their levels of efflux. We will develop a mathematical model to test whether local growth inhibition of neighbors due to effluxing cells, coupled with local environment-dependent regulation of efflux, can account qualitatively for these results. By including persister cell formation in our model we will predict, and measure, the emergent function of antimicrobial tolerance in our colonies. To fully understand how tolerance emerges from the interplay between efflux-mediated spatial interactions and efflux-linked persister cell formation, we need quantitative measurements at the single cell level. To this end, we will use a microfluidic setup with cells growing in a monolayer to qualify in detail the dependence of efflux expression and persister cell formation on nutrient conditions, the correlation between efflux and persister formation, and the spatial range of efflux-mediated neighbour growth inhibition. To predict and quantitatively understand the emergent multicellular function of tolerance, we will perform individual-based modelling of biofilm growth, using as input the parameters measured on the single-cell level with our microfluidics experiments. Our simulations will predict biofilm spatial structure development, patterns of efflux and persister formation and, ultimately, tolerance to antimicrobial challenge. These predictions will be directly tested in flow-cell biofilm experiments. We are currently generating acrAB-tolC knockout-strain, without efflux activity, and a strain with an inducible acrAB-tolC efflux pump. To distinguish the different strains under the microscope, they were labeled with genes encoding for different fluorescent proteins. All strains are currently characterized in terms of growth, minimum inhibitory concentration of different antimicrobial substances, colony morphology, and biofilm formation ability. On the theoretical side, we are currently working on modeling the system at various scales and degree of detail, ranging from coarse-grained continuum models to stochastic, individual-based models. Some exploratory work was doe to test existing software for individual-based modelling that may be adapted for our purpose. Furthermore, we are in the process of developing more coarse-grained models. This work involves some physiological modelling and literature search, focusing on working mechanisms of efflux pumps and kinetic models for import and export of antibiotics. T2 - SPP Meeting CY - Jena, Germany DA - 04.10.2023 KW - Antibiotic KW - Bioilm KW - Tolerance KW - Efflux PY - 2023 AN - OPUS4-59245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Maria A1 - Paulo, Carlos A1 - Knabe, Nicole A1 - Sturm, Heinz A1 - Zaitsev, Vladimir A1 - Gorbushina, Anna T1 - Microscopic Raman study of fungal pigment using the genetically amenable rock inhabitant Knufia petricola as a model organism N2 - Fungal pigments such as melanin and carotenoids are distinctive markers of animal and plant pathogenic fungi as well as their environmental relatives. These complex pigments play important roles in pathogenicity and stress tolerance while also being useful as biomarkers. Accordingly, it is important to be able to identify in situ the pigments in black fungi, a group of clinical and environmental importance. In this study, wild-type and genetically modified strains of Knufia petricola A95 and wild fungal cells attached to ancient rock were investigated for their spectroscopic and microscopic Raman features and morphological appearance. Knockout mutants of melanin synthesis genes pks1 (polyketide synthase), sdh1 (scytalone dehydratase), and both pks1 and the carotenoid synthesis gene phd1 (phytoene desaturase) were studied We applied two different Raman microscopes using two lasers, with 633 nm and 488 nm wavelengths. We analyzed and compared Raman spectra between the measured reference substances and the mutant and wild-type strains. In the wild strain WT:A95, the peaks close to melanin peals were found at 1353 cm−1 and 1611 cm−1. There are no characteristic melanin peaks at 1580–1600 cm−1 and around 1350 cm−1 at the spectrum of the Δpks1/Δphd1 mutant and the Δsdh1 mutant. The Δpks1 mutant spectrum has the peaks at the beta-carotene v2 C-C in-plane stretch at 1155 cm−1 and v3 C-CH3 deformation at 1005 cm−1. The peaks of carotenoids and melanin were found in all mutants and the wild strain, except the Δpks1/Δphd1 mutant. Raman spectra allow for discrimination between the various pigments. Hence, interactions between natural fungal melanin, as well as other protective pigments, and complex environmental matrices can be characterized on a range of spatial and temporal scales. KW - Raman Spectroscopy KW - Instrumentation KW - Analytical Chemistry KW - Knufia petricola KW - Confocal microscopy KW - Atomic and Molecular Physics and Optics PY - 2023 DO - https://doi.org/10.1016/j.saa.2023.123250 SN - 1386-1425 VL - 303 SP - 1 EP - 11 PB - Elsevier BV AN - OPUS4-58792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Razkin Bartolomé, Malen A1 - Gräf, S. A1 - Thiele, Dorothea A1 - Sahre, Mario A1 - Zabala, A. A1 - Buruaga, L. A1 - Krüger, Jörg A1 - Müller, F.A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on fs-laser processed laser-induced periodic surface structures N2 - Bacteria are ubiquitous and colonize all types of surfaces, including those in close proximity to humans, such as skin, food, and everyday objects. This raises the question of whether their presence represents a problem to be mitigated or a potential source of benefit to be harnessed, thereby stimulating scientific inquiry into the role of surface-associated bacteria in diverse domains ranging fromhuman health to industrial biotechnology. Aim: The objective of this project is to explore the impact of modifying surface topography on bacterial adhesion behavior. By manipulating the physical characteristics of the substrate, the attachment and detachment dynamics of bacteria can potentially be modified, leading to novel strategies for controlling bacterial colonization in various applications, such as medical devices. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were tested on LIPSS-covered Fused Silica samples. T2 - 2023 Spring Meeting · , 2023 · Strasbourg CY - Strasbourg, France DA - 29.05.2023 KW - LIPSS KW - Biofilm KW - fs-laser processing PY - 2023 AN - OPUS4-58456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Meissner, Sven A1 - Wasmuth, Karsten A1 - Schwibbert, Karin T1 - Impact of laser-induced periodic surface structures on the bactericidal properties of copper and brass N2 - Surfaces of metallic copper and copper alloys effectively inactivate microorganisms and viruses. However, the exact inactivation mode is still under debate. Main factors are assumed to include direct contact with the metallic surface, influx of Cu(I)/Cu(II) ions and the generation of reactive oxygen species (ROS). Laser-induced periodic surface structures (LIPSS) are frequently reported to act antibacterial, mainly by prevention of bacterial adhesion due to a limited number of possible adhesion points or by increasing the overall surface of intrinsically antibacterial materials. In time-kill experiments with E. coli and S. aureus we analyzed the impact of LIPSS on the toxicity of metallic copper and brass. We also conducted ROS accumulation assays and conclude that the application of LIPSS is not generally straight forward to obtain or improve antibacterial surfaces. Thus, the antibacterial effects of LIPPS. T2 - 2023 Spring Meeting CY - Strasbourg, France DA - 29.05.2023 KW - LIPSS KW - Antimicrobial KW - Reactive oxygen species PY - 2023 AN - OPUS4-58465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by phenotypic heterogeneity and transcriptome remodeling N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - µClub Seminar Series CY - Berlin, Germany DA - 26.05.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity PY - 2023 AN - OPUS4-58031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Improving the comparability of FFF-3D printing emission data by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) is a material extrusion-based technique often used in desktop 3D printers. Polymeric filaments are melted and are extruded through a heated nozzle to form a 3D object in layers. The extruder temperature is therefore a key parameter for a successful print job but also one of the main emission driving factors as harmful pollutants (e.g., ultrafine particles) are formed by thermal polymer degradation. The awareness of potential health risks has increased the number of emission studies in the past years. However, studies usually refer their calculated emission data to the printer set extruder temperature for comparison purposes. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperature and found significant temperature deviations to the displayed set temperature among printer models. Our result shows that printing the same filament feedstocks with three different printer models and with identical printer set temperature resulted in a variation in particle emission of around two orders of magnitude. A temperature adjustment has reduced the variation to approx. one order of magnitude. Thus, it is necessary to refer the measured emission data to the actual extruder temperature as it poses a more accurate comparison parameter for evaluation of the indoor air quality in user scenarios or for health risk assessments. KW - Ultrafine particles KW - Infrared thermography KW - Thermocouple KW - Indoor air quality KW - FFF-3D printer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572842 DO - https://doi.org/10.1016/j.aeaoa.2023.100217 VL - 18 SP - 100217 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by a Disrupted Cellular State and Heterogenous Regrowth Dynamics N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Molecular Mechanisms in Evolution (GRS) Gordon Research Seminar CY - Easton, Massachusetts, USA DA - 24.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics KW - AMR PY - 2023 AN - OPUS4-58032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin A1 - Farago, P. A1 - Mayer, Felix T1 - New sources for secondary gypsum N2 - In order to protect natural gypsum deposits and to compensate for the decreasing amount of Flue Gas Desulfurization (FGD) gypsum it is necessary to develop and explore new sources of gypsum. For this purpose, the potentials of different gypsum wastes are investigated in the study “GipsRec 2.0”, funded by the Federal Ministry of Education and Research (Germany). On the one hand, the project worked on a new processing technology for gypsum fiberboards (GFB). While the recycling of gypsum plasterboards has already been carried out on an industrial scale for several years, the recycling of gypsum fiberboards (GFB) has proven to be challenging. Gypsum fiberboards from demolition sites and offcuts from GFB production were used for these investigations. The tests were conducted on a technical scale. Furthermore, various synthetic gypsums are being investigated with regard to their suitability for gypsum production. The analyses are carried out on production residues. In this project, a promising process for gypsum fiberboard recycling could be developed, as well as other waste gypsums are investigated and evaluated with regard to their potential as secondary raw material. In addition, selected process routes are assessed for their environmental impact using a life cycle assessment (LCA) approach. T2 - RILEM - V International Conference Progress of Recycling in the Built Environment CY - Weimar, Germany DA - 10.10.2023 KW - Gypsum recycling KW - Gypsum fiberboards and synthetic gypsum KW - Environmental evaluation PY - 2023 AN - OPUS4-60316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - EVOCIDE: Preserving disinfectant efficacy by predicting evolution: exposing the principles of disinfectant survival and adaptation in bacteria N2 - Presentation of the EVOCIDE research proposal work programme.EVOCIDE seeks to gain a systems level understanding of disinfectant survival and evolution in bacteria. T2 - Joint Group Seminar Rolff-McMahon-Armitage-Steiner CY - Berlin, Germany DA - 20.12.2023 KW - Disinfectants KW - Evolution KW - Microbiology KW - Bacteria KW - Biocides PY - 2023 AN - OPUS4-59224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Simon, Franz-Georg A1 - Meggyes, Tamas ED - Zhang, H. X. T1 - Sustainable Remediation Methods for Metals and Radionuclides N2 - Sustainability has become the conscientious and future-oriented principle of modern resource management and environmental protection because caring for the future is tantamount to providing manageable and healthy surroundings for ourselves. For the foreseeable future, geotechnical and environmental engineers must therefore be concerned with ensuring a healthy balance between extraction, processing, manufacturing, utilization, recycling, and disposal of materials and products. KW - Permeable reactive barriers KW - Uranium mining KW - Groundwater KW - Electrochemical remediation PY - 2023 SN - 978-1-0716-2465-4 DO - https://doi.org/10.1007/978-1-0716-2466-1_63 SN - 2629-2378 SP - 251 EP - 284 PB - Springer Science+Business Media CY - Berlin, Heidelberg ET - 1 AN - OPUS4-58018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg T1 - Secondary building materials in a circular economy N2 - Half of the global material consumption is mineral material. The circularity is still low so that enhanced use of secondary building material is required to close loops. Three different secondary building materials are discussed based on exemplary research results: construction and demolition waste (C&D waste), soil-like material and incineration bottom ash (IBA). Focus was laid on the environmental compatibility of the materials examined mainly by standardized leaching tests. C&D waste was investigated after a wet treatment using a jigging machine, soil-like material and IBA were characterized with respect to their material composition. The environmental compatibility in particular was studied using standard leaching tests (batch tests and column tests). It was concluded that soil-like material can mostly be utilized even when the precautionary limit values set are exceeded by a factor of less than 2. For C&D waste the fine fraction below 2 mm and the content of brick material is problematic. IBA fulfills quality level HMVA-2 following German regulation. Higher quality levels of utilization might be achievable with better treatment technologies. T2 - 15th International Conference on Ecomaterials (ICEM15) CY - Iki, Japan DA - 26.11.2023 KW - Secondary building materials KW - Incineration bottom ash KW - Construction and demolition waste KW - Soil-like material PY - 2023 AN - OPUS4-59186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Kalbe, Ute T1 - Case Study on Secondary Building Materials for a Greener Economy N2 - Half of global material consumption involves mineral material. The circularity is still low so that the enhanced use of secondary building material is required to close loops. Three different secondary building materials are discussed based on exemplary research results: construction and demolition waste (C&D waste), soil-like material, and incineration bottom ash (IBA). Focus was placed on the environmental compatibility of the materials examined mainly by standardized leaching tests. C&D waste was investigated after a wet treatment using a jigging machine, and soil-like material and IBA were characterized with respect to their material composition. Their environmental compatibilities in particular were studied using standard leaching tests (batch tests and column tests). It was concluded that soil-like material can mostly be utilized even when the precautionary limit values set are exceeded by a factor of less than two. For C&D waste, the fine fraction below 2 mm and the content of brick material is problematic. IBA fulfills quality level “HMVA-2” following German regulations. Improved levels of utilization might be achievable with better treatment technologies. KW - Incineration bottom ash KW - Soil-like material KW - Leaching KW - Circular economy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576343 DO - https://doi.org/10.3390/app13106010 SN - 2076-3417 VL - 13 IS - 10 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-57634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Haas, Marco A1 - Pienkoß, Fabian A1 - Kwiatkowski, Robert T1 - Wet-mechanical treatment: Processing of bituminous road construction waste in a jigging machine N2 - Jigging machines are used in processing technology in many areas. Examples are the processing of coal, ores, and primary and secondary raw and waste materials. Even small differences in density are offen sufficient for successful sorting. In the work presented here, milled material from road construction waste contaminated with bitumen is to be separated from uncontaminated material. In this way, scarce landfill space could be saved and mineral material be returned to the material cycle. KW - Wet-mechanical treatment KW - Jig KW - Road construction waste PY - 2023 UR - https://www.at-minerals.com/de/artikel/aufbereitung-von-bitumenhaltigem-strassenaufbruch-in-einer-setzmaschine-4037512.html SN - 1434-9302 VL - 64 IS - 12 SP - 46 EP - 51 PB - Bauverlag BV GmbH CY - Gütersloh AN - OPUS4-59160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chubarenko, B. A1 - Domnin, D. A1 - Simon, Franz-Georg A1 - Scholz, Philipp A1 - Leitsin, V. A1 - Tovpinets, A. A1 - Karmanov, K. A1 - Esiukova, E. T1 - Change over Time in theMechanical Properties of Geosynthetics Used in Coastal Protection in the South-Eastern Baltic N2 - The most massive design on the Baltic shore used geosynthetic materials, the landslide protection construction in Svetlogorsk (1300 m long, 90,000 m2 area, South-Eastern Baltic, Kaliningrad Oblast, Russian Federation) comprises the geotextile and the erosion control geomat coating the open-air cliff slopes. Due to changes in elastic properties during long-term use in the open air, as well as due to its huge size, this structure can become a non-negligible source of microplastic pollution in the Baltic Sea. Weather conditions affected the functioning of the structure, so it was assessed that geosynthetic materials used in this outdoor (open-air) operation in coastal protection structures degraded over time. Samples taken at points with different ambient conditions (groundwater outlet; arid places; exposure to the direct sun; grass cover; under landslide) were tested on crystallinity and strain at break. Tests showed a 39–85% loss of elasticity of the polymer filaments after 3 years of use under natural conditions. Specimens exposed to sunlight are less elastic and more prone to fail, but not as much as samples taken from shaded areas in the grass and under the landslide, which were the most brittle. KW - Geosynthetics KW - Microplastic KW - Degradation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567978 UR - https://www.mdpi.com/2077-1312/11/1/113 DO - https://doi.org/10.3390/jmse11010113 SN - 2077-1312 VL - 11 IS - 1 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-56797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - Assessment of the Long-Term Leaching Behavior of Incineration Bottom Ash: A Study of Two Waste Incinerators in Germany N2 - The long-term leaching behavior of incineration bottom ash (IBA) was studied with large-scale samples from two German waste incinerators with grate technology. The observation period was up to 281 days. The aging processes proceeded faster in the outdoor storage of the samples. The dominant factor in the leaching behavior is the pH, which starts at values above 12 and decreases to values below 10 (outdoors, <11 indoors). Most heavy metals exhibit minimum solubility in this pH range. The solubility of Sb depends on the prevailing Ca concentration, due to the formation of low-soluble Ca antimonate. The very low sulfate concentrations observed in the leaching tests with fresh IBA could be explained by the presence of ettringite. In the course of the aging reaction, ettringite is transformed into gypsum. The results from batch tests were compared with those from column tests, showing reasonable agreement. Leaching dynamics can be better followed with column tests. All results confirm that the use of IBA is possible under German law. KW - Aging KW - Incineration bottom ash KW - Leaching KW - Secondary building materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591599 DO - https://doi.org/10.3390/app132413228 SN - 2076-3417 VL - 13 IS - 24 SP - 1 EP - 15 PB - MDPI AG CY - Basel AN - OPUS4-59159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Simon, Franz-Georg ED - Kalbe, Ute T1 - Measurement of the Environmental Impact of Materials N2 - Throughout their life cycles—from production, usage, through to disposal—materials and products interact with the environment (water, soil, and air). At the same time, they are exposed to environmental influences and, through their emissions, have an impact on the environment, people, and health. Accelerated experimental testing processes can be used to predict the long-term environmental consequences of innovative products before these actually enter the environment. We are living in a material world. Building materials, geosynthetics, wooden toys, soil, nanomaterials, composites, wastes and more are research subjects examined by the authors of this book. The interactions of materials with the environment are manifold. Therefore, it is important to assess the environmental impact of these interactions. Some answers to how this task can be achieved are given in this Special Issue. KW - Leaching KW - Recycling KW - Emissions PY - 2023 UR - https://www.mdpi.com/books/book/6546 SN - 978-3-0365-5983-4 SN - 978-3-0365-5984-1 DO - https://doi.org/10.3390/books978-3-0365-5983-4 SP - 1 EP - 264 PB - MDPI CY - Basel ET - 1 AN - OPUS4-56770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, Amit Kumar A1 - Mishra, Biswajit A1 - Sinha, Om Prakash T1 - Reduction Kinetics of Fluxed Iron Ore Pellets Made of Coarse Iron Ore Particles N2 - The present work demonstrates a sustainable approach of using relatively coarser iron ore particles for ironmaking. The motivation is to reduce the energy consumption in the milling of the iron ore by utilizing coarser iron ore particles (+0.05 mm) and to select a suitable binder for improving pellet properties. Iron ore fines in the range of 0.05–0.25 mm was selected and classified into three size ranges. Fluxed iron ore pellets were prepared using lime as a binder for the basicity of 0, 1, and 2. Reduction of these pellets with a packed bed of coal fines was performed in the temperature range of 900–1200 °C for a duration of 30–120 min. The direct reduction kinetics of the iron ore pellets were studied by employing diffusion and chemical reaction control models to the experimental data. The results show that pellets made with coarser iron ore particles have improved reduction behavior and kinetics. The reduction reaction is found to be a mixed control. The activation energy for the reduction reaction varies from 44.3 to 74.76 kJ mol−1 as iron ore particle size decreases from 0.25 to 0.05 mm and basicity increases from 0 to 2. KW - Materials Chemistry KW - Metals and Alloys KW - Process Metallurgy KW - Iron making PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598326 DO - https://doi.org/10.1002/srin.202300669 SN - 1611-3683 IS - 2300669 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-59832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimmer, Christoph A1 - Strzelczyk, Rebecca A1 - Richter, Matthias A1 - Musyanovych, Anna A1 - Horn, Wolfgang T1 - Development, application and measurement uncertainty of emission reference materials N2 - Volatile organic compounds (VOCs) emitted by furniture and building materials can cause health issues. For an improvement of indoor air quality low emitting materials should be used. Quality assurance and –control (QA/QC) measures require an emission reference material (ERM) with a predictable emission rate of VOCs. The idea is to use porous materials as ERM, which store the VOCs inside their pores and emit them constantly. T2 - Webinar Metrology for Indoor Air Quality Reference materials for QA/QC of the emission test chamber procedure CY - Online meeting DA - 11.04.2024 KW - Emission reference materials KW - Indoor air quality KW - Materials emissions test KW - VOC PY - 2024 AN - OPUS4-59963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jovičević-Klug, Matic A1 - Souza Filho, Isnaldi R. A1 - Springer, Hauke A1 - Adam, Christian A1 - Raabe, Dierk T1 - Green steel from red mud through climate-neutral hydrogen plasma reduction N2 - AbstractRed mud is the waste of bauxite refinement into alumina, the feedstock for aluminium production1. With about 180 million tonnes produced per year1, red mud has amassed to one of the largest environmentally hazardous waste products, with the staggering amount of 4 billion tonnes accumulated on a global scale1. Here we present how this red mud can be turned into valuable and sustainable feedstock for ironmaking using fossil-free hydrogen-plasma-based reduction, thus mitigating a part of the steel-related carbon dioxide emissions by making it available for the production of several hundred million tonnes of green steel. The process proceeds through rapid liquid-state reduction, chemical partitioning, as well as density-driven and viscosity-driven separation between metal and oxides. We show the underlying chemical reactions, pH-neutralization processes and phase transformations during this surprisingly simple and fast reduction method. The approach establishes a sustainable toxic-waste treatment from aluminium production through using red mud as feedstock to mitigate greenhouse gas emissions from steelmaking. KW - Multidisciplinary PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594424 DO - https://doi.org/10.1038/s41586-023-06901-z SN - 0028-0836 VL - 625 IS - 7996 SP - 703 EP - 709 PB - Springer Science and Business Media LLC AN - OPUS4-59442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Hamann, Sven A1 - Weyer, Rüdiger A1 - Kalbe, Ute T1 - Assessment of Microplastic Emissions from Artificial Turf Sports Pitches N2 - Following the recommendation of the European Chemicals Agency, on 25 September 2023 the European Commission passed a comprehensive new regulation to reduce emissions of microplastics (MP) into the environment, which includes the sale and use of intentionally added MP.1,2 This also applies to the application of synthetic rubber granulate infill in artificial turf systems and will ultimately have an impact on recreational sports. In Germany, rubber granulate made of ethylene-propylene-diene-monomer rubber (EPDM) is currently predominantly used. So far, there is no sufficient database for estimating MP emissions from artificial turf pitches into the environment and thus their relevance as a source of MP pollution.3 This topic is controversially discussed due to the complexity of sampling and analytics. To close this research gap, this project has the goal to determine mass balances for the emissions of MP from artificial turf pitches to allow an estimation of the amount of MP released per artificial turf pitch and year. Within this study, MP emissions of three artificial turf scenarios at different time states (unaged, artificially aged and real-time aged) are compared: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Europe: fossil based, EPDM infill), and the future (turf with recycled gras fibres, no synthetic infill). To simulate the outdoor weathering during the lifespan of an artificial turf of approx. 15 years, brand-new artificial turf and EPDM rubber granulate were accelerated aged by means of UV weathering and mechanical stress. Potential MP emissions into surface and groundwater are simulated by lysimeter and shake experiments. MP mass contents are subsequently determined by Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry. Using special microfilter crucibles allows the estimation of the particle sizes of the emitted MP, which is a fundamental requirement for an assessment of potential health hazards for humans. T2 - SETAC 2024 CY - Seville, Spain DA - 05.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Lysimeter KW - PAK KW - Schwermetalle PY - 2024 AN - OPUS4-60014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maulas, Kryzzyl M. A1 - Paredes, Charla S. A1 - Tabelin, Carlito Baltazar A1 - Jose, Mark Anthony A1 - Opiso, Einstine M. A1 - Arima, Takahiko A1 - Park, Ilhwan A1 - Mufalo, Walubita A1 - Ito, Mayumi A1 - Igarashi, Toshifumi A1 - Phengsaart, Theerayut A1 - Villas, Edrhea A1 - Dagondon, Sheila L. A1 - Metillo, Ephrime B. A1 - Uy, Mylene M. A1 - Manua, Al James A. A1 - Villacorte-Tabelin, Mylah T1 - Isolation and Characterization of Indigenous Ureolytic Bacteria from Mindanao, Philippines: Prospects for Microbially Induced Carbonate Precipitation (MICP) N2 - Microbially induced carbonate precipitation (MICP), a widespread phenomenon in nature, is gaining attention as a low-carbon alternative to ordinary Portland cement (OPC) in geotechnical engineering and the construction industry for sustainable development. In the Philippines, however, very few works have been conducted to isolate and identify indigenous, urease-producing (ureolytic) bacteria suitable for MICP. In this study, we isolated seven, ureolytic and potentially useful bacteria for MICP from marine sediments in Iligan City. DNA barcoding using 16s rDNA identified six of them as Pseudomonas stutzeri, Pseudomonas pseudoalcaligenes, Bacillus paralicheniformis, Bacillus altitudinis, Bacillus aryabhattai, and Stutzerimonas stutzeri but the seventh was not identified since it was a bacterial consortium. Bio-cementation assay experiments showed negligible precipitation in the control (without bacteria) at pH 7, 8, and 9. However, precipitates were formed in all seven bacterial isolates, especially between pH 7 and 8 (0.7–4 g). Among the six identified bacterial species, more extensive precipitation (2.3–4 g) and higher final pH were observed in S. stutzeri, and B. aryabhattai, which indicate better urease production and decomposition, higher CO2 generation, and more favorable CaCO3 formation. Characterization of the precipitates by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and attenuated total reflectance Fourier transform spectroscopy (ATR-FTIR) confirmed the formation of three carbonate minerals: calcite, aragonite, and vaterite. Based on these results, all six identified indigenous, ureolytic bacterial species from Iligan City are suitable for MICP provided that the pH is controlled between 7 and 8. To the best of our knowledge, this is the first report of the urease-producing ability and potential for MICP of P. stutzeri, P. pseudoalcaligenes, S. stutzeri, and B. aryabhattai. KW - Calcium carbonate KW - Microbially induced carbonate precipitation (MICP) KW - Ureolytic bacteria PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600888 DO - https://doi.org/10.3390/min14040339 VL - 14 IS - 4 SP - 1 EP - 15 PB - MDPI AN - OPUS4-60088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Taghavi Kalajahi, Sara A1 - Misra, Archismita A1 - Koerdt, Andrea T1 - Nanotechnology to mitigate microbiologically influenced corrosion (MIC) N2 - Microbiologically influenced corrosion (MIC) is a crucial issue for industry and infrastructure. Biofilms are known to form on different kinds of surfaces such as metal, concrete, and medical equipment. However, in some cases the effect of microorganisms on the material can be negative for the consistency and integrity of the material. Thus, to overcome the issues raised by MIC on a system, different physical, chemical, and biological strategies have been considered; all having their own advantages, limitations, and sometimes even unwanted disadvantages. Among all the methods, biocide treatments and antifouling coatings are more common for controlling MIC, though they face some challenges. They lack specificity for MIC microorganisms, leading to cross-resistance and requiring higher concentrations. Moreover, they pose environmental risks and harm non-target organisms. Hence, the demand for eco-friendly, long-term solutions is increasing as regulations tighten. Recently, attentions have been directed to the application of nanomaterials to mitigate or control MIC due to their significant antimicrobial efficiency and their potential for lower environmental risk compared to the conventional biocides or coatings. Use of nanomaterials to inhibit MIC is very new and there is a lack of literature review on this topic. To address this issue, we present a review of the nanomaterials examined as a biocide or in a form of a coating on a surface to mitigate MIC. This review will help consolidate the existing knowledge and research on the use of nanomaterials for MIC mitigation. It will further contribute to a better understanding of the potential applications and challenges associated with using nanomaterials for MIC prevention and control. KW - Microbiologically influenced corrosion (MIC) KW - Biofilm KW - Biofouling KW - Nanobiocide KW - Nanocoating PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599335 DO - https://doi.org/10.3389/fnano.2024.1340352 VL - 6 SP - 1 EP - 25 AN - OPUS4-59933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Gorbushina, Anna A. T1 - How does light affect rock-inhabiting fungi? N2 - Sunlight is an almost unavoidable environmental cue and plays a fundamental role in the biology of pro- and eukaryotic organisms. To cope with sunlight-associated stresses e.g., high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses, it is important for organisms to accurately sense and respond to changes in light. The benefits of light are obvious for green organisms such as cyanobacteria, algae and plants which use light as an energy source (photosynthesis). Less apparent are other light-dependent processes such as light-driven DNA repair by photolyases (photoreactivation) or ion pumping by microbial opsins. Fungi that can share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess many proteins for absorbing UV/blue, green, red and far-red light, produce the black 1,8 dihydroxynaphthalene (DHN) melanin and orange-red carotenoids, and may live in multispecies biofilms. Here, we are addressing the question to which extent constitutive pigment formation (melanin and carotenoids) and responses mediated by the stress-activated mitogen-activated protein (MAP) kinase contribute to the observed light (UV-B) tolerance of K. petricola. T2 - 32nd Fungal Genetics Conference CY - Pacific Grove, CA, USA DA - 12.03.2024 KW - Knufia petricola KW - Black fungi KW - Light-induced stress PY - 2024 AN - OPUS4-59732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keshmiri, Hamid A1 - Cikes, Domagoj A1 - Samalova, Marketa A1 - Schindler, Lukas A1 - Appel, Lisa-Marie A1 - Urbanek, Michal A1 - Yudushkin, Ivan A1 - Slade, Dea A1 - Weninger, Wolfgang J. A1 - Peaucelle, Alexis A1 - Penninger, Josef A1 - Elsayad, Kareem T1 - Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells N2 - Maintaining and modulating mechanical anisotropy is essential for biological processes. However, how this is achieved at the microscopic scale in living soft matter is not always clear. Although Brillouin light scattering (BLS) spectroscopy can probe the mechanical properties of materials, spatiotemporal mapping of mechanical anisotropies in living matter with BLS microscopy has been complicated by the need for sequential measurements with tilted excitation and detection angles. Here we introduce Brillouin light scattering anisotropy microscopy (BLAM) for mapping high-frequency viscoelastic anisotropy inside living cells. BLAM employs a radial virtually imaged phased array that enables the collection of angle-resolved dispersion in a single shot, thus enabling us to probe phonon modes in living matter along different directions simultaneously. We demonstrate a precision of 10 MHz in the determination of the Brillouin frequency shift, at a spatial resolution of 2 µm. Following proof-of-principle experiments on muscle myofibres, we apply BLAM to the study of two fundamental biological processes. In plant cell walls, we observe a switch from anisotropic to isotropic wall properties that may lead to asymmetric growth. In mammalian cell nuclei, we uncover a spatiotemporally oscillating elastic anisotropy correlated to chromatin condensation. Our results highlight the role that high-frequency mechanics can play in the regulation of diverse fundamental processes in biological systems. We expect BLAM to find diverse applications in biomedical imaging and material characterization. KW - Optical and Magnetic Materials KW - Atomic and Molecular Physics and Optics KW - Electronic PY - 2024 DO - https://doi.org/10.1038/s41566-023-01368-w SN - 1749-4885 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Looking through the eyes of fungi: from photoperception to photoresponses and beyond N2 - Sunlight is an almost unavoidable environmental cue and plays a fundamental role in the biology of pro- and eukaryotic organisms. To cope with sunlight-associated stresses e.g., high temperatures, UV radiation, accumulation of reactive oxygen species, desiccation, and osmotic stress, it is important for organisms to accurately sense and respond to changes in light. The benefits of light are obvious for green organisms such as cyanobacteria, algae and plants which use light as an energy source (photosynthesis). Fungi that can share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Examples are the plant pathogen Botrytis cinerea, the gray mold fungus, and the rock inhabitant Knufia petricola, a microcolonial black fungus which forms multispecies biofilms with bacteria and algae. T2 - 20th Symposium of the Research Training Group on Bioactive Peptides – The colorful tree of life CY - Berlin, Germany DA - 23.01.2024 KW - Black fungi KW - Melanin KW - Stress tolerance PY - 2024 AN - OPUS4-59543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, Carlos A1 - Montes-Hernández, German A1 - Kochovski, Zdravko A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, Ernesto A1 - Van Driessche, Alexander E.S. T1 - Solution-driven processing of calcium sulfate: The mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Here, we show that calcium sulfate dihydrate (gypsum) can be directly, rapidly and reversibly converted to calcium sulfate hemihydrate (bassanite) in high salinity solutions (brines). The optimum conditions for the efficient production of bassanite in a short time (<5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the better-known behaviour of the bassanite phase in low-salt environments. In low-salinity aqueous solutions, bassanite is considered to be metastable with respect to gypsum and anhydrite, and therefore gypsum-to-bassanite conversion does not occur in pure water. Interestingly, the high-salinity transformation of gypsum-to-bassanite has been reported by many authors and used in practice for several decades, although its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures was inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline phase for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. KW - Industrial and Manufacturing Engineering KW - Strategy and Management KW - General Environmental Science KW - Renewable Energy, Sustainability and the Environment KW - Building and Construction KW - Calcium sulfate KW - Gypsum KW - Bassanite KW - Scattering KW - Raman KW - In situ KW - Synchrotron KW - BESSY KW - MySpot PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594698 UR - https://www.sciencedirect.com/science/article/pii/S0959652624004591#appsec1 DO - https://doi.org/10.1016/j.jclepro.2024.141012 SN - 0959-6526 VL - 440 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-59469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Embedding and cross-sectioning as a sample preparation procedure for accurate and representative size and shape measurement of nanopowders N2 - Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer–Emmet–Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed. KW - Nanopowder KW - Electron microscopy KW - Sample preparation KW - Cross-sectioning KW - Cerium oxide KW - Zinc oxide PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593289 DO - https://doi.org/10.1038/s41598-023-51094-0 SN - 2045-2322 VL - 14 SP - 1 EP - 10 PB - Springer Nature CY - London AN - OPUS4-59328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Stephan, Dietmar A1 - Meng, Birgit A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Hirsch, Tamino A1 - Manninger, Tanja T1 - Effect of gypsum on the hydration of fused cement clinker from basic oxygen furnace slag N2 - Fused cement clinker can be produced from molten basic oxygen furnace slag (BOFS) by way of a reductive thermochemical treatment. During the thermochemical treatment, oxidic iron is reduced to metallic iron and separated. The resulting low-iron slag has a chemical and mineralogical composition similar to ordinary Portland cement (OPC) clinker. In this study, the hydraulic reactivity of the fused clinker from BOFS with and without gypsum was investigated using isothermal calorimetry, differential scanning calorimetry, in situ X-ray diffraction and powder X-ray diffraction. Furthermore, a synthetic fused clinker without foreign ions and fused clinker produced by a mixture of both materials was studied. The hydraulic reaction of the fused clinker from BOFS was considerably slower than that of OPC. However, the reaction can be accelerated by adding gypsum as a sulfate carrier. Furthermore, the results showed an increased reaction rate with decreasing content of foreign ions such as Fe, P or Mn. KW - General Materials Science KW - Building and Construction PY - 2024 DO - https://doi.org/10.1680/jadcr.23.00070 SN - 0951-7197 SP - 1 EP - 19 PB - Telford AN - OPUS4-59391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, C. A1 - Montes Hernandez, G A1 - Kochovski, Z A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, E A1 - Van Driessche, A T1 - Solution-driven processing of calcium sulfate: the mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Calcium sulfate hemihydrate (CaSO4ᐧ0.5H2O), also known as bassanite, has been used as a precursor to produce gypsum (dihydrate, CaSO4ᐧ2H2O) for various construction and decorative purposes since prehistoric times. The main route to obtain hemihydrate is a thermal treatment of gypsum at temperatures typically between 150 °C and 200 °C to remove some of the structural water. In this contribution, we introduce (Fig. 1) a more efficient and sustainable method (T < 100 °C) that enables the direct, rapid, and reversibly conversion of gypsum to bassanite using reusable high salinity aqueous solutions (brines with c[NaCl] > 4 M). The optimum conditions for the efficientproduction of bassanite in a short time (< 5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the typical behaviour of the bassanite phase in low salt environments. Traditionally, hemihydrate is obtained through a solid state thermal treatment because bassanite is considered to be metastable with respect to gypsum and anhydrite in aqueous solutions, and therefore gypsum-to-bassanite conversion should not occur in water. Its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures is inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline structure for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. T2 - Granada Münster Discussion Meeting GMDM 10 CY - Münster, Germany DA - 29.11.2023 KW - Gypsum KW - Bassanite KW - Calcium sulfate KW - Recycling KW - Scattering PY - 2024 AN - OPUS4-59162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hamann, Christopher A1 - Piehl, Patrick A1 - Weingart, Eric A1 - Stolle, Dirk A1 - Al-Sabbagh, Dominik A1 - Ostermann, Markus A1 - Auer, Gerhard A1 - Adam, Christian T1 - Selective removal of zinc and lead from electric arc furnace dust by chlorination–evaporation reactions N2 - Re-melting of scrap in an electric arc furnace (EAF) results in the accumulation of filter dust from off-gas treatment that predominantly consists of iron and zinc oxides. Filter dust is classified as hazardous waste due to its high contents of potentially toxic or ecotoxic elements such as Pb, Cr, Cd, and As. A promising processing route for this waste is selective chlorination, in which the non-ferrous metal oxides are chlorinated and selectively evaporated in form of their respective chlorides from the remaining solids via the process gas flow. Here, we investigate stepwise thermochemical treatment of EAF dust with either waste iron(II) chloride solution or hydrochloric acid at 650, 800, and 1100 ◦C. The Zn and Pb contents of the thermochemically processed EAF dust could be lowered from 29.9% and 1.63% to 0.09% and 0.004%, respectively. Stepwise heating allowed high separation between zinc chloride at the 650 ◦C step and sodium-, potassium-, and lead-containing chlorides at higher temperatures. Furthermore, the lab-scale results were transferred to the use of an experimental rotary kiln highlighting the possibilities of upscaling the presented process. Selective chlorination of EAF dust with liquid chlorine donors is, therefore, suggested as a potential recycling method for Zn-enriched steelworks dusts. KW - Electric arc furnace dust KW - Zinc KW - Selective Chlorination KW - Hazardous waste KW - Resource Recovery PY - 2024 DO - https://doi.org/10.1016/j.jhazmat.2023.133421 SN - 0304-3894 VL - 465 SP - 1 EP - 13 PB - Elsevier AN - OPUS4-59345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Grimmer, Christoph A1 - Musyanovych, A. A1 - Strzelczyk, Rebecca Skadi A1 - Horn, Wolfgang T1 - Emission reference materials for indoor air measurements N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. VOC in combination may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. Emission concentrations can become further elevated in new or refurbished buildings where the rate of air exchange with fresh ambient air may be limited due to improved energy saving aspects. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use (building) materials proved to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable emission reference materials (ERM). For the emission test chamber procedure according to EN 16516, no artificial ERM is commercially available. The EU-funded EMPIR project MetrIAQ aims to fill this gap by developing new and improved ERMs. The goal is to obtain a material with a reproducible and temporally constant compound release (less than 10 % variability over 14 days). Two approaches were tested: the impregnation of porous materials with VOC, and the encapsulation of VOC in polymer microcapsules. Impregnation is performed with help of an autoclave and supercritical CO2. The encapsulation is done by interfacial polymerisation on VOC droplets. For both approaches, synthesis and/or material parameters were varied to obtain an optimal ERM. Findings about the optimisation of ERM generation, as well as performance of the best emission reference materials, will be presented. T2 - GAS Analysis 2024 CY - Paris, France DA - 30.01.2024 KW - Emission reference materials KW - Materials emissions test KW - VOC KW - Indoor air quality PY - 2024 AN - OPUS4-59506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Matthias, Richter A1 - Christoph, Grimmer T1 - Zeolites loaded with VOCs as reference for material emissions testing N2 - Nowadays, people spend most of their time indoors. Thus, a good indoor air quality is important. Emissions of volatile organic compounds (VOCs) from furniture and building materials can cause health complaints1. Quantitative VOC-emission testing is carried out under standardized conditions in emission test chambers. In the presented project an emission reference material (ERM) is developed that emits a defined mixture of VOCs which is required for quality assurance and -control (QA/QC) measures. Porous materials (e.g zeolites, activated carbons, MOFs or aerogels) are used as reservoir materials and impregnated with VOC. The porous materials are selected, among others, by their pore size, pore size distribution, polarity and availability. Due to their regular pore structure zeolites are tested at first. For a prediction of the emission profile, the ERM is supposed to exhibit a constant emission rate over time. The aim is a stability of ≤ 10 % change in the emission rate over a minimum of 14 days. Method For impregnation, the material is placed into an autoclave inside a rotatable basket. The VOC is added and the autoclave is closed. Afterwards, CO2 is inserted. The closed system is then heated to the supercritical point of CO2 (31 °C, 73.75 bar). In this state, the CO2 acts as solvent for the VOC. By rotating the basket, the distribution of the VOC is ensured. After a few minutes, the pressure is decreased slowly and the CO2 is released. For the determination of the emission profile, the impregnated sample is placed into an emission test chamber. These chambers can be operated either with dry or humid air (50 ± 5 % rel. humidity). Every second to third day, air samples are taken and analyzed by gas chromatography. For an ideal impregnation, several different pressures and temperatures as well as impregnation times are tested. Results Two zeolite materials tested in dry air conditions reach emission profiles with a decrease of less than 10 % over 14 days (heptane and toluene, respectively). Further it was discovered that smaller pellets of the same zeolite show better results than bigger particles. When the pore size of a zeolite is too small, e.g. 0.3 nm, the VOC cannot be absorbed sufficiently. The main disadvantage of zeolites is their hygroscopicity because it has a large impact on the release of VOC when they are used in emission test chambers under standardized test conditions (23 °C, 50 % rel. humidity). Activated carbons have emission profiles with a larger change over 14 days. However, the high hydrophobicity allows measurements in humid air conditions which was not possible with the before mentioned hygroscopic zeolites. It is possible to impregnate powdered materials as well, and thus powdered non-hygroscopic (n.h.) zeolites were impregnated. Their emission profiles are comparable to those of the activated carbons. The use of methylated hygroscopic zeolites with a decrease in hygroscopicity did not yield successful emission measurements. The change over 14 days is calculated only for the stable phase (~250–300 h). The desired stability of ≤ 10 % change of the emission rate over 14 days could already be reached under dry testing conditions. Further investigations under humid conditions show that zeolites with high Si/Al-ratios are non-hygroscopic and comparable to activated carbons (20–30 % change). The next step is to reduce the change in the emission rate of these materials to the aimed ≤ 10 % over 14 days. T2 - Deutsche Zeolithtagung CY - Jena, Germany DA - 28.02.2024 KW - VOC KW - Emission KW - Quality assurance KW - Reference material KW - Zeolite PY - 2024 AN - OPUS4-59843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barkeshli, Mandana A1 - Stephan, Ina A1 - Shevchuk, Ivan A1 - Soltani, Mojtaba T1 - Characteristics of Sizing Materials Used in Persian Medieval Manuscripts: Physical, Optical, Spectral Imaging, and Fungicidal Properties N2 - In this study, we investigated the diverse range of materials used for sizing in Iranian paper manuscripts during the Timurid (fifteenth century) to Safavid (sixteenth century) and Qajar (nineteenth century) periods. Our approach combined historical analysis with scientific examination of reconstructed sizings. We reconstructed 15 sizing materials based on identified Persian historical recipes and analysed their physical, optical, and spectral characteristics. Additionally, we assessed their behaviour against the mould fungus Aspergillus flavus. The results revealed distinctive properties for each sizing material, shedding light on their potential applications in paper preservation. Furthermore, our investigation demonstrated variations in hygroscopicity, thickness, grammage, and ash content post-sizing. The sizing materials also exhibited different effects on paper reflectance properties. Additionally, our study revealed insights into the impact of sizing on burnished papers, indicating that the mechanical process of burnishing did not significantly alter the chemical composition or spectral properties of the paper, with only minor changes in brightness observed in specific cases. All tested sizing materials supported varying levels of mould growth, indicating potential implications for paper conservation. Our findings provide valuable insights into the historical practices of Iranian paper sizing and offer practical considerations for the preservation of paper manuscripts. KW - Paper sizings KW - Persian historical recipes KW - Physical and optical characteristics KW - Fungicidal property KW - Spectral imaging PY - 2024 DO - https://doi.org/10.1080/00393630.2024.2342647 SP - 1 EP - 18 PB - Informa UK Limited AN - OPUS4-60159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oberbeckmann, Sonja A1 - Gorbushina, Anna T1 - On the intersection of microbiome and material research: what can be achieved? N2 - Any surface in the environment acts as hotspot for microbial attachment and activity. These biofilms represent the interface between humans and the environment. While in the past biofilms were often seen as disturbance, we now start to understand the enormous potential of beneficial biofilms. They can be used in a broad range of applications and are sources for new microorganisms and traits. After all, biofilms represent a great example for a collaborative lifestyle. T2 - Bioeconomy Changemakers Festival, Hereon CY - Teltow, Germany DA - 14.03.2024 KW - Biofilm KW - Microbiome KW - Sustainability KW - Biosphere KW - Microplastics PY - 2024 AN - OPUS4-60202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oberbeckmann, Sonja T1 - The Microplastic Microbiome N2 - Microplastics represent man-made and newly emerging surfaces in our ecosystems, where they interact with microorganisms. The ecosystem in focus of this presentation will be the aquatic environment. It will be portrayed, which microorganisms use microplastics as a habitat, how environmental factors shape this colonization, and why the biodegradation of plastics in the ocean is an overall unlikely process. We will also discuss whether potentially pathogenic microorganisms use microplastics as a raft. Finally, possible adaptation mechanisms of plastic-colonizing microorganisms will be presented, such as the production of photoreactive molecules. The microplastic microbiome has a large potential to harbor so far unknown species with curious traits, representing an exciting research topic for the future. T2 - Geomicrobiological and Geochemical Colloquium, GFZ CY - Potsdam, Germany DA - 20.02.2024 KW - Microplastics KW - Microbiome KW - Biofilm PY - 2024 AN - OPUS4-60203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - Sequential Extraction of Incineration Bottom Ash: Conclusions Regarding Ecotoxicity N2 - The classification of incineration bottom ash (IBA) as hazardous or non-hazardous according to ecotoxic hazard property HP14 is still under debate. In this context, only the compounds of Zn and Cu with the hazard statement code H410 are of relevance. With an approach based on the grouping of substances, it was shown that such substances are either readily water-soluble or slightly and sparingly soluble. The concentrations of readily soluble Cu and Zn compounds in IBA are far below the cut-off value of 0.1%. Slightly and sparingly soluble Zn and Cu compounds could be quantified in the first fraction of a four-step sequential extraction procedure. With the results from the complete sequence, the dimensionless synthesis toxicity index (STI) was calculated and was in the range of 494 to 1218 for the four investigated IBA samples. It was concluded that IBA can usually be classified as non-hazardous. KW - Incineration bottom ash KW - Hazard properties KW - Ecotoxicity KW - Sequential extraction PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605070 DO - https://doi.org/10.3390/app14135541 SN - 2076-3417 VL - 14 IS - 13 SP - 1 EP - 12 PB - MDPI AN - OPUS4-60507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ronen, A. A1 - Vogel, Christian A1 - Leube, Peter A1 - Ben Efraim, R. A1 - Nir, O. A1 - Chaudhary, M. A1 - Futterlieb, M. A1 - Panglisch, S. T1 - DEFEAT-PFAS: Detection, Quantification, and Treatment of Per- and Polyfluoroalkyl Substances (PFAS) in Groundwater N2 - The research project focuses on tackling the detection, measurement, and elimination of per- and polyfluoroalkyl substances (PFAS) from polluted groundwater, with a particular emphasis on addressing short (C4-C7) and ultrashort (C1-C3) chain PFAS. Given the widespread use of PFAS in various products, they are commonly found in groundwater near industrial and military sites in Germany and Israel. Moreover, recent regulations limiting the use of long chain PFAS have led industries to shift towards shorter chain alternatives. Hence, our efforts are geared towards refining detection, quantification, and removal methods for short and ultrashort chain PFAS. In terms of detection, ww are developing passive sampling devices capable of collecting and tracking the temporal distribution of PFAS species in groundwater. This will enable us to analyze contaminations in German and Israeli groundwater using cutting-edge analytical techniques. Additionally, contaminated groundwater will undergo a two-stage treatment process aimed at concentrating the relatively low PFAS concentrations using innovative membrane technologies such as closed-circuit reverse osmosis and mixed matrix composite nanofiltration membrane adsorbers. Subsequently, the streams containing higher PFAS concentrations will be treated through coagulation, with the remaining PFAS being adsorbed onto carbonaceous nanomaterials. The outcome of this research will include the creation of advanced tools for detecting, measuring, and eliminating PFAS from polluted groundwater, while also enhancing our understanding of the scope of these contaminations. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 UR - https://indico.scc.kit.edu/event/4029/attachments/7552/12045/Proceedings_Ger-Isr-Coop_Status-Seminar-2024.pdf SP - 33 EP - 36 AN - OPUS4-60331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ronen, A. A1 - Panglisch, S. A1 - Vogel, Christian A1 - Leube, Peter A1 - Ben Efrain, R. A1 - Nir, O. A1 - Chaudhary, M A1 - Futterlieb, M. T1 - Detection, Quantification and Treatment of Per and Polyfluoroalkyl substances (PFAS) in Groundwater N2 - The research project focuses on tackling the detection, measurement, and elimination of per- and polyfluoroalkyl substances (PFAS) from polluted groundwater, with a particular emphasis on addressing short (C4-C7) and ultrashort (C1-C3) chain PFAS. Given the widespread use of PFAS in various products, they are commonly found in groundwater near industrial and military sites in Germany and Israel. Moreover, recent regulations limiting the use of long chain PFAS have led industries to shift towards shorter chain alternatives. Hence, our efforts are geared towards refining detection, quantification, and removal methods for short and ultrashort chain PFAS. In terms of detection, ww are developing passive sampling devices capable of collecting and tracking the temporal distribution of PFAS species in groundwater. This will enable us to analyze contaminations in German and Israeli groundwater using cutting-edge analytical techniques. Additionally, contaminated groundwater will undergo a two-stage treatment process aimed at concentrating the relatively low PFAS concentrations using innovative membrane technologies such as closed-circuit reverse osmosis and mixed matrix composite nanofiltration membrane adsorbers. Subsequently, the streams containing higher PFAS concentrations will be treated through coagulation, with the remaining PFAS being adsorbed onto carbonaceous nanomaterials. The outcome of this research will include the creation of advanced tools for detecting, measuring, and eliminating PFAS from polluted groundwater, while also enhancing our understanding of the scope of these contaminations. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Remediation PY - 2024 AN - OPUS4-60328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leube, Peter A1 - Vogel, Christian A1 - Simon, Franz-Georg T1 - Quantification of ultrashort per- and polyfluoroalkyl substances (PFAS) in water samples via headspace gas chromatographymass spectrometry (GC-MS) - a method development N2 - Ultrashort PFAS (≤ 3 carbon atoms) were overlooked for a long time in analytical monitoring. Beside through the use of these substances, they contribute to the PFAS background in the environment through (environmental/ bio-) degradation and incomplete destruction3 of PFAS with longer carbon chains or other fluorinated compounds. As part of the German-Israeli Cooperation in Water Technology Research project „Detection, quantification, and treatment of per- and polyfluoroalkyl substances in groundwater“ (DEFEAT-PFAS), we are developing an as simple as possible direct headspace (HS-)GC-MS method to detect trifluoroacetic acid (TFA) and perfluoropropanioc acid (PFPrA), as well as trifluoroethanol (TFEtOH), pentafluoropropanol(PFPrOH) and hexafluoroiospropanol (HFIP) in water samples. Here we present the results of the PFAS mentioned in spiked ultrapure water solutions. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Gas chromatography - mass spectrometry (GC-MS) PY - 2024 AN - OPUS4-60330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ben Efraim, R. A1 - Vogel, Christian A1 - Leube, Peter A1 - Nir, O. A1 - Chaudhary, M. A1 - Futterlieb, M. A1 - Panglisch, S, A1 - Ronen, A, T1 - Comparison of PFAS Adsorption and Electro-Sorption Using Pristine and Functionalized MWCNTs N2 - Per- and polyfluoroalkyl substances (PFAS) have been extensively utilized in various industrial processes, resulting in elevated concentrations in landfills and drinking water reservoirs. Despite recognizing that shortchained PFAS are harmful, they are often overlooked. Short-chain PFAS are more challenging to remove via adsorption and membrane separation processes, and their detection is complex, thus creating a critical gap in understanding their environmental impact. To improve their environmental monitoring, we aim to improve short-chain PFAS adsorption and electro-sorption on novel carbon-based adsorbers such as pristine and functionalized multi-walled carbon nanotubes (MWCNTs) and assess their adsorption mechanisms. Based on the obtained result, we aim to develop a PFAS passive sampling device. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sorption PY - 2024 AN - OPUS4-60329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schmidt, Selina T1 - Effects of biocides on processes underlying resistance evolution N2 - Antimicrobial resistance (AMR) is a global health problem. It is well known that antibiotics can drive evolutionary processes that underlie antimicrobial resistance (AMR) evolution and spread in clinical and environmental settings. In contrast, less is known about the effects of antimicrobial substances that are used as biocides (i.e. disinfectants and preservatives) on AMR evolution and spread. Biocides are present in various settings, interacting with diverse microbial communities. Therefore, it is crucial to evaluate their role in the evolution and dissemination of antimicrobial resistance. Biocides occur in a wide range of concentrations in various environmental settings. By examining how the various concentrations affect selection mechanisms, we gain insights into potential developments related to antimicrobial resistance. The aim of this PhD thesis is to investigate the effects of biocides on processes underlying resistance evolution. Specifically, the work focused on key mechanisms for resistance spread, resistance evolution, and the effect of selection pressures on evolved resistance mechanisms. The thesis is structured around three major objectives: (i) to determine the effect of biocides on the evolution of resistance by affecting the rate of occurrence of de novo mutations, (ii) to determine the effect of biocides on the spread of resistance genes by modifying the rate of horizontal gene transfer (HGT) processes, and (iii) to investigate the selective drivers of the emergence of antimicrobial resistance in adaptive laboratory evolution (ALE) experiments. De-novo mutations are spontaneous mutations that occur at a certain rate in microorganisms. The effect of biocides at subinhibitory environmentally relevant concentrations on the mutation rate in Acinetobacer baylyi, Bacillus subtilis and Escherichia coli was assessed with the fluctuation assay. The results showed that biocides affected mutation rates in a species and substance dependent matter. The bisbiguanide chlorhexidine digluconate, the quaternary ammonium compound didecyldimethylammonium chloride, the metal copper, the pyrethroid-insecticide permethrin, and the azole-fungicide propiconazole increase mutation rates in E. coli, whereas no increases were identified for B. subtilis and A. baylyi. Horizontal gene transfer refers to diverse mechanisms that mediate the transfer of mobile genetic elements between microorganisms. This work focused on conjugation and transformation. Conjugation is a process whereby a conjugative plasmid is transferred from a donor cell to a recipient cell. Transformation is a process whereby exogenous donor DNA is taken up into a recipient cell and integrated into the recipient’s’ genome. The effects of subinhibitory environmentally relevant biocide concentrations on the conjugation rate of E. coli and the transformation rate of the naturally competent organisms A. baylyi in were assessed. The results showed that benzalkonium chloride (BAC), chlorhexidine and permethrin increased conjugation in E. coli, while none of the biocides increased transformation rates in A. baylyi. To further understand the molecular mechanisms underlying the effects on mutation and conjugation rates, I investigated the induction of the RpoS-mediated general stress and the RecA-linked SOS response upon biocide exposure. The results show a link between the general stress and the SOS response with increased rates of mutation and conjugation, but not for all biocides. One major approach to study the evolutionary response of bacteria to antimicrobials are ALE experiments with growth at subinhibitory concentrations linked to serial subculturing over many generations. Such experiments have been used to study resistance evolution to antibiotics and biocides. However, previous work showed that adaptation to biocide stress may be mediated by different evolutionary drivers. Here, I investigated the contributions of evolution for increased survival as opposed to improved growth in ALE experiments with E. coli exposed to subinhibitory BAC concentrations. Two distinct evolutionary treatments selecting for survival only or survival and growth led to specific evolutionary adaptations apparent in the phenotypes and genotypes of the evolved populations. Populations growing in the presence of BAC evolved increased fitness in the presence of BAC associated with higher resistance to BAC and cross-resistance to antibiotics, while this was not the case for populations evolving for increased survival only. Genotypic characterization by whole genome sequencing of the evolved populations revealed parallelism in mutated genes among replicate populations and distinct differences across treatments. Treatments selecting for survival and growth showed mutations in stress response related genes (hslO and tufA), while selection for survival led to mutations in genes for metabolic regulation (cyaA) and cellular structure (flagella fliJ). In summary, this thesis shows that biocides affect AMR evolution and emphasizes the importance of understanding of how biocides impact the molecular and evolutionary process that underlie AMR evolution. KW - Biocides KW - Antimicrobial resistances KW - Microbial survival mechanisms PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-refubium-43383-9 SP - 1 EP - 101 PB - Freie Universität CY - Berlin AN - OPUS4-60678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kalinka, Gerhard A1 - Loose, Florian T1 - Advanced lightweight applications – recycling versus reliability and fossil energy footprint N2 - Advanced light weight applications like aircrafts and wind turbine blades are made of fibre reinforced plastics (FRP) with continuous fibre reinforcement and must withstand a high thermo-mechanical cyclic loading. The quality of the fibre matrix interface has a high impact on the fatigue life and was continuously improved over the years since the 50th. The fatigue life of glass fibre reinforced plastics (GFRP) used in aircraft industry is 10 to 100 times higher compared to glass fibre non crimp fabrics used for wind turbine blades. To assure a constant and reliable high quality and strength of reinforcement fibres, synthetic fibre production is state of the art (CF, GF). There is a need for recycling GFRP and CFRP waste due to the upcoming use. Pyrolysis and solvolysis are more expensive than the mechanical route however enable a more sustainable recycling. Natural fibres and recycled synthetic fibres have a high scatter in quality and strength. Hence it is a challenge to optimize the production / recycling processes to get a reliable quality for any demanding (second life) application. Chemical routes for using renewables resources and recycling, is going to be a good approach especially for polymer-matrix systems to get 100% quality (back) compared to the state of the art. Finally, a proper design, life-time extension and repair is preferable to recycling to keep the carbon footprint as low as possible. T2 - 27. INTERNATIONALES DRESDNER LEICHTBAUSYMPOSIUM CY - Dresden, Germany DA - 13.06.2024 KW - Polymer Matrix Composites KW - Carbon Fibre KW - Recycling KW - Circular Economy PY - 2024 UR - https://leichtbausymposium.de/deu/ AN - OPUS4-60683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leube, Peter A1 - Vogel, Christian A1 - Simon, Franz-Georg T1 - Quantification of ultrashort per- and polyfluoroalkyl substances (PFAS) in water samples via headspace gas chromatography-mass spectrometry (GC-MS) - a method development N2 - Per- and polyfluoroalkyl substances (PFAS) were classified as a group of highly concerning chemicals over the last decades. Because of the high persistence of PFAS, their previous use led to contamination of the environment and human population. Due to ongoing use and incomplete remediation or destruction methods, the PFAS background in the environment is growing continuously. The presence of ultrashort PFAS (with ≤3 carbon atoms) in the environment is often overlooked despite their contributions to PFAS levels. These compounds may directly contaminate the environment and arise from degradation of polyfluorinated compounds as well as incomplete PFAS destruction in certain industrial processes. Nonetheless, few approaches for targeted analysis of ultrashort PFASs have been developed, except for trifluoroacetic acid (TFA). Beside liquid (LC-MS/MS), supercritical fluid (SFC-MS/MS), and ion chromatography (IC-MS)-based systems, gas chromatography coupled with mass spectrometry (GC-MS) is a promising method for detection and quantification of ultrashort PFAS. The goal of this study was to develop a simple headspace GC-MS method for the quantification of ultrashort perfluorocarboxylic acids (PFCAs) and polyfluorinated alcohols (PFOHs) in water samples. In contrast to PFOHs, functionalization of PFCAs was required for quantification. This was done by esterification with methanol at 80 °C, which can be carried out directly in the headspace GC-MS system. Moreover, several parameters were optimized to achieve a low limit of quantification (LOQ) for the analytes used: i) The ratio of the aqueous solution, methanol, and available gas phase within the analysis vessel, ii) the concentration of additional acid in esterification mixtures of PFCAs, iii) shaking frequency and iv) shaking time before analysis. After optimizing the procedure, we were able to quantify ultrashort PFCAs and PFOHs. Thus, our developed headspace GC-MS method has the potential to be used as an alternative target analysis for ultrashort-chain PFCAs and PFOHs in various water samples (groundwater, wastewater). T2 - SETAC Europe 34th Annual Meeting CY - Seville, Spain DA - 05.05.2024 KW - Ultrashort PFAS KW - Headspace GC-MS KW - Perfluorocarboxylic acid (PFCA) KW - Polyfluorinated alcohol (PFOH) PY - 2024 AN - OPUS4-60042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Schinnen, Andrea A1 - Riedel, Maren A1 - Sommerfeld, Thomas A1 - Sawal, G. A1 - Bandow, N. A1 - Vogel, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Investigation of pH-dependent extraction methods for PFAS in (fluoropolymer-based) consumer products: A comparative study between targeted and sum parameter analysis N2 - Here, we report a comparative study of different sum parameter analysis methods for the extraction of per- and polyfluoroalkyl substances (PFAS) from manufactured consumer products, which can be measured by combustion ion chromatography (CIC). Therefore, a hydrolysis-based extraction method was further developed, which accounts for the addition of hydrolyzable covalently bound polyfluoroalkylated side-chain polymers (SFPs) to the extractable organic fluorine portion of the mass balance proposed as "hydrolyzable organically bound fluorine" (HOF). To test this hypothesis, the method was applied to 39 different consumer products containing fluoropolymers or monomeric PFAS taken from four different categories: outdoor textiles, paper packaging, carpeting, and permanent baking sheets. We also evaluated the method's efficiency by extracting four synthesized fluorotelomer polyacrylate reference compounds. The total fluorine (TF) and extractable organically bound fluorine (EOF) values were measured through CIC using established protocols. The TF values ranged from sub-ppb to %-levels, depending on the compound class. All samples showed results for hydrolyzed organofluorine (HOF) between 0.03 and 76.3 μg/g, while most EOF values were lower (