TY - CONF A1 - Kittner, Maria T1 - Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis N2 - Es handelt sich hierbei um die Abschluss-Präsentation des Projektes "Bewertung der Freisetzung von Mikroplastik aus Sportböden auf Kunststoffbasis", die am 28.11.24 vor dem Drittmittelgeber Zukunft Bau Forschungsförderung im Rahmen der 28. Projekttage der Bauforschung präsentiert wurde. Der 30-minütige Vortrag gliederte sich in die Kapitel Forschungsbedarf, Konzept, Ergebnisse und Take Home-Messages des Projektes. T2 - 28. Projekttage der Zukunft Bau Forschungsförderung CY - Online meeting DA - 26.11.2024 KW - Mikroplastik KW - TED-GC/MS KW - Kunststoffrasen KW - PAK KW - Schwermetalle KW - Mikroplastik Eluat Lysimeter PY - 2024 AN - OPUS4-61815 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria T1 - Development of a new Lysimeter System to assess Microplastic, PAH & Heavy Metal Emissions from Artificial Turf Sports Pitches N2 - Since September 2023, the European Commission introduced a new regulation to reduce emissions of microplastics (MP) into the environment, including the sale and use of intentionally added MP. Therein, the use of synthetic rubber granules in artificial turf is explicitly mentioned and banned for future use. Additionally, abrasions of grass fibres and other turf components are also considered as MP sources. Artificial turf pitches are multi component systems: e. g. grass fibres made of polyethylene (PE), synthetic infill made of ethylene propylene diene monomer rubber (EPDM), carpet backing of polypropylene (PP) glued with polyurethane (PU), winding yarn of polyethylene terephthalate or elastic layer of Styrene-butadiene rubber (SBR) bound with PU. While the ban has great impact on recreational sports, there is so far no sufficient data to estimate the MP emissions from artificial turf sports pitches into the environment and thus their relevance as a source of MP pollution. To close this gap, three artificial turf scenarios in different ageing states (unaged, artificially aged and aged in real time) were analysed in this study: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Germany: fossil based, synthetic infill) and future (turf with recycled grass fibres, no synthetic infill). To simulate outdoor weathering during the service life of approx. 15 years, accelerated ageing by UV weathering and mechanical stress was carried out. The newly developed and in-house manufactured Microplastic Eluate Lysimeter (MEL) simulates contaminant transfer into the groundwater and allows the simultaneous sampling for MP and dissolved contaminants, like polycyclic aromatic hydrocarbons (PAH) or heavy metals (HM). MP mass contents were analysed using smart microfilter crucibles (mesh size: 5 µm) and Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry and PAH and HM concentrations were determined using Gas Chromatography/Mass Spectrometry or Inductively Coupled Plasma Atomic Emission Spectroscopy, respectively. T2 - MICRO2024: Plastic Pollution from Micro to Nano CY - Arrecife, Spain DA - 23.09.2024 KW - Microplastics Eluate Lysimeter KW - Microplastics KW - Heavy Metals KW - PAH KW - TED-GC/MS PY - 2024 AN - OPUS4-61160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria T1 - Contaminant Emissions from Artificial Turf Sports Pitches - Simultaneous sampling for Microplastics, PAH and Heavy Metals N2 - In September 2023, the European Commission introduced a new regulation to reduce microplastic (MP) emissions into the environment, including the sale and use of intentionally added (large) MP < 5 mm (ISO/TR 21960: 2020). This explicitly applies to the use of synthetic rubber granulate infill in artificial turf installations, which are complex multi-component systems consisting of multiple synthetic polymers (Fig. 1). In addition, abrasions of synthetic grass fibres and other turf components are also considered as MP sources. Although this has a major impact on public recreational sports, there is so far no sufficient data to estimate the MP emissions from artificial turf sports pitches into the environment and thus their relevance as a source of MP pollution. To close this gap, this study compared environmental contaminant emissions of three artificial turf scenarios at different ageing states (unaged, artificially and real-time aged): the past (old turf: fossil based, synthetic infill), present (most commonly installed in Germany: fossil based, EPDM infill) and future (turf with recycled grass fibres, no synthetic infill). Accelerated ageing by UV weathering and mechanical stress was carried out to simulate the outdoor weathering during the lifespan of approx. 15 years. MP emissions and released environmentally relevant contaminants posing a risk to the groundwater were simultaneously sampled using the newly developed Microplastic Eluate Lysimeter manufactured at BAM (Fig. 2). MP contents were analysed using smart microfilter crucibles (mesh size: 5 μm) with subsequent MP detection by TED-GC/MS. Additionally, concentrations of polycyclic aromatic hydrocarbons were determined using GC/MS and heavy metals using ICP-AES. T2 - 22nd European Symposium on Polymer Spectroscopy (ESOPS) CY - Berlin, Germany DA - 08.09.2024 KW - Microplastics Eluate Lysimeter KW - Microplastics KW - TED-GC/MS KW - Heavy Metals KW - PAH PY - 2024 AN - OPUS4-61013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by a Disrupted Cellular State and Heterogenous Regrowth Dynamics N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Molecular Mechanisms in Evolution (GRS) Gordon Research Seminar CY - Easton, Massachusetts, USA DA - 24.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics KW - AMR PY - 2023 AN - OPUS4-58032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The interplay between biocides, phenotypic heterogeneity and resistance evolution N2 - An overview of the interplay between biocides, phenotypic heterogeneity and resistance evolution presented at the University Wroclaw. T2 - Invited seminar at the Department of Molecular Microbiology CY - Wroclaw, Poland DA - 08.04.2024 KW - Disinfectants KW - Biocide resistance KW - Phenotypic heterogeneity KW - Evolution PY - 2024 AN - OPUS4-61173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Biocides and phenotypic heterogeneity N2 - An overview of our findings regarding the interplay between phenotypic heterogeneity in bacteria and biocides. T2 - One Health and Antimicrobial Resistance CY - Berlin, Germany DA - 29.01.2024 KW - Biocides KW - Phenotypic heterogeneity KW - Biocide resistance PY - 2024 AN - OPUS4-61174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - EVOCIDE: Preserving disinfectant efficacy by predicting evolution: exposing the principles of disinfectant survival and adaptation in bacteria N2 - Presentation of the EVOCIDE research proposal work programme.EVOCIDE seeks to gain a systems level understanding of disinfectant survival and evolution in bacteria. T2 - Joint Group Seminar Rolff-McMahon-Armitage-Steiner CY - Berlin, Germany DA - 20.12.2023 KW - Disinfectants KW - Evolution KW - Microbiology KW - Bacteria KW - Biocides PY - 2023 AN - OPUS4-59224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Song, Jessica T1 - Close encounters on a micro scale: Dynamics and interactions of microplastic biofilms in aquatic ecosystems. N2 - Microplastics circulate freely throughout aquatic ecosystems and, due to their interactive nature, accumulate complex polymeric matrices consisting of rich organic compounds and inorganic pollutants. Simultaneously, these hardy substrates offer nutrition and protection to diverse microbial communities and their theatre of activity, representing a new ecological niche. In our work, we investigate the interactions of microplastics in aquatic systems and characterise the effects of these interactions on associated microbial communities to better understand how these substrates might impact surrounding ecosystems. Demonstrating no specificity to polymer type, microplastic biofilms are shaped more by the strong influence of spatial and temporal factors. Microplastic sorption of polycyclic aromatic hydrocarbons (PAHs), in contrast, appear to be more strongly dictated by substrate type, with different polymers observed to sorb varying levels of different PAHs. These interactions between the different emerging contaminants were found in our study to have a significant effect on associated substrate biofilms. Elevated levels of specific 3- and 4-ring PAHs on polyethylene and polystyrene were found to coincide with a notable shift in community composition and structure, as well as a reduced diversity among biofilm communities. The findings in our study illustrate the importance of investigating the collective effect of pollutants in combination and their complex interactions in assessing their environmental impact. To fully understand how microplastics interact and alter surrounding ecosystems, the entire substrate must be considered, including all chemicals integrated into the polymeric matrix. T2 - Biofilms 11 Conference CY - Cardiff, Wales, UK DA - 13.05.2025 KW - Microplastics KW - Biofilms KW - PAHs PY - 2025 AN - OPUS4-63389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Investigating the Thermal Decomposition of PFAS in a Full-Scale Commercial Hazardous Waste Incinerator N2 - Incineration is currently the only commercial full-scale technology available to destroy per- and polyfluoroalkyl substances (PFAS) in large solid and liquid waste streams. Given previous experience of dioxin formation during halogenated waste incineration, concerns about the emission of products of incomplete destruction (PIDs) from PFAS incineration exist. The overarching objective of this project is to track the fate of fluorine during full-scale hazardous waste incineration in order to demonstrate the readiness, viability, and level of safety for thermal PFAS destruction in various waste streams. The specific objectives of this project are (1) to enhance our understanding of key variables and conditions on PFAS incineration performance, (2) to identify major PIDs under insufficient treatment conditions, (3) to explore the catalytic role of fly ash and other process-relevant surfaces in thermal PFAS decomposition, and (4) to determine the potential formation of polyfluorinated dibenzodioxins and dibenzofurans. T2 - CEN/TC 264/WG48 Symposium - Emissions and ambient air - Determination of PFAS CY - Düsseldorf, Germany DA - 16.07.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Incineration PY - 2025 AN - OPUS4-63714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Panorama of Black writing inks: From Antiquity to the Middle Ages N2 - Black writing inks in the period under consideration can be divided into three different classes: soot, tannin and iron-gall ink. The first one is a fine dispersion of carbon pigments in a water-soluble binding agent, the second one is a solution of plant extract from tree barks or gallnuts, while the third one contains both soluble and insoluble phases. This last ink is based on metal (iron) and is produced by a chemical reaction of soluble iron (II) with tannin in aqueous solution. Tracing the transition from writing inks based on carbon pigments (soot or charcoal), common in Antiquity to the iron-gall inks commonly used in the Middle Ages builds a focus of our investigative work at the BAM (Federal Institute of Material Analysis and Testing) [1-5]. With the aim of creating a detailed history of writing black inks, we worked out a non-invasive protocol to collect statistically relevant ink data from dated and localized manuscripts covering a large time span and different geographic areas. The first step of our protocol consists of the screening carried out by means of imaging in the near infrared region. The optical differences between carbon, tannin, and iron-gall inks are best recognized by comparing their response to the infrared light: carbon ink has a deep black colour, iron-gall ink becomes transparent above 1400 nm, and tannin ink disappears at about 750 nm, we have simplified the analysis using a small USB microscope with built-in NIR (940 nm) and UV (395 nm) LED in addition to an external white light source [1]. Comparing the images under white and near infrared illumination, we determine the ink typology by observing the changes in the opacity of the ink. Here, carbon-based inks show no change in their opacity when illuminated with near infrared light, while the opacity of iron-gall inks changes considerably, and tannin inks become transparent. Our own recent finding that mixed carbon / iron-gall inks were quite popular in the late Antiquity and early Middle Ages suggested to return to the conventional method using infrared light in the spectral region 1000 – 1400 nm. The presentation will show the panorama of historic inks and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Ages. T2 - Public lecture CY - Manchester, UK DA - 01.02.2024 KW - Ink KW - Historic ink PY - 2024 AN - OPUS4-61201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Black writing inks: From Antiquity to the Middle Ages N2 - Tracing the transition from writing inks based on soot, common in Antiquity to the iron-gall inks commonly used in the Middle Ages builds a focus of our investigative work at the BAM and the Centre for the Studies of Manuscript Cultures (CSMC) [1-4]. With the aim of creating a detailed history of writing black inks, we worked out a non-invasive protocol to collect statistically relevant ink data from dated and localized manuscripts covering a large time span and different geographic areas. The first step of our protocol consists of the screening carried out by means of the NIR & IRR reflectography. The optical differences between carbon, tannin, and iron-gall inks are best recognized by comparing their response to the infrared light: carbon ink has a deep black color, iron-gall ink becomes transparent above 1400 nm, and tannin ink disappears at about 750 nm, we have simplified the analysis using a small USB microscope with built-in NIR (940 nm) and UV (395 nm) LED in addition to an external white light source [1]. Comparing the images under white and near infrared illumination, we determine the ink typology by observing the changes in the opacity of the ink. Here, carbon-based inks show no change in their opacity when illuminated with NIR wavelength, while the opacity of iron-gall inks changes considerably, and tannin inks become transparent. Our own recent finding that mixed carbon / iron-gall inks were quite popular in the late Antiquity and early Middle Ages suggested to return to the conventional IRR method. The presentation will show the panorama of historic inks and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Ages. T2 - Seminar University of Oslo CY - Oslo, Norway DA - 23.09.2022 KW - Ink KW - Historic ink PY - 2022 AN - OPUS4-61194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Methoden und Erkenntnismöglichkeiten von Tintenanalysen N2 - Der Vortrag stellt die Palette der zerstörungsfreien analytischen Methoden, die zur Identifizierung und Vergleich der Tinten, Tuschen und Pigmente verwendet werden. T2 - Experten-Workshop CY - Hamburg, Germany DA - 06.10.2022 KW - Tinte KW - Tusche KW - Pigmente PY - 2022 AN - OPUS4-61195 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Unveiling the use of writing materials in Carolingian manuscripts N2 - After having been neglected for a long time, materiality is nowadays of great interest in the study of manuscripts. This allows us to explore the variety (and potential coexistence) of different inks and pigments in type and composition in their use over time and geographical area. In this presentation, we aim to contribute to their study through archaeometric analyses of black and red inks used in Carolingian manuscripts copied between the 8th and the 10th centuries. These analyses are based on an interdisciplinary strategy, bringing together knowledge from the humanities and natural sciences to understand the global use of black and red inks in the Carolingian Empire. In this regard, we adopted a non-invasive protocol that included near-infrared imaging and X-ray fluorescence spectroscopy for on-site measurements supported by historical and palaeographic analysis. The results have been collected in the framework of two projects at the University of Hamburg in close collaboration with the Bundesanstalt für Materialforschung und -prüfung, Berlin (BAM) and will be compared with several other archaeometric studies of contemporary manuscripts. T2 - Novel approaches to Digital Codicology CY - Tours, France DA - 10.05.2023 KW - Carolingian manuscripts KW - Historick inks KW - Pigments PY - 2023 AN - OPUS4-61199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Imaging micro-XRF in studies of manuscripts N2 - Availability of mobile XRF-equipment with an interaction spot of ca. 100 µm produced a revolution in the studies of manuscripts. A protocol for the use of line-scans introduced in the beginning of 2000 permitted large scale and extremely successful investigations of the medieval iron-gall inks. Here, we usually focus on a comparison of the characteristic metallic components in the inks. In our work, we encountered cases that could be adequately addressed only using large area imaging XRF. However, conducting an M6 scan on a bound manuscript or on a scroll of huge dimensions is not a simple and easy matter. In our presentation, we want to share our experience by presenting a series of the case studies, in which many an original solution was found. T2 - M6 JETSTREAM European User Meeting CY - London, GB DA - 03.04.2023 KW - Micro-XRF KW - Manuscripts KW - Imaging PY - 2023 AN - OPUS4-61198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Authentic vs. inauthentic Dead Sea Scrolls from the point of view of material analysis N2 - The paper seeks to illuminate the problem of identifying forgeries among the Dead Sea Scrolls from the point of view of material analysis. It will present the sum of our technical knowledge of the skin-based material of the Dead Sea Scrolls, which includes the original treatment of the skins and the resulting typology as well as degradation effects due to their sojourn in caves and post-discovery interventions. We will try then to list the characteristic properties that must be found in the authentic material. We will supplement the presentation with a short description of the relevant methods of material analysis and their contribution to the secure identification of inauthentic Dead Sea Scrolls. T2 - Annual Meeting of the Siciety of Biblical Literature CY - Denver, CO, USA DA - 19.11.2022 KW - Dear Sea Scrolls KW - Forgery PY - 2022 AN - OPUS4-61196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Material analysis - results N2 - The presentations describes the results obtained by material analysis of the writing materials. Their relevance in the field of digital editing and publishing is discussed. T2 - Communicating Revealed Texts: Best Practices for Born-Digital Editions Using Enhanced Imaging CY - Iowa City, IA, USA DA - 29.06.2024 KW - Writing materials KW - Manuscripts KW - Material analysis PY - 2024 AN - OPUS4-61202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Advances in Characterization of Written Heritage N2 - The session discusses three brances of teh work on the manuscripts: ink analysis, parchment analysis by proteomics (Matthew Collins) and lipids (Mélanie Roffet-Salque); revealing of hidden text using AI. The example of Vesuvium Challenge is presented and discussed by Bren Seales. T2 - Scientific Methods in Cultural Heritage Research Gordon Research Conference CY - Vaud, Switzerland DA - 07.07.2024 KW - Written Heritage KW - Vesuvius challenge KW - Proteomics KW - Lipids PY - 2024 AN - OPUS4-61203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver T1 - Original, Kopie, Fälschung? Multispektralanalyse von Bauhauszeichnungen N2 - Der Vortrag widmet sich der materialwissenschaftlichen Analyse von Zeichnungen einiger Bauhausschülerinnen und Bauhausschüler und legt besonderen Fokus auf die verwendeten Farbmittel. Die Objekte werden mit nicht-invasiven bildgebenden Verfahren untersucht, in dem die Wechselwirkung zwischen Röntgen-, sichtbarem und infraroten Licht und den Zeichnungen studiert wird. Dier Analysen liefern nicht nur generell Erkenntnisse über die Art und Zusammensetzung und damit das Alter der verwendeten Farbmittel. Durch die Auffindung von Vorzeichnungen, die Bestimmung von Überarbeitungen und Korrekturen werden Erkenntnisse über die Genese von Zeichnungen gewonnen. Auf der Basis dieser materialwissenschaftlichen Erkenntnisse werden die Begriffe Original, Kopie, Fälschung diskutiert. Da die nicht-invasiven Untersuchungen einen umfassenden Einblick in die Materialität der – überwiegend aus Papier bestehenden – Objekte erlauben, bilden sie die Grundlage für die Erstellung nachhaltiger Konservierungs- und Restaurierungskampagnen und deren dauerhaften Erhalt. T2 - Rahmenprogramm zur Ausstellung "Das Leben der Objekte. Farbe und Papier am Weimarer Bauhaus" CY - Weimar, Germany DA - 12.01.2023 KW - Bauhaus KW - Zerstörungsfreie Prüfung KW - Farbmittel PY - 2023 AN - OPUS4-56847 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehring, Grzegorz T1 - Breaking the limits of the non-destructive instrumental analysis of writing inks N2 - The ink analysis protocol developed through cooperation between the Bundesanstalt für Materialforschung und -prüfung in Berlin and the Centre for the Study of Manuscript Cultures at the University of Hamburg involves the use of imaging techniques for ink screening, followed by spectroscopic analysis. In our presentation, we will begin by briefly reviewing the history of writing inks and discussing the three main categories: carbon-based inks, plant, and iron-gall inks. We will address their chronology, precursors, and mixed forms, as well as the features that allow for their identification. Then, we will present the techniques we use in ink analysis, whereby we would like to highlight the limitations, advantages, and disadvantages of each approach. Finally, we will discuss the new mass-spectrometric method based on micro-sampling and using atmospheric solid analysis probe (ASAP). T2 - Future of the Past CY - Torun, Poland DA - 14.06.2023 KW - Ink analyses KW - Spectroscopy KW - Mass spectroscopy PY - 2023 AN - OPUS4-58882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Climent, Estela A1 - Gotor, Raúl A1 - Tobias, Charlie A1 - Martin-Sanchez, Pedro M. A1 - Rurack, Knut T1 - Dipstick coated with polystyrene-silica core-shell particles for the detection of microbiological fuel contamination N2 - Microbial contamination of fuels by fungi or bacteria poses risks such as corrosion and fuel system fouling, which can lead to critical problems in refineries and distribution systems and has a significant economic impact at every stage of the process. Many factors have been cited as being responsible for microbial growth, like the presence of water in the storage tanks. In fact, only 1 % water in a storage system is sufficient for the growth of microorganisms like bacteria or yeasts, as well as for the development of fungal biomass at the oil/water interface. This work presents a rapid test for the accurate determination of genomic DNA from aqueous fuel extracts. The detection is based on the use of polystyrene-mesoporous silica core-shell particles onto which modified fluorescent molecular beacons are covalently grafted. These beacons contain in the hairpin loop a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA subunit. The designed single-stranded molecular beacon contained fluorescein as an internal indicator and a quencher in its proximity when not hybridized. Upon hybridization in presence of the target sequence, the indicator and the quencher are spatially separated, resulting in fluorescence enhancement. To perform the assay the developed particles were deposited on different glass fibre strips to obtain a portable and sensitive rapid test. The assays showed that the presence of genomic DNA extracts from bacteria down to 50–70 μg L–1 induced a fluorescence response. The optical read-out was adapted for on-site monitoring by fitting a 3D-printed case to a conventional smartphone, taking advantages of the sensitivity of the CMOS detector. Such embedded assembly enabled the detection of genomic DNA in aqueous extracts down to the mg L–1 range and represents an interesting step toward on-site monitoring of fuel contamination. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - Teststreifen KW - Test strip KW - Microbial KW - Mikrobiell KW - Smartphone KW - Particles KW - Partikeln PY - 2023 AN - OPUS4-58526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - Termite Immunity (a molecular perspective) N2 - In this presentation, an overview of the termite immune system is given. The presentation covers the mechanistic underpinnings of the canonical immune pathways in insects; where there are areas of conservation or divergence in termites, as well as briefly going over some key gaps in knowledge. External immune capabilities are discussed as well as the implications and consequences of sociality for the evolution of collective immune defense systems in termites. T2 - International Termite Course (ITC) 2025 CY - Davie, FL, USA DA - 10.06.2025 KW - Termite KW - Immunity KW - Molecular KW - Evolution PY - 2025 AN - OPUS4-64745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian T1 - Development, Validation and Application of an Accelerated Weathering Protocol for Assessing Bisphenol A Release from Polycarbonate Materials into the environment N2 - Bisphenol A (BPA) is under continuous regulatory scrutiny and listed as substance of very high concern (SVHC). Particular concern is related to its frequent detection in surface waters, despite being readily biodegradable. Several studies have been conducted to investigate sources and pathways of BPA in the environment, concluding that its main use as monomer in polycarbonate (PC) contributes only marginally to environmental BPA releases over its life cycle. To better understand the actual releases of BPA from PC under environmental conditions, a newly developed methodology (Federal Institute for Materials Research and Testing, BAM) was applied, which comprises a novel accelerated weathering protocol for polycarbonate (PC) materials, combined with an advanced analytical setup allowing for improved detection of BPA at trace level concentrations. The weathering protocol achieves a 13.6-fold acceleration compared to Central European outdoor conditions and simulates environmental stressors (global radiation, rain, temperature variations) in a laboratory weathering chamber, with simultaneous BPA release measurements using an organic isotope dilution calibration LC-MS/MS approach. Validation was performed in parallel outdoor exposure tests, by using haze and yellowness index measurements as reference parameters. PC sample types representative of major polycarbonate applications were examined: Samples with different levels of UV-protection as used in transparent sheets used outdoor in construction or housings in Electro- and Electronic applications as well as samples with a protective coating as used in automotive applications (headlamps, glazing and construction). Results demonstrated consistently low total BPA releases of around 0.3 mg m⁻² for samples with exposed PC surfaces, while releases from coated samples were significantly reduced by around two orders of magnitude. In all cases examined, the BPA release ceased to zero after a period of four to six weeks, equivalent to approximately 1 to 1.5 years of outdoor exposure. This suggests that potential BPA releases diminish to virtually zero after that timespan. While the newly developed test method is not suitable for routine laboratory implementation, it provides crucial quantitative data on BPA release from PC materials during accelerated environmental weathering. T2 - Umwelt 2025 CY - Dessau, Germany DA - 22.09.2025 KW - Bisphenol A KW - Polycarbonate KW - Weathering PY - 2025 AN - OPUS4-64664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Charakterisierung historischer Schreibtinten: optische Eigenschaften und elementare Zusammensetzung N2 - Unsere Forschung zielt in erster Linie darauf ab, eine soziogeografische Geschichte von Tinte, Pergament und Papyrus zu rekonstruieren, und umfasst die Materialanalyse der Schreibtinten der Schriftrollen vom Toten Meer, der antiken und hellenistischen Papyri in Ägypten, sowie der Koptischen und Europäischen Tinten des Mittelalters. Zu diesem Zweck haben wir ein Protokoll für die zerstörungsfreie Tintenanalyse entwickelt. Es besteht aus einem ersten Screening mit Hilfe der VIS/NIR Fotografie, um die Art der Tinte zu bestimmen, und der anschließenden Analyse mit der Röntgenfluoreszenzanalyse (RFA). Letztere spielt eine wichtige Rolle bei der Identifizierung der Metalle in den Rußtuschen und der Bestimmung der charakteristischen Zusammensetzung metallhaltiger Tinten, um zwischen den verschiedenen Tinten zu unterscheiden. Der Vortrag bietet ein Panorama schwarzer historischer Schreibmittel und zeigt, dass die Materialanalyse einen wesentlichen Beitrag zur Beantwortung vieler kulturhistorischen Fragen leisten kann. T2 - Eingeladener Vortrag bei GStA CY - Berlin, Germany DA - 10.11.2025 KW - Tinte KW - Tusche PY - 2025 AN - OPUS4-64783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Current status of monitoring of PFAS release from industrial facilities N2 - Increasing studies report per- and polyfluoroalkyl substances (PFAS) in the ambient air and emissions from diverse industrial sources. Therefore, a comprehensive framework for characterizing PFAS emissions by identifying source-specific chemical fingerprints, evaluating emission pathways and assessing the impact of remediation technologies is needed. Depending on the type of PFAS, dedicated sampling and analytical procedures are required. Here, also the detection of possible PFAS transformation products, so-called products of incomplete combustion (PICs) are more mobile or toxic, is also of great interest to evaluate these technologies in terms of mineralisation potential and fluorine mass balance. T2 - Consortium for analysis and remediation of per- and polyfluoroalkyl substances (CAR-PFAS Japan) visit Uni Örebro CY - Online meeting DA - 09.10.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Incineration KW - Remediation PY - 2025 AN - OPUS4-64318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Per- and Polyfluoroalkyl Substances (PFAS) in Sewage Sludge and Wastewater-based Fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are chemicals which were developed to improve humanity’s quality of life. Due to their high chemical stability and resistance to degradation by heat or acids, PFAS were used in a variety of consumer products. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system resulted in the contamination of effluents and sewage sludge from wastewater treatment plants (WWTPs) (Roesch et al. 2022). Since sewage sludge is often used as fertilizer, its application on agricultural soils has been observed as a significant entry path for PFAS into the environment, specifically in our food chain. In Germany the sewage sludge/biosolid application on agricultural land was banned with the amendment of the German Sewage Sludge Ordinance and by 2029 sewage sludge application will be totally prohibited. However, phosphorus (P) from sewage sludge should still be recycled in WWTPs of cities with a population larger than 50,000 residents. To produce high-quality P-fertilizers for a circular economy, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Due to the strong diversity of industrial PFAS usage it is not clear if a safe application of novel recycled P-fertilizers from WWTPs can be guaranteed. Therefore, we analyzed various sewage sludges and wastewater-based fertilizers. Sewage sludge (SL) samples from various WWTPs in Germany and Switzerland, six sewage sludge ashes (SSA) from Germany, six thermally treated SL and SSA samples with different additives (temperatures: 700-1050 °C), two pyrolyzed SL samples (temperature: 400 °C) and two struvite samples from Germany and Canada were analyzed. The goal was to quantify PFAS in sewage sludges and wastewater-based P-fertilizers with the sum parameter extractable organic fluorine (EOF) by combustion ion chromatography (CIC). The results were compared with data from classical LC-MS/MS target analysis as well as selected samples by HR-MS suspect screening. The EOF values of the SLs mainly range between 154 and 538 µg/kg except for one SL which showed an elevated EOF value of 7209 µg/kg due to high organofluorine contamination. For the SSA samples the EOF values were lower and values between LOQ (approx. 60 µg/kg) and 121 µg/kg could be detected. For the pyrolyzed SLs no EOF values above the LOQ were detected. Moreover, the two wastewater-based struvite fertilizers contain 96 and 112 µg/kg EOF, respectively. In contrast to the EOF values, the sum of PFAS target values were relatively low for all SLs. Additional applied PFAS HR-MS suspect screening aimed to tentatively identify PFAS that could contribute to the hitherto unknown part of the EOF value. The majority of the detected fluorinated compounds are legacy PFAS such as short- and long-chain perfluorocarboxylic acids (PFCA), perfluorosulfonic acids (PFSA), polyfluoroalkyl phosphate esters (PAPs) and perfluorophosphonic acids (PFPA). Moreover, fluorinated pesticides, pharmaceutical as well as aromatic compounds were also identified, which are all included in the EOF parameter. Our research revealed that the current PFAS limit of 100 µg/kg for the sum of PFOS + PFOA in the German Fertilizer Ordinance is no longer up to date. Since the number of known PFAS already exceeds 10,000, the ordinance limit should be updated accordingly. Recent regulations and restrictions on using long-chain PFAS (≥C8) have resulted in a significant shift in the industry towards (ultra-)short-chain alternatives, and other, partly unknown, emerging PFAS. Ultimately, also fluorinated pesticides and pharmaceuticals, which end up as ultrashort PFAS in the WWTPs, have to be considered as possible pollutants in fertilizers from wastewater, too. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 AN - OPUS4-58345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Combining DGT and combustion ion chromatography (CIC) as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system have been resulted in contaminated effluents and sewage sludge from wastewater treatment plants (WWTPs) which became an important pathway for PFAS into the environment. Because sewage sludge is often used as fertilizer its application on agricultural soils has been observed as significant input path for PFAS into our food chain. To produce high-quality phosphorus fertilizers for a circular economy from sewage sludge, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS/MS target quantification. However, for screening of PFAS contaminations in wastewater-based fertilizers also the DGT technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyze the “total” amount of PFAS on the DGT binding layer. The DGT method was less sensitive and only comparable to the extractable organic fluorine (EOF) method values of the fertilizers in samples with >150 µg/kg, because of different diffusion properties for various PFAS, but also kinetic exchange limitations. However, the DGT approach has the advantage that almost no sample preparation is necessary. Moreover, the PFAS adsorption on the DGT binding layer was investigated via surface sensitive spectroscopical methods, such as Fourier-transform infrared (FT-IR) and fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge PY - 2023 AN - OPUS4-58575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Black ink from antiquity to the Middle Ages N2 - Il nostro lavoro di ricerca al BAM si concentra sul passaggio dagli inchiostri a base di fuliggine, comuni nell'antichità, agli inchiostri ferro-gallici, comunemente usati nel Medioevo. Con l'obiettivo di creare una storia dettagliata degli inchiostri neri, abbiamo elaborato un protocollo non invasivo per raccogliere dati statisticamente rilevanti sugli inchiostri da manoscritti datati e localizzati che coprono un ampio arco temporale e diverse aree geografiche. Il primo passo del nostro protocollo consiste nella selezione effettuata mediante riflettografia NIR e IRR. Le differenze ottiche tra gli inchiostri a base di carbonio, tannino e ferro-gallio sono meglio riconoscibili confrontando la loro risposta alla luce infrarossa: l'inchiostro a base di carbonio ha un colore nero intenso, l'inchiostro ferro-gallico diventa trasparente al di sopra dei 1400 nm e l'inchiostro a base di tannino scompare a circa 750 nm. abbiamo semplificato l'analisi utilizzando un piccolo microscopio USB con LED NIR (940 nm) e UV (395 nm) integrati, oltre a una fonte di luce bianca esterna. Confrontando le immagini sotto illuminazione bianca e nel vicino infrarosso, determiniamo la tipologia di inchiostro osservando i cambiamenti nell'opacità dell'inchiostro. In questo caso, gli inchiostri a base di carbonio non mostrano alcuna variazione di opacità quando illuminati con lunghezza d'onda NIR, mentre l'opacità degli inchiostri ferro-gallici cambia notevolmente e gli inchiostri tanninici diventano trasparenti. La nostra recente scoperta che gli inchiostri misti carbonio/ferro-gallici erano piuttosto diffusi nella tarda antichità e nell'alto Medioevo ci ha suggerito di tornare al metodo IRR convenzionale. Il secondo passo del protocollo prevede l'analisi micro-XRF per identificare i componenti inorganici dell'inchiostro. Nel caso degli inchiostri ferro-gallici, stabiliamo le impronte digitali, ovvero i rapporti caratteristici tra i componenti vitriolici dell'inchiostro e l'elemento principale, ferro. T2 - 1° SEMINARIO di studi dottorali CY - Benevento, Italy DA - 06.10.2025 KW - Ink KW - Historic ink PY - 2025 AN - OPUS4-64773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Ink Analysis of Relic Texts N2 - The presentation will show the multitude of black writing inks in use during the late Antiquity and early Middle Ages in Europa and the Near East and our attempt to follow up the transition of the inks from those based on soot to the iron-gall inks commonly used in the Middle Ages. Black writing inks in the period under consideration can be divided into three different classes: soot, tannin and iron-gall ink. The first one is a fine dispersion of carbon pigments in a water-soluble binding agent, the second one is a solution of plant extract from tree barks or gallnuts, while the third one contains both soluble and insoluble phases. This last ink is based on metal (iron) and is produced by a chemical reaction of soluble iron (II) with tannin in aqueous solution. Tracing the transition from writing inks based on carbon pigments (soot or charcoal), common in Antiquity to the iron-gall inks commonly used in the Middle Ages builds a focus of our investigative work at the BAM (Federal Institute of Material Analysis and Testing). In this context, we will discuss the results of the ink analysis obtained within the project “Crafting documents”. T2 - Heritage Science and Manuscripts from Antiquity and the Middle Ages CY - Oxford, United Kingdom DA - 13.11.2025 KW - Ink KW - Historic ink PY - 2025 AN - OPUS4-64772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Material analysis of afghanistan liturgical quire (ALQ) conducted at the BAM N2 - The lecture presents the results of the detailed material analysis of the inks and of the parchment of the Afghanistan Liturgical Quire (ALQ), conducted at the Bundesanstalt für Materialforschung und -Prüfung (BAM) in Berlin. Testing was conducted using the following techniques: 3-color photography, 3D-digital microscopy, scanning μ-X-ray fluorescence analysis (XRF), μ- Raman and FTIR spectroscopy. I will give a short explanation of the principles of the techniques and explain the choice of the instruments. The main task of our work at the BAM required characterization of the inks and comparison of the ink as well as the composition of parchment. For the ink characterization we have followed the protocol developed at the BAM. The standard protocol includes three non-invasive stages: a) near infrared photography (NIRR) to determine the ink type or its main component; b) X-ray fluorescence analysis (XRF) to determine a fingerprint for iron-gall inks or contaminants in carbon/plant inks; c) Raman spectroscopy if there is an indication that the inks are of a mixed type. For parchment characterization, we usually employ µ-XRF-mapping and FTIR to gain information on specific treatments experienced by the parchment during its preparation and history. T2 - 19th World Congress of Jewish Studies CY - Jerusalem, Israel DA - 04.08.2025 KW - Hebrew Manuscripts KW - Parchment KW - Ink KW - XRF KW - NIR PY - 2025 AN - OPUS4-64776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Studies of the black writing inks N2 - In recent years, the interest in the composition of the inks in papyri documents grew exponentially. Different types of inks were found in the period 4th century BCE to 7th century CE. The paper will demonstrate a simple protocol based on comparison of the ink transparency in the near infrared light and X-ray fluorescence spectroscopy. The importance of including ink composition into new catalogues and possible formats of such data will be also presented and discussed. T2 - 31st International Congress of Papyrology CY - Cologne, Germany DA - 28.07.2025 KW - Ink KW - Historic ink KW - Papyrus PY - 2025 AN - OPUS4-64777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Inks in Early Medieval Manuscripts from Chelles: a Scientific Study N2 - The talk will start with the overview of the ink types and the methods of their characterisation. After displaying XRF spectra of different Carolingian inks the talk will discuss Chelles collection and the labels attributed to Chelles. We will concentrate then on the study of the Chelles manuscripts preserved in Cologne, Vatican and Paris. We will show that there is a good degree of coincidence between the inks of the Chelles manuscripts and the labels attributed to Chelles. We observe unusually early use of vitriolic ink north of the Alps. T2 - Leeds International Medieval Congress (IMC 2025) CY - Leeds, United Kingdom DA - 07.07.2025 KW - Ink KW - Historic ink PY - 2025 AN - OPUS4-64778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - The Power of networks – COST Action CA20130 N2 - For optimal research on microbiologically influenced corrosion (MIC), balanced and interdisciplinary cooperation is extremely important. However, differing perspectives, thought processes, and even variations in nomenclature/terminology often hinder the establishment of effective collaborations. Over the past four years, COST Action Euro-MIC (CA20130) has effectively addressed these discrepancies. Through regular meetings, conferences, and scientific exchanges, a large international network has been established. Many scientific findings and results have been achieved through scientific, interdisciplinary exchange within the international network. The upcoming presentation will highlight three examples (among many others) that have resulted in successful collaborations, third-party funding applications, publications, or outstanding results and emphasize that successful results in MIC research, facilitated by an interdisciplinary network, can lead more quickly to meaningful and application-oriented findings. Project 1&2 describe two different kinds of Projects related to the use of Nanoparticles; one is about the efficacy testing of novel Nanoparticles. Project 2 deals about how to apply already working and tested nanoparticles to different materials and conditions. Project 3a is related to the energy sector; a crucial part of our society, and currently undergoing significant changes. Climate change, rising temperatures, increased use of fertilizers and other environmental pollutants have led to an increasing occurrence of microorganisms and contamination in some sectors. But how we deal with “baggage” from the past and store nuclear waste without harm or risk for human and environment, but also how to transfer the gained knowledge to areas like safe Hydrogen storage in geological underground formation. T2 - ISMOS10 CY - Nashville, TN, USA DA - 11.08.2025 KW - COST Action CA20130 KW - MIC KW - STSM Grants KW - Networking PY - 2025 AN - OPUS4-64295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Euro-MIC COST Action CA20130 Closing Workshop & Conference N2 - Ensuring the safety of offshore wind structures (OWS) is critical to guaranteeing their long-term performance and supporting reliable green energy supply. Microbiologically influenced corrosion (MIC) presents a significant challenge, particularly for monopiles in seabed environments. This study investigates the behavior of microorganisms and their impact on the corrosion process of carbon steel within monopiles. To simulate MIC at the sediment/water interface, an in-house experimental column was developed and inoculated with sediment and water samples from the North Sea. The system was operated under varying flow rates to replicate seabed movement conditions. Multiple molecular microbiological methods, surface analysis techniques, and other approaches were employed to assess the effects of different treatments. This study provides insights into MIC mechanisms in offshore environments and supports the development of strategies to monitor MIC in OWS infrastructure T2 - Final COST Action Conference - Horsens CY - Horsens, Denmark DA - 17.09.2025 KW - MIC KW - COST Action Euro-MIC KW - Interdisciplinarity PY - 2025 AN - OPUS4-64299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Cost action EURO MIC (CA20130) N2 - Vorstellung des vor kurzen angelaufenen EU-Projekts: COST ACTION EURO MIC ( CA20130). Die BAM hat hierbei die Rolle des Chairs sowie Grant-Holding Institute. COST fördert internationale Netzwerk Aktivitäten. Durch COST Action können neue Kooperationen (Industrie, Akademie oder Politk) entstehen. T2 - Dechema CY - Online meeting DA - 10.11.2021 KW - Netzwerk KW - COST KW - Mikrobiell beeinflusste Korrosion KW - MIC PY - 2021 AN - OPUS4-54023 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Euro-MIC 2021-2025, our journey, and paths forward N2 - Microbiologically Influenced Corrosion (MIC) refers to the detrimental effects on materials caused by microorganisms, and it is becoming an increasingly significant issue for society. Unlike the USA, Canada, and Australia, Europe has less developed cooperation on MIC. Although several research groups and industrial stakeholders are addressing MIC, discussions remain fragmented, and information exchange is limited. A truly transdisciplinary approach is rarely seen. As a result, Europe often relies on methods, preventive measures, and standards from other regions, as there are no equivalent European standards. This situation makes Europe a) highly dependent, and b) in some cases, unable to use certain measures or standards due to European legal restrictions (e.g., the use of biocides). In 2021, researchers established the “Euro-MIC” network, financially supported by the EU project “COST-Action,” to tackle these issues. Through COST-Action, Euro-MIC aims to facilitate necessary interactions, communication, knowledge sharing, and training for personnel and researchers across various disciplines. COST-Action supports network activities, workshops, training schools, conferences, and more. Euro-MIC aspires to position Europe as a leader in MIC, promoting ideas on par with other nations while upholding European values and ensuring greater protection for people, property, and the environment. In this presentation, I will briefly introduce the principles of COST Action and highlight the significant opportunities provided by this EU-funded project. COST Action fosters interdisciplinarity, networking, training, scientific exchange, and the promotion of young scientists. By showcasing some examples of CA20130 COST ACTION Euro-MIC, I hope to demonstrate that COST Action is not only relevant for addressing MIC but can also be applied to other important topics and sectors. T2 - Unseen Corrosion: Unveiling Hidden Threats and Innovating Monitoring Solutions CY - Bergen, Norway DA - 15.05.2025 KW - COST Action CA20130 KW - MIC KW - Network KW - Corrosion KW - Microorganisms PY - 2025 UR - https://www.norceresearch.no/en/events/unseen-corrosion AN - OPUS4-63726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Mikrobiell beeinflusste Korrosion (MIC) – Wenn MIC dann BAM N2 - In dieser Präsentation wurden dem Beirat Umwelt die High-Lights und der weitere Ausblick des Foresight Process MIC vorgestellt. Im Fokus stehen hierbei insbesondere die neu angelaufenen Projekte: COST Action Euro-MIC MIC im Endlager Hydrogen: MIC & Wasserstoffversprödung Biorezeptivität von Betonoberflächen Mitigation schwarze Pilze WIPANO ResTest T2 - Beirat Umwelt CY - Online meeting DA - 11.03.2022 KW - MIC KW - Hi-Tension KW - Projekte PY - 2022 AN - OPUS4-54463 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa T1 - Development of a single cell-ICP-ToF-MS-method for multielement analysis of MIC organisms grown on solid steel samples N2 - The latest ICP-MS technology - ICP-ToF (time of flight)-MS – enables the analysis of the multi-element fingerprint of individual cells. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here at the single cell level, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed. It allows the analysis of archaea at a single cell level and provides information about the interaction of the cells with the staining agent which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials. T2 - DAAS Doktorandenseminar 2021 CY - Online meeting DA - 20.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-53340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirsch, Klemens T1 - Microbiologically Influenced Corrosion of Cast Iron Containers for High-Level Nuclear Waste Disposal N2 - Ductile and corrosion resistant cast iron is investigated as a potential container material to store high-level nuclear waste (HLW) in deep geological repositories (DGR) in claystone bedrock. The dynamic corrosion process is dependent on the conditions present in the DGR which are influenced and/or controlled by geochemical parameters (e.g., redox potential, pH, presence of and ionic concentration in (pore-)water), physical parameters (e.g., pressure), and the influence of metabolically active microorganisms. Cast iron corrosion will occur at the intersection of container and its decontaminable coating with the bentonite backfill material which contains natural microbial populations. The conditions in a DGR are simulated in microcosm experiments to investigate the impact of microbiologically influenced corrosion (MIC); the microcosms contain: B27 bentonite, synthetic pore water, N2 or N2-CO2 atmosphere, cast iron coupons, as well as the bacterium Desulfosporosinus burensis (isolated from repository depth in Buré, France). Three coupon configurations will be used: untreated, coated with decontaminable coating, and coated with decontaminable coating which has been damaged to simulate possible damages. The microcosms will be examined for bio- and geochemical parameters, such as pH, redox potential, mineral phases, sulphate concentration, Fe(II):Fe(III), changes in microbial populations, and the corrosion process for formation of corrosion products, and potential microbial influence, after a 270-day incubation period at 25°C under anaerobic conditions. In subsequent experiments, the sorption behavior of lanthanides and actinides onto the membranes of viable cells and spores of D. burensis, as well as the surface of corroded cast iron coupons will be investigated. T2 - 8th International Workshop on Long-term Prediction of Corrosion in Nuclear Waste Systems 2022 CY - Baden, Switzerland DA - 21.06.2022 KW - Microbiologically influenced corrosion (MIC) KW - Cast iron KW - Nuclear waste disposal PY - 2022 AN - OPUS4-55154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa T1 - Material vs. Environment: Uncovering microbiological influenced corrosion processes on steel with single cell-ICP-ToF-MS N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process dictated by the environment, microorganisms, and the respective electron source. Interaction pathways between cells and the metal surface remain unclear. The development of this novel single cell-inductively coupled plasma-time of flight-mass spectrometry analytical method and a MIC-specific staining procedure facilitate the investigation of steel-MIC interactions. With this it is possible to analyze the multi-elemental fingerprint of individual cells. The detection method revealed elemental selectivity for the corrosive methanogenic archaeal strain Methanobacterium-affiliated IM1. The interface between material and environmental analysis thus receives special attention, e.g., when considering MIC on solid steel. Hence, the possible uptake of individual elements from different steel samples is investigated. Results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to interact with chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. T2 - ToFcon 2022 CY - Online meeting DA - 17.11.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 AN - OPUS4-56355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - COST-Action - EURO-MIC (CA20130) European MIC Network - New paths for science, sustainability and standards N2 - Microbiologically Influenced Corrosion (MIC) is a phenomenon that is increasingly becoming a problem for the society. MIC describes the negative effects a material can experience due to the presence of microorganisms. In Europe, several research groups/ other industrial stakeholders are already dealing with MIC. Unfortunately, the discussions are fragmented and the exchange of information is limited. A true transdisciplinary approach is hardly ever experienced, although this would be logical for this material/biology related challenge. USA, Canada and Australia have strong networks, and develop methods, prevention measures and standards, which Europe is forced to use, since nothing similar exists for a network and combined knowledge to design them according to european standards. This makes Europe extremely dependent and, in some cases, the potential measures or standards cannot been used because the suggested solutions are prohibited by European laws (e.g. use of biocides). Therefore, it is important to initiate a new European MIC-network. Europe needs to combine the efforts as experts in different fields and develop prevention measures according to the European rules, in close cooperation with industry and plant operators and owners of critical infrastructure. This COST Action will provide the necessary interaction and communication, knowledge sharing, training of personnel and of researchers of different disciplines. This will bring Europe to a leading role in this process, bringing ideas on an equal level with other nations, considering the values which are important for Europe and attitudes (e.g.environmental protection) and representing greater protection for people, property and the environment. The main aim and objective of the Action is to , in the context of MIC-research/control, encourage a fluent/synergistic collaboration/communication, closing the gap between materials scientists, engineers, microbiologists, chemists and integrity managers to encourage sufficient interaction between academia and industry. This Action will create a common MIC-Network, including the important stakeholders. T2 - EuroCorr CY - Online meeting DA - 19.09.2021 KW - COST Action KW - MIC KW - Interdisciplinary KW - Stakeholder KW - Academia PY - 2021 AN - OPUS4-53382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abilio, André T1 - Expert System for Screening Microbiologically Influenced Corrosion asInternal Failure Cause in Oil and Gas Upstream Pipelines N2 - The analysis of pipeline failures due to Microbiologically Influenced Corrosion (MIC) is challenging due to the complex interaction of many influencing parameters including pipeline operation conditions, fluid chemistry and microbiology, as well as the analysis of corrosion features and products. To help address this challenge, an expert system was developed to assist non-specialists in screening internal pipeline corrosion failures due to MIC related threats. To accomplish this, 15 MIC subject matter experts (with a total of 355 man-years of accumulated MIC based experience) were recruited to evaluate a total of 65 MIC failure cases based on real-life scenarios. These case study parameters and the expert elicited results were input into an Artificial Neural Network (ANN) model to create a model system which can screen whether a given failure scenario is one of three outcomes: a) failure is likely due to MIC, b) failure is likely not due to MIC, or c) the conclusion is inconclusive (analysis needs more data/information). The model system had an overall accuracy of 74.8%and it showcases that knowledge from subject matter experts can be captured in a reasonably effective way to screen for possible MIC failures. Based on that, this presentation will provide details of the model development process and key results to date. Important considerations regarding the level of confidence of the diagnoses and variation between expert opinion will also be discussed alongside with ideas on how to improve the model for field applicability. T2 - ISMOS 9 CY - Edinburgh, United Kingdom DA - 27.06.2023 KW - Expert System KW - Microbiologically Influenced Corrosion (MIC) KW - Oil and Gas Upstream KW - Artificial neural networks (ANNs) KW - Failure analysis PY - 2023 AN - OPUS4-64602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang T1 - Analytische Untersuchungen für Vitrinenbaumaterialien am Beispiel des BEMMA-Schemas N2 - BEMMA ist die Kurzbezeichnung für ein Verfahren zur Bewertung von Emissionen aus Materialien für Museumsausstattungen. Die Bewertung der Materialien erfolgt nach StAA-QMH-4.2-033. Mit diesem Verfahren lassen sich flüchtige organische Verbindungen aus modernen Werkstoffen, die in mittelbarem Kontakt mit historischen Materialien des Kunst- und Kulturgutes stehen, untersuchen und bewerten. Die Vitrinenbaumaterialien, nicht die Vitrine, werden im Hinblick auf ihre Emissionen bewertet. Die Ergebnisse der Messungen werden auch vor dem Hintergrund von realen Vitrinenmessungen eingeordnet und die Herausforderungen bei der Probenahme dargestellt. T2 - Klima- und Schadstoffmanagement in der passiven Vitrine Aktuelle Forschungsergebnisse CY - Berlin, Germany DA - 13.10.2025 KW - Emission KW - BEMMA KW - Vitrinen KW - VOC PY - 2025 AN - OPUS4-64529 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Wasserstofflagerung in unterirdischen geologischen Formationen und potenzielle Risiken durch Mikroorganismen N2 - Bei dem Vortrag werden die potentiellen mikrobiologischen Einflüsse im Falle der Lagerung von Wasserstofflagerung in unterirdischen geologischen Formationen vorgestellt, die Zusammenarbeit mit internen und auch externen Partnern. Der Fokus liegt dabei auf UGF; anaerobe Umgebungen, Sulfate reduzierenden Bakterien, methanogenen Archaea, weiterleitenden Systeme und die Kombination der Untersuchung abiotisch/biotische T2 - VDI-Schadensanalyse (49) CY - Würzburg, Germany DA - 17.10.2023 KW - MIC KW - Wasserstofflagerung KW - Unterirdische Speicher KW - Kontamination von H2 KW - H2-Abbau KW - Mikroorganismen KW - Biotische/abiotische Faktoren PY - 2023 AN - OPUS4-58645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie T1 - Standardization of MIC laboratory testing: with a special focus on corrosive methanogens N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process involving a complex group of microorganisms, including sulfate-reducing bacteria and methanogens. Standard laboratory MIC testing using static serum bottle enrichments is an easy but limited method, offering poor resolution on the biomineralization process of corrosion products. An example of this is the presumed corrosion product siderite by corrosive methanogens (Mi-MIC). Previous publications reported siderite was the sole corrosion product of M. maripaludis using metal coupons incubated under stationary conditions. However, the formation of siderite is closely related to the surrounding environmental conditions, i.e. pH, CO2 concentration, flow and temperature. Thus, siderite as the sole corrosion product of Mi-MIC remain inconclusive and questionable. To study Mi-MIC effectively, a novel versatile multiport flow-column corrosion monitoring system (MFC) was developed. MFC allows sectional corrosion rate determination under flow conditions using different types of material, inoculum and packing material. MFC offers great flexibility, ease of operation and accurate corrosion measurements that can be combined with many other techniques. Using MFC, we studied multiple strains of methanogens and compared it with sulfate-reducing bacteria under neutral and low pH conditions. It was revealed by MFC that corrosive methanogens have equally high corrosion potential as sulfate-reducing bacteria. Additionally, siderite is not the dominant nor sole corrosion product of Mi-MIC. Thus, effective corrosion monitoring and establishing standard laboratory practices, i.e. incorporating MFC as part of regular testing process, will provide deeper understanding of MIC. This will allow further microbial electrophysiology understandings, contributing to effective mitigation strategy development. T2 - EUROPEAN MIC NETWORK WEBINAR CY - Online meeting DA - 19.05.2020 KW - MIC KW - Methanogen KW - FIB/SEM KW - Corrosion products KW - Microbiologically influenced corrosion KW - Flow Model KW - Modelling KW - Korrosion PY - 2020 AN - OPUS4-51554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Mikrobielle Zusammensetzung im Wassertank N2 - Der Fachbereich 7.6 untersucht seit einiger Zeit an Auslagerungsständen auf dem Testgelände in Horstwalde Korrosion im maritimen Bereich. Im Moment läuft das System mit künstlichem Meerwasser und simuliert die Bewitterung von Metallproben unter angenäherten klimatischen Bedingungen ähnlich zum natürlichem Habitat. Im Laufe der Zeit konnte nicht intendierter mikrobieller bewuchs beobachtet werden. Es stellte sich die Frage, welche Mikroorganismen vorlagen und ob diese einen Einfluss auf die Korrosionsuntersuchungen haben könnte. Aus diesem Grund wurden 16S-rRNA Untersuchungen durchgeführt welche alle drei Domänen des Lebens widerspiegeln Bakterien, Archaea und Eukaryoten. Es konnte gezeigt werden, dass über 95% der vorliegenden Biomasse Grünalgen waren, die durch Licht Eintrag in den Container Photosynthese betrieben und dadurch an Biomasse zunahmen. Des weiteren konnten Bakterien detektiert werden, welche in der Regel halophilen und aeroben Habitaten zu finden sind. Allerdings wurden auch Sulfat reduzierende Bakterien (MIC) detektiert, wenn auch in einem geringen prozentualen Anteil. Es muss allerdings Berücksichtigt werden, dass die mikrobielle Zusammensetzung sich im Laufe der Zeit weiter ändern kann. Als Ursprung der Biomasse wird, das künstliche Sediment vermutet. Außerdem wäre es für zukünftige Experiment denkbar, das System mit echtem Sediment aus dem marinen Habitat anzuimpfen. T2 - Dechema CY - Online meeting DA - 10.11.2021 KW - Mikroorganismen KW - Mikrobielle Gemeinschaft KW - Korrosion KW - Simulation PY - 2021 AN - OPUS4-54035 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids (POM-ILs) as Protective Coatings for CulturalHeritage against Acid Corrosion and Biodeterioration N2 - Corrosion of stone by acid rain anddeterioration from microbial biofilmsare challenges pertinent worldwide forindustrial or residential buildings as wellas cultural heritage artefacts, like statuesor historic buildings. One mitigationoption might be the use of thintransparent films of polyoxometalate-based ionic liquids (POM-ILs). In thisregard, different limestone samples werecoated with hydrophobic, acid resistantPOM-ILs which also have biocidalproperties.1 Exposure of the samples tosimulated acid rain showed negligiblecorrosion compared to the significantdeterioration of unprotected samples(Fig 1. Left). In addition, the biocidalproperties of the POM-ILs suppress theformation of biofilms on coated stoneslabs. The coating is mechanically stableand is not removed even by harshmechanical and chemical treatment.Following studies successfully exploredthe effectiveness of the coating againstlampenflora growing in the PommeryChampagne cellar 2 (Fig 1. Right); andthe long-term performance of POM-ILsunder outdoor environmental conditions3. So, POM-ILs are already proven topossess remarkable anticorrosion andantimicrobial properties against aerobicmicroorganisms and being water-insoluble, they don’t get leached intoaquatic ecosystem, which is extremelybeneficial from an environmentalsustainability and toxicological point ofview. The current project aims tocontinue the journey on protecting thecultural heritage, shifting focus fromstones to metals and employ functionalPOM-IL nanocoatings to prevent MIC(Microbiologically Influenced Corrosion)of cultural heritage artefacts made ofmetal or metal alloy like carbon steel,brass, cast iron or bronze. Performanceof both the coating materials and coatingtechniques via optimization of theadhesion of the nanocoating on themetallic surface on the corrosion rateand corrosion products in the MICcaused by anaerobic microorganismslike methanogenic archaea or SulphateReducing Bacteria (SRB) would betested. The objective is to establishPOM-ILs as efficient environmentallysustainable nanocoating materialsagainst biocorrosion citing the already published success stories; and sketch theongoing endeavours and prospects ofthese very efficient candidates in thecontext of MIC mitigation. T2 - Mitigation of Microbiologically InfluencedCorrosion: Towards Scientific &Industrial Standardization (MIC-STAND) CY - Lisbon, Portugal DA - 24.07.2024 KW - Microbiologically influenced corrosion (MIC) KW - Polyoxometalate Ionic Liquid KW - Nanocoating KW - Cultural heritage PY - 2024 AN - OPUS4-64575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids (POMILs) as Protective Coatings for Cultural Heritage Against Acid Corrosion and Biodeterioration N2 - Corrosion of stone by acid rain anddeterioration from microbial biofilms are challenges worldwide present forindustrial or residential buildings as wellas cultural heritage, like statues orhistoric buildings. One option is the useof thin transparent films ofpolyoxometalate-based ionic liquids(POM-ILs). Stone samples were coatedwith hydrophobic, acid resistant POM-ILs which also have biocidal properties.1Exposure of the samples to simulatedacid rain showed negligible corrosioncompared to the significant deteriorationof unprotected samples (Fig 1. Left). Inaddition, the biocidal properties of thePOM-ILs suppress the formation ofbiofilms on coated stone slabs. Thecoating is mechanically stable and is notremoved even by harsh mechanical andchemical treatment. Following studiessuccessfully explored the effectiveness ofthe coating against lampenflora growingin the Pommery Champagne cellar 2 (Fig1. Right); and the long-termperformance of POM-ILs under outdoorenvironmental conditions 3. So, POM-ILs are already proven to possessremarkable anticorrosion andantimicrobial properties against aerobicmicroorganisms and being water-insoluble, they don’t get leached intoaquatic ecosystem, which is extremelybeneficial from an environmentalsustainability and toxicological point ofview. The current project aims tocontinue the journey on protecting thecultural heritage, shifting focus fromstones to metals and employ functionalPOM-IL nanocoatings to prevent MIC(Microbiologically Influenced Corrosion)of cultural heritage artefacts made ofmetal or metal alloy like carbon steel,brass, cast iron or bronze. Performanceof both the coating materials and coatingtechniques via optimization of theadhesion of the nanocoating on themetallic surface on the corrosion rateand corrosion products in the MICcaused by anaerobic microorganismslike methanogenic archaea or SulphateReducing Bacteria (SRB) would betested. The objective would be toestablish POM-ILs as efficientenvironmentally sustainablenanocoating materials againstbiocorrosion citing the already publishedsuccess stories; and sketch the ongoingendeavours and prospects of these veryefficient candidates in the context ofbiocorrosion T2 - International Biodeterioration and Biodegradation Symposium CY - Berlin, Germany DA - 09.09.2024 KW - Microbiologically influenced corrosion (MIC) KW - Polyoxometalate Ionic Liquid KW - Nanocoating KW - Cultural heritage PY - 2024 AN - OPUS4-64576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Mikrobielle Einflüsse auf Wasserstoffspeicherung: Materialien, Abbauprozesse und Teststrategien N2 - Wasserstoff gilt als Schlüsseltechnologie für die Energiewende – doch seine sichere Anwendung stellt neue Anforderungen an Technik, Infrastruktur und Personal. Die Veranstaltung „H₂ Sicherheit“ bietet eine umfassende Plattform, um sich über die sicherheitsrelevanten Aspekte von Wasserstoff zu informieren und praxisnahe Lösungen kennenzulernen. Expert:innen aus Forschung, Industrie und Netzbetrieb geben Einblicke in aktuelle Entwicklungen, Herausforderungen und Best Practices. Fokus dieser Präsentation war der Mikrobielle Einfluss bei der unterirdischen Speicherung von Wasserstoff und das neuartige Testsystem (MISTRAL) T2 - DVGW- H₂ Sicherheit | 26. – 27. November 2025 CY - Online meeting DA - 26.11.2025 KW - MIC KW - MISTRAL KW - Hochdruckbehälter KW - Wasserstoff KW - Unterirdische geologische Formationen PY - 2025 AN - OPUS4-64890 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nanoparticle Characterisation - The long way to standardisation N2 - Diese Präsentation gibt einen Überblick über die Entwicklung der Nanopartikelforschung von ca. 2005 bis heute. Beginnend mit den Besonderheiten von Nanopartikeln und der Aufnahme in den menschlichen Körper über Messmethoden bis hin zur Entwicklung einer Prüfrichtlinie im Rahmen der OECD und einem Ausblick über die absehbaren digitalen Entwicklungen. T2 - Abteilungsseminar der Abteilung 4 CY - Berlin, Germany DA - 27.02.2025 KW - Nanomaterials KW - Nano KW - OECD KW - Standardisierung KW - Advanced Materials PY - 2025 AN - OPUS4-64977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Tintencharakterisierung: Optische Eigenschaften und elementare Zusammensetzung N2 - Die Präsentation beschreibt alle Typen der schwarzen Schreibmaterialien, die in der Antike und Mittelalter benutzt wurden. Weiterhin wir das bei der BAM entwickelte Untersuchungsprotokoll präsentiert, das aus zwei Stufen besteht: a) der Feststellung des Tintentyps anhand der optischen Eigenschaften; die Ausrechnung von den Fingerprints der Eisengallustinten anhand der elementaren Zusammensetzung. Die Arbeit wird durch Fallbeispiele illustriert. T2 - Schriftkulturen des Mittelalters in digitaler Perspektive CY - Berlin, Germany DA - 22.08.2025 KW - Tinte KW - Tusche PY - 2025 AN - OPUS4-64775 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - The Temple Scroll: Reconstructing an Ancient Manufacturing Practice N2 - The presentation shows the studies of ancient parchment and leather conducted by the authors within last 20 years. Presentation specifically focusses on poduction of the parchment of the Temple scroll. The practice unites the early production of modern parchment with the lost way of skin splitting. T2 - The Temple Scroll: A Research Colloquium CY - New York City, USA DA - 24.02.2025 KW - Dead Sea Scrolls KW - Parchment KW - Tanning PY - 2025 AN - OPUS4-64779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - The digital product passport N2 - This presentation contains information for industry and the scientific communitiy about the new digital product passport and the demands from the EU. Furthermore a short overview is given about the different supporting activities which are currently under developement by BAM. T2 - 3. Netzwerktag Cluster Nanotechnologie CY - Würzburg, Germany DA - 02.07.2025 KW - DPP KW - ESPR KW - Product Passport KW - Ökodesignrichtlinie KW - DMP PY - 2025 AN - OPUS4-64964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalbe, Ute T1 - Elutionsverfahren in Forschung und regulatorischem Kontext N2 - Elutionsverfahren sind ein Tool für Umweltverträglichkeitsprüfungen verschiedenster Materialien im Kontakt mit Wasser. Im früheren Fachbereich 4.3 Schadstofftransfer und Umwelttechnologien wurden dazu umfangreiche Kompetenzen vor allem im Zusammenhang mit mineralischen Reststoffen sowie vielfältigen Bauprodukten aufgebaut und experimentelle Erfahrungen gesammelt. Darüber hinaus wurde auch der Austrag von Partikeln betrachtet und die gleichzeitige Bewertung von Mikroplastik- und Schadstoffausträgen aus Kunsstofftrasen untersucht. Es sind aber auch weitere Anwendungen beispielsweise zur Prüfung der Beständigkeit von Materialien denkbar. Im Workshop wurden Anwendungsbereiche von Elutionsverfahren diskutiert mit dem Ziel der besseren Vernetzung, der gemeinsamen Nutzung von Ressourcen und Identifikation von Synergien zwischen den Fachbereichen bzw. Aktivitätsfeldern. T2 - Workshop - Bewertung der Freisetzung von (Schad)stoffen aus Materialien mit Elutionsverfahren CY - Berlin, Germany DA - 21.01.2025 KW - Elution KW - Materialien KW - Schadstoffe PY - 2025 AN - OPUS4-65023 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Julseth, Mara Jean T1 - Dynamics of Chromosome Evolution in Reticulitermes of Europe N2 - Termites challenge long-standing assumptions about insect social evolution. One important difference compared to the social ants, bees and wasps lies in their chromosomes: termites are diploid, with X/Y sex differentiation observed in most species and males playing active roles across all castes and life stages. Adding to their uniqueness, termites exhibit multivalent chromosome chains during male meiosis—an intriguing and seldom seen feature of eukaryote evolution. These chains, in addition to other chromosomal formations, such as bivalent rings and rods, may serve to suppress recombination, thereby mitigating against the potentially harmful effects of inbreeding. Multivalent chromosome chains may also play a significant role in speciation processes by increasing the likelihood of chromosomal translocations and promoting genomic islands of divergence. In European Reticulitermes, variability in chain length and stability both between and within species provides a compelling model system for studying the evolutionary importance of multivalent chromosome chains at intra- and interspecific levels and at different evolutionary time scales. To investigate these dynamics, we collected over 200 colonies of Reticulitermes species across the Mediterranean, generating de novo reference genomes, comprehensive population genomic as well as karyotypic data from three recently diverged species. Our findings shed light on the intricate relationship between chromosomal architecture and evolutionary mechanisms in termites, offering new insight into how genome structure shapes species evolution T2 - Gevol SPP Meeting 2025 CY - Münster, Germany DA - 04.09.2025 KW - Termites KW - Chromosome evolution PY - 2025 AN - OPUS4-65060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide Resistance - Road to Risk Assessment N2 - This presentation details the current status of biocide resistance risk assessment and provides a roadmap for future activities. T2 - OECD, 6th Meeting of the Working Party on Biocides CY - Paris, France DA - 28.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin T1 - Identification of Genes Involved in Susceptibility to Biocides in Sulfate-Reducing Bacteria N2 - Microbially induced corrosion (MIC) poses a significant challenge in various industries, leading to structural damage and economic losses due to the activity of microorganisms on metal surfaces. The major culprits of MIC are the sulfate-reducing bacteria (SRB). A common mitigation method is the usage of biocides to prevent MIC. However, the molecular mechanisms that determine susceptibility of SRB to biocides have been poorly understood. Our aim is to identify genes that are linked to biocide susceptibility in the model SRB strain Oleidesulfovibrio alaskensis (G20). We investigated the susceptibility of G20 towards three biocides commonly used in MIC protection: benzalkonium chloride (BAC), glutaraldehyde (GTA), and tetrakishydroxymethyl phosphonium sulphate (THPS). We determined selection of mutants in specific genes in two G20 barcoded transposon mutant libraries in the presence of these biocides and media as control along a concentration gradient up to 500 ppm. Our study investigated over 1843 genes in G20, revealing insights into their response to biocide treatments. We identified 1668 genes negatively affected by biocide treatment, while 175 genes showed improved fitness. Among the treatments leading to reduced fitness in the mutants, GTA had the highest number of solely negatively affected genes (186), followed by BAC (67) and THPS (69). There were common negative impacts on 280 genes of all four treatments (BAC, GTA, THPS, control). Notably, BAC and GTA shared 113 affected genes, BAC and THPS shared 59, and GTA and THPS shared 72. On the single gene level, mutants treated with THPS exhibited reduced fitness for the rluD gene (DDE_1447), encoding ribosomal large subunit pseudouridine synthase d, which plays a crucial role in protein biosynthesis. In the presence of BAC, mutants showed reduced fitness due to the lack of the acrB gene (DDE_0401), encoding a cationic efflux pump crucial for biocide resistance. Our findings provide leads for future research into the detailed molecular mechanisms that underlie biocide susceptibility in microorganisms responsible for MIC. Such detailed understanding will enable the development of improved MIC prevention strategies and foster a more sustainable use of biocides. T2 - International Biodeterioration and Biodegradation Symposium CY - Berlin, Germany DA - 09.09.2024 KW - Biocide Resistance KW - Transposon Mutant Libraries KW - Sulfate-Reducing Bacteria (SRB) KW - Microbially Induced Corrosion (MIC) PY - 2024 AN - OPUS4-61526 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaut, Valerie A1 - Schreiber, Frank T1 - Antibiotic tolerance of biofilms emerging fro multicellular effects of antibiotic efflux N2 - The overarching goal of this project is to develop a predictive model for efflux-mediated antimicrobial tolerance in bacterial multicellular assemblies. Our central hypostasis is that efflux pump activity causes emergent antibiotic tolerance of multicellular bacterial populations, through the interplay of efflux mediated spatial interactions and efflux-linked persistence. To test this hypothesis, we will use a combination of microscopy, microbial killing assays, computational modelling, and data analysis, integrating information from 3 types of multicellular assembly: colonies, cell-to-cell interactions in a monolayer microfluidic device, and 3D flow chamber biofilms. Building on our preliminary observations, we will experimentally characterize the link between colony structure and spatial patterns of efflux gene expression in strains that differ in their levels of efflux. We will develop a mathematical model to test whether local growth inhibition of neighbors due to effluxing cells, coupled with local environment-dependent regulation of efflux, can account qualitatively for these results. By including persister cell formation in our model we will predict, and measure, the emergent function of antimicrobial tolerance in our colonies. To fully understand how tolerance emerges from the interplay between efflux-mediated spatial interactions and efflux-linked persister cell formation, we need quantitative measurements at the single cell level. To this end, we will use a microfluidic setup with cells growing in a monolayer to qualify in detail the dependence of efflux expression and persister cell formation on nutrient conditions, the correlation between efflux and persister formation, and the spatial range of efflux-mediated neighbour growth inhibition. To predict and quantitatively understand the emergent multicellular function of tolerance, we will perform individual-based modelling of biofilm growth, using as input the parameters measured on the single-cell level with our microfluidics experiments. Our simulations will predict biofilm spatial structure development, patterns of efflux and persister formation and, ultimately, tolerance to antimicrobial challenge. These predictions will be directly tested in flow-cell biofilm experiments. We are currently generating acrAB-tolC knockout-strain, without efflux activity, and a strain with an inducible acrAB-tolC efflux pump. To distinguish the different strains under the microscope, they were labeled with genes encoding for different fluorescent proteins. All strains are currently characterized in terms of growth, minimum inhibitory concentration of different antimicrobial substances, colony morphology, and biofilm formation ability. On the theoretical side, we are currently working on modeling the system at various scales and degree of detail, ranging from coarse-grained continuum models to stochastic, individual-based models. Some exploratory work was doe to test existing software for individual-based modelling that may be adapted for our purpose. Furthermore, we are in the process of developing more coarse-grained models. This work involves some physiological modelling and literature search, focusing on working mechanisms of efflux pumps and kinetic models for import and export of antibiotics. T2 - SPP Meeting CY - Jena, Germany DA - 04.10.2023 KW - Antibiotic KW - Bioilm KW - Tolerance KW - Efflux PY - 2023 AN - OPUS4-59245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Die Entstehung von antimikrobiellen Resistenzen durch die Verwendung von Bioziden N2 - Dieser Vortrag gibt einen Überblick über die BAM und die Aktivitäten im Bereich Biozidresistenz. T2 - Berliner Hochschule für Technik Studiengang Biotechnologie CY - Berlin, Germany DA - 05.05.2023 KW - Antimikrobielle Resistenz KW - Antmikrobielle Oberflächen KW - Standardisierung PY - 2023 AN - OPUS4-57859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - How to regulate and assess resistance risks of co-selecting agents during application and in the environment N2 - This talk deals with the question on How to regulate and assess resistance risks of co-selecting agents during application and in the environment. It shows that there the overview of worldwide activities to regulate co-selecting agents is missing. Regulations for product authorization usually consider resistance in target organisms, but there is a risk of emergence of resistance from non-target organisms as well. Moreover, pollution effects on resistance development in the environment are not explicitly covered during product authorization and few risk assessment schemes and methods available. T2 - EDAR7 - Environmental Dimension of Antimicrobial Resistance Conference 2024 CY - Montreal, Canada DA - 26.05.2024 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2024 AN - OPUS4-61542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis T1 - Metabolic niches and persistence of antibiotic resistant bacteria in the environment N2 - Background and Aim: Wastewater treatment plants are considered as hotspots for the development and spread of antimicrobial resistance. Antimicrobial resistant bacteria (ARB) can persist in the environment for long periods of time, despite metabolic fitness costs that can arise with resistance. We are interested in understanding the mechanisms, which allow ARB to persist in the environment. More specifically, we want to identify metabolic niches that can select for resistant bacteria. Procedure/Method: 62 E. coli strains isolated from different WWTPs in Norway were used. The isolates have different levels of resistance to 14 antibiotics. The susceptibility of the isolates to 3 disinfectants was determined. In addition, genome scale metabolic models (GEMs) were constructed and the growth of the strains was simulated in the presence of 198 different carbon sources. Furthermore, the growth rates of the isolates were measured in the presence of 3 carbon sources. Findings/Results: Many of the isolates have high resistance to multiple antibiotics but only few of the isolates have higher minimum inhibitory concentrations to the disinfectants, compared to an E. coli laboratory strain. With the GEMs, we identified 40 carbon sources that can be utilized for growth only by a portion of all the isolates. The prediction accuracy of the GEMs was 93% in the case of D-Malate. A group of 10 isolates was identified of which 5 isolates are resistant to ciprofloxacin, gentamicin and tetracycline and can grow on Sucrose but not on D-Malate and the other 5 isolates are susceptible to the same 3 antibiotics but can grow on D-Malate and not on Sucrose. Implications/Applications: Our data suggest that changing the available carbon source could shift the selection advantage between resistant and susceptible bacterial strains. If this strategy is confirmed experimentally, it could be applied to reduce the number of ARB in environments like wastewater. T2 - Conference on the Environmental dimentions of antimicrobial resistance 7 CY - Montreal, Canada DA - 26.05.2024 KW - Antimicrobial resistance KW - Wastewater PY - 2024 AN - OPUS4-61410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin T1 - Einführung in die Mantelverordnung - Stand der Bundes-Bodenschutz- und Altlastenverordnung N2 - Einführung in die Mantelverordnung Stand der Bundes-Bodenschutz- und Altlastenverordnung, aktuelles zum Aufbau der MVO und zum Stand Anfang 2023 T2 - X. Baustoffseminar - Aktuelles zu Gesteinskörnungen CY - Bad Berka, Germany DA - 17.01.2023 KW - Mantelverordnung KW - Gesteinskörnungen KW - Wiederverwertung PY - 2023 AN - OPUS4-57798 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin T1 - Entwicklungen im Gipsrecycling N2 - Gips gehört zu den nachgefragtesten Baustoffen und entsprechend steigt der Gipsverbrauch weltweit schon seit Jahrzehnten an. In Deutschland wird der Gipsbedarf seit vielen Jahren zu einem guten Teil durch REA-Gips, einem Nebenprodukt aus der Abgasreinigung von Kohlekraftwerken, gedeckt. Die weitere Gipsversorgung erfolgt größtenteils durch die Nutzung natürlicher Gipsvorkommen. Ein geringer, aber steigender Anteil an RC-Gips aus dem Baustoffrecycling und die Nutzung synthetischer Gipse aus Nebenprodukten anderer Industriezweige sind ebenfalls zu verzeichnen. Aufgrund der nationalen Klimaschutzziele und der damit verbundenen Abschaltung von Kohlekraftwerken wird das REA-Gipsangebot in den nächsten Jahren jedoch weiter deutlich zurückgehen, so dass andere Gipsquellen erschlossen werden müssen. Abhängig von der Lebensdauer der verwendeten Gipsprodukte im Bausektor ist infolge des in den vergangenen Jahren erfolgten Anstiegs des Gipsverbrauchs auch mit einer Zunahme von Gipsresten in Bau- und Abbruchabfällen zu rechnen. Im Hinblick auf eine bevorstehende Verknappung von Gips wird die Rückgewinnung dieser Gipse aus Bau- und Abbruchabfällen immer wichtiger. Das Recycling von Gipskartonplatten ist mittlerweile eine etablierte Technik und wird bereits seit einigen Jahren in industriellem Maßstab durchgeführt. Außerdem werden neue Verfahren zur Wiederverwertung weiterer Gipsprodukte aus Rück- und Umbaumaßnahmen untersucht. Von besonderem Interesse sind verschiedene Arten von Gipsplatten, da sie gut für selektiven Rückbau geeignet sind. Daher können sie vergleichsweise frei von Verunreinigungen oder Störstoffen zurückgewonnen werden, was für das Gipsrecycling besonders wichtig ist. In dem vom Bundesministerium für Bildung und Forschung geförderten Forschungsprojekt "GipsRec 2.0" werden technische, wirtschaftliche und ökologische Aspekte des Recyclings von Gipsfaserplatten sowie von verschiedenen Synthesegipsen untersucht und bewertet. Die Aufbereitung von Gipsfaserplatten erfolgte im halbtechnischen Maßstab, an verschiedenen potentiellen Ausgangsstoffen für synthetische Gipse wurden Laborversuche durchgeführt. Erfolgversprechende Verfahrenswege werden ökobilanziell bewertet. Ziel dieser Arbeiten ist die Erschließung der Sekundärrohstoffpotenziale von weiteren Quellen für die RC-Gipsproduktion um mit einer Steigerung des Gipsrecyclings die in naher Zukunft durch die Reduktion der REA-Gips-Bereitstellung entstehende Lücke in der Rohstoffversorgung zu verringern. T2 - 21. ibausil 2023 CY - Weimar, Germany DA - 13.09.2023 KW - Baustoffrecycling KW - Sekundärgipse KW - Ökobilanz PY - 2023 AN - OPUS4-60314 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Solution-driven processing of calcium sulfate: the mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Calcium sulfate hemihydrate (CaSO4ᐧ0.5H2O), also known as bassanite, has been used as a precursor to produce gypsum (dihydrate, CaSO4ᐧ2H2O) for various construction and decorative purposes since prehistoric times. The main route to obtain hemihydrate is a thermal treatment of gypsum at temperatures typically between 150 °C and 200 °C to remove some of the structural water. In this contribution, we introduce (Fig. 1) a more efficient and sustainable method (T < 100 °C) that enables the direct, rapid, and reversibly conversion of gypsum to bassanite using reusable high salinity aqueous solutions (brines with c[NaCl] > 4 M). The optimum conditions for the efficientproduction of bassanite in a short time (< 5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the typical behaviour of the bassanite phase in low salt environments. Traditionally, hemihydrate is obtained through a solid state thermal treatment because bassanite is considered to be metastable with respect to gypsum and anhydrite in aqueous solutions, and therefore gypsum-to-bassanite conversion should not occur in water. Its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures is inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline structure for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. T2 - Granada Münster Discussion Meeting GMDM 10 CY - Münster, Germany DA - 29.11.2023 KW - Gypsum KW - Bassanite KW - Calcium sulfate KW - Recycling KW - Scattering PY - 2024 AN - OPUS4-59162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin T1 - Neue Ansätze beim Gipsrecycling N2 - Gypsum is widely used in the construction sector, and its worldwide consumption has been increasing now for several decades. Currently, the gypsum demand is met up to 60% by FGD gypsum (a by-product from coal-fired power plants) in Germany. The natural gypsum deposits cover the remaining gypsum demand. Due to national climate protection goals and the related shutdown of coal-fired power plants, the FGD gypsum supply will decrease significantly in the coming years and, therefore, other gypsum sources must be found. Depending on the lifetime of the used gypsum products in the construction sector, an increase of gypsum in construction and demolition waste is to be expected. With regard to an upcoming shortage of gypsum, several approaches are being tested to recover gypsum from construction and demolition waste. Gypsum plasterboard recycling is already implemented on an industrial scale. Furthermore, new processes to recycle different types of gypsum products from construction and demolition waste are being examined. Of particular interest are different types of gypsum boards because they are well suited for selective dismantling. Therefore, they can be recovered comparatively free of impurities which is most important for the gypsum recycling. In the research project “GipsRec 2.0”, funded by the Federal Ministry of Education and Research, recycling methods for gypsum fiberboards are being investigated. Additionally, the suitability of different types of synthetic gypsum as substitutes for FGD gypsum is being considered. Currently, the quantities of recycled gypsum are not sufficient with regard to the reduction of FGD gypsum. An increase of gypsum recycling should be achieved to narrow the future gypsum gap that will occur in the near future. T2 - Berliner Konferenz Mineralische Nebenprodukte und Abfälle CY - Berlin, Germany DA - 13.09.2021 KW - Gipsabfälle KW - Gipsrecycling KW - Nachhaltigkeit PY - 2021 AN - OPUS4-53682 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin T1 - Baustoffrecycling: Kreislaufwirtschaft und Umweltschutz N2 - Aktuelle Zahlen zum Baustoffrecycling Zielkonflikte im Kontext von Abfallwirtschaft, Boden- und Grundwasserschutz sowie rechtlichen Vorgabe mit den Beispielen rezyklierte Gesteinskörnungen und RC-Gips. T2 - IX. Baustoffseminar CY - Weimar, Germany DA - 11.03.2020 KW - Kreislaufwirtschaft KW - Baustoffrecycling KW - Ressourcenschonung PY - 2020 AN - OPUS4-51436 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin T1 - New sources for secondary gypsum N2 - In order to protect natural gypsum deposits and to compensate for the decreasing amount of Flue Gas Desulfurization (FGD) gypsum it is necessary to develop and explore new sources of gypsum. For this purpose, the potentials of different gypsum wastes are investigated in the study “GipsRec 2.0”, funded by the Federal Ministry of Education and Research (Germany). On the one hand, the project worked on a new processing technology for gypsum fiberboards (GFB). While the recycling of gypsum plasterboards has already been carried out on an industrial scale for several years, the recycling of gypsum fiberboards (GFB) has proven to be challenging. Gypsum fiberboards from demolition sites and offcuts from GFB production were used for these investigations. The tests were conducted on a technical scale. Furthermore, various synthetic gypsums are being investigated with regard to their suitability for gypsum production. The analyses are carried out on production residues. In this project, a promising process for gypsum fiberboard recycling could be developed, as well as other waste gypsums are investigated and evaluated with regard to their potential as secondary raw material. In addition, selected process routes are assessed for their environmental impact using a life cycle assessment (LCA) approach. T2 - RILEM - V International Conference Progress of Recycling in the Built Environment CY - Weimar, Germany DA - 10.10.2023 KW - Gypsum recycling KW - Gypsum fiberboards and synthetic gypsum KW - Environmental evaluation PY - 2023 AN - OPUS4-60316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Hydro-Touch test - Evaluation of Transfer of Microorganisms to Non-porous Surfaces and their antimicrobial Activity N2 - This presentation describes a new test procedure that allows to determine the transfer of microorganisms to surfaces and to measure the antimicrobial efficacy of those surfaces. The main improvement of the method is that is assesses the effect of the surfaces under semi-dry, realistic conditions by transferring microorganisms via a gelatin pad linked to a stamp of defined weight. Comparing the performance of the established antimicrobial materials with currently used wet test methods and the newly developed method shows reduced antimicrobial activity of those materials under semi-dry conditions. T2 - 64. Sitzung des DIN NA 176-03-06 AA „Chemische Desinfektionsmittel und Antiseptika in der Humanmedizin“ CY - Online meeting DA - 29.09.2025 KW - Antimicrobial surfaces KW - Standardization PY - 2025 AN - OPUS4-64870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Phenotypic heterogeneity in bacterial lag times and antibiotic tolerance induced by the disinfectant glutaraldehydePhenotypic heterogeneity in bacterial lag times and antibiotic tolerance induced by the disinfectant glutaraldehyde N2 - Phenotypic heterogeneity in clonal bacterial populations can be considered a preliminary stage of functional differentiation, which may increase population fitness in fluctuating environments. Here, we investigated how transient exposure of clonal bacterial populations to residual amounts of a commonly used disinfectant, glutaraldehyde (GTA), induces phenotypic heterogeneity, ensuring survival of the population upon sudden challenge with high doses of antibiotics. Using the ScanLag system, we found that exposure to GTA resulted in wide lag-time distributions across different bacterial isolates of E. coli, S. aureus, and P. aeruginosa. Importantly, this was associated with elevated levels of survival (i.e. tolerance) towards lethal doses of antibiotics. As revealed by RNAseq in E. coli, GTA exposure caused global transcriptome remodeling, with more than 1200 differentially expressed genes of diverse biological functions. Several of these genes that were not previously associated with antibiotic tolerance or persistence induced, when overexpressed alone, antibiotic tolerance without showing a lag phenotype. This suggests that exposure to GTA induces unspecific, lag-dependent and specific, lag-independent tolerance to antibiotics in clonal bacterial populations. These findings have implications for 1.) settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and 2.) for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments because of the trade-off that arises from exiting lag and resuming growth as fast as possible and maintaining antibiotic tolerance. This trade-off may be weakened by phenotypically heterogeneous clonal populations as induced by GTA. T2 - FAST REAL Project Meeting Tartu CY - Tartu, Estonia DA - 16.06.2025 KW - Biocides KW - Biocide resistance KW - Phenotypic heterogeneity KW - Glutaraldehyde KW - Disinfectants PY - 2025 AN - OPUS4-63834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis T1 - Identification of metabolic niches and their association to the persistence of antibiotic resistant bacteria in wastewater N2 - Wastewater treatment plants (WWTP) are hotspots for the development and spread of antimicrobial resistance. Antimicrobial resistant bacteria (ARB) can persist in the environment for long periods of time, despite metabolic fitness costs that often arise with resistance. Recent research efforts are striving to uncover the role of bacterial metabolism for the ecology and evolution of antibiotic resistance. The aim of this study is to understand the ecological mechanisms, which allow ARB to persist in the environment. More specifically, we aim to identify metabolic niches that can select for and against resistant bacteria. 62 E. coli strains isolated from different WWTPs with different levels of resistance to 14 antibiotics and 3 disinfectants were assembled, sequenced, and phenotypically characterized. Next, genome scale metabolic models (GEMs) were constructed, and the growth of the strains was simulated in the presence of 298 different carbon sources. Furthermore, the growth rates of the isolates were measured in the presence of 3 carbon sources to verify the model predictions. Competition experiments with synthetic microbial communities consisting of a selection of 10 WWTP isolates, 5 of which were antibiotic resistant and 5 sensitive, were carried out in minimal medium with different carbon sources. Population dynamics modelling was used to simulate the competition of isolates under different conditions. The isolates have a wide range of susceptibility to the antibiotics, while disinfectants result in a narrower range of susceptibility. GEMs identified 40 carbon sources that can be utilized for growth only by a portion of all the isolates. The prediction accuracy of the GEMs was 93% in the case of D-malate. A range of WWTP isolates were identified which use D-malate as carbon source and are susceptible to specific antibiotics. In contrast, antibiotic-resistant WWTP isolates were identified that did use sucrose as carbon source but not D-malate. Competition experiments demonstrated that changing the carbon source of the medium from sucrose to D-malate resulted in selection against the resistant isolates. Modelling the competition between isolates under different conditions suggests that adding a carbon source to a bacterial community under specific conditions could exclude resistant bacteria from a microbial community. Our data suggest that changing the available carbon source could shift the selection advantage between resistant and susceptible bacterial strains. If this strategy is confirmed experimentally in complex microbial communities, it could be applied to reduce the number of ARB in environments such as wastewater. T2 - FEMS micro Konferenz CY - Milan, Italy DA - 14.07.2025 KW - AMR KW - Wastewater KW - Genome-scale metabolic model PY - 2025 AN - OPUS4-64659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marano, Roberto T1 - A Customizable Procedure for Predicting Antibiotic Resistance Selection on Novel Antimicrobial Coatings N2 - The global burden of antimicrobial resistance (AR) has manifested in an increasing number of deaths attributable to antibiotic-resistant bacteria (ARB) in recent years, with projections indicating a continued rise. Combating AR requires a multifaceted approach, one aspect of which involves preventing the spread of ARB in hospital environments via high-touch surfaces, which are known contributors to nosocomial infections. In conjunction with routine disinfection protocols and infection prevention measures, antimicrobial surfaces or antimicrobial coatings (AC) are increasingly being investigated and implemented to reduce microbial transmission via high-touch surfaces, thereby mitigating their spread in healthcare settings. However, similar to antibiotics, prolonged use of such surfaces may lead to the direct or indirect selection of ARB. To prevent this, targeted tests must be developed to predict potential AR selection before AC implementation. Materials and Methods As part of the Horizon-Europe-funded project "STOP" (Grant Agreement ID: 101057961), a novel antimicrobial coating is being developed and tested to reduce pathogen transfer on surfaces without selecting for ARB. To this end, two bacterial libraries (80 strains each) were assembled from the two species most associated with AR-attributable mortality worldwide, Escherichia coli and Staphylococcus aureus, as identified in the most recent comprehensive study [1]. Each library maintains a 50/50% ratio of strains resistant or sensitive to third-generation cephalosporins (E. coli) and methicillin (S. aureus), respectively—representing two of the most widespread resistance profiles. An adapted ISO 22196 method was developed using a reference benchmark antimicrobial surface (i.e., copper), with stainless steel serving as a control. The goal was to infer potential advantages of copper-unrelated antibiotic resistance phenotypes on the tested surface. Results Metadata, genomic data, and antibiotic susceptibility testing (AST) data were collected for all selected strains in each library, ensuring diversity in sequence types (ST) of clinical relevance, antibiotic resistance gene profiles, and geographical origins. The method was calibrated on copper surfaces using a reference E. coli strain, establishing the initial parameters required for investigators to customize the test for a given AC. Procedural reproducibility was assessed by comparing results from independent operators. Discussion The two libraries are currently being screened against the selected copper surfaces to identify potential associations between the resistance phenotypes of the tested species and their observed survival rates post-exposure. Three mutually exclusive outcomes are anticipated: (i) a statistically significant survival advantage of resistant strains compared to sensitive strains, (ii) an inverse scenario where sensitive strains exhibit higher survival, or (iii) no significant difference between the two groups. Furthermore, post hoc principal component analysis utilizing metadata and AST data may help elucidate genetic traits that confer a survival advantage on the tested AC. Conclusions This test aims to assist developers of antimicrobial coatings and materials in assessing potential selective pressures toward ARB before these products are implemented and evaluated under real-life conditions. T2 - ESB Conference CY - Torino, Italy DA - 07.09.2025 KW - Antimicrobial-resistance KW - Surface antimicrobial testing KW - Materials testing PY - 2025 AN - OPUS4-64569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis T1 - Metabolic niches and persistence of antibiotic resistant bacteria in the environment N2 - Background and Aim: Wastewater treatment plants are considered as hotspots for the development and spread of antimicrobial resistance. Antimicrobial resistant bacteria (ARB) can persist in the environment for long periods of time, despite metabolic fitness costs that can arise with resistance. We are interested in understanding the mechanisms, which allow ARB to persist in the environment. More specifically, we want to identify metabolic niches that can select for resistant bacteria. Procedure/Method: 62 E. coli strains isolated from different WWTPs in Norway were used. The isolates have different levels of resistance to 14 antibiotics. The susceptibility of the isolates to 3 disinfectants was determined. In addition, genome scale metabolic models (GEMs) were constructed and the growth of the strains was simulated in the presence of 198 different carbon sources. Furthermore, the growth rates of the isolates were measured in the presence of 3 carbon sources. Findings/Results: Many of the isolates have high resistance to multiple antibiotics but only few of the isolates have higher minimum inhibitory concentrations to the disinfectants, compared to an E. coli laboratory strain. With the GEMs, we identified 40 carbon sources that can be utilized for growth only by a portion of all the isolates. The prediction accuracy of the GEMs was 93% in the case of D-Malate. A group of 10 isolates was identified of which 5 isolates are resistant to ciprofloxacin, gentamicin and tetracycline and can grow on Sucrose but not on D-Malate and the other 5 isolates are susceptible to the same 3 antibiotics but can grow on D-Malate and not on Sucrose. Implications/Applications: Our data suggest that changing the available carbon source could shift the selection advantage between resistant and susceptible bacterial strains. If this strategy is confirmed experimentally, it could be applied to reduce the number of ARB in environments such as wastewater. T2 - International Biodeterioration and Biodegradation Symposium 19 CY - Berlin, Germany DA - 09.09.2024 KW - Antimicrobial resistance KW - Wastewater PY - 2024 AN - OPUS4-61412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marano, Roberto T1 - Antimicrobial coatings: modes of action, microbiological efficacy testing, and resistance evolution N2 - Within the Horizon-Europe funded project “STOP: Surface Transfer Of Pathogens”, Grant agreement 101057961, Working Package 6 is currently working on developing tests aimed at predicting possible selection and/or evolution of antibiotic resistance onto antimicrobial coatings meant for high-touch surfaces. This presentation describes the devised protocols and the preliminary results of their application on copper as a benchmark antimicrobial material. T2 - STOP-project Meeting CY - Sofia, Bulgaria DA - 27.02.2025 KW - Antimicrobial-resistance KW - Surface antimicrobial testing KW - Materials testing PY - 2025 AN - OPUS4-64567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Mechanisms and evolution of resistance to antimicrobial biocides N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution, selection and transmission of AMR. These processes are impacted by pollution with antibiotics. However, antimicrobial biocides used as disinfectants and material preservatives are major pollutants exceeding the antibiotic market in terms of chemical diversity and mass. The aim of our work is to understand the mechanisms and risks of biocides for resistance and antibiotic cross-resistance evolution in bacteria to optimize their application and safeguard their efficacy. Our work shows that biocides have the potential to affect evolutionary processes towards AMR by increasing the rates of de-novo mutation and conjugation. Importantly, widely used compounds such as chlorhexidine and quaternary ammonium compounds (QACs) affect rates of mutation and conjugation at environmentally relevant concentrations. Furthermore, we show that single-cell phenotypic heterogeneity regarding tolerance (persistence) determines survival against specific biocides including QACs and isopropanol. Mechanistic investigations reveal that known antibiotic persister mechanisms contribute to persister formation to biocides. The evolution of high-level tolerance to different biocides is linked to the initial persister level and the evolution of specific genetically encoded mechanisms related to properties of the cell envelope. Biocide-tolerant strains have a selective advantage in the presence of environmentally-relevant concentrations of antibiotics, which could lead to the stabilization of biocide tolerance in environments where biocides and antibiotics co-occur (e.g. wastewater, animal stables). Taken together, our work shows the importance of assessing the contribution of biocides on evolution and selection of AMR in the environment. T2 - EMBO Symposium on Mechanisms of drug resistance and tolerance in bacteria, fungi, and cancer CY - Heidelberg, Germany DA - 18.03.2025 KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance PY - 2025 AN - OPUS4-64866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marano, Roberto T1 - Antimicrobial coatings: modes of action, microbiological efficacy testing, and resistance evolution N2 - Antimicrobial coatings and materials on high touch surfaces can provide additional level of protection to periodic disinfection cycles by reducing bacterial loads. However, different coatings and materials assert their antimicrobial activity in different ways, and it is not clear whether they could pose detrimental selective pressure towards antibiotic-resistant bacteria. This talk elucidates modes of actions and current knowledge gaps in testing antimicrobial resistance on antimicrobial surfaces.” T2 - STOP Antimicrobial Coating Conference CY - Mons, Belgium DA - 05.12.2024 KW - Antimicrobial-resistance KW - Surface antimicrobial testing KW - Materials testing PY - 2025 AN - OPUS4-64566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marano, Roberto T1 - A Customizable Procedure for Predicting Antibiotic Resistance Selection on Novel Antimicrobial Coatings N2 - This presentation introduceda new methodological approach developed to test antimocrobials implemented on high touch surfaces, inlcuding preliminary results on its use on reference antimicrobial materials. The seminar was organized by the 'Fast-real' project, funded by the Horizon Europe (project ID: 101159721). T2 - Novel strategies and considerations in fighting pathogens CY - Tartu, Estonia DA - 16.06.2025 KW - Antimicrobial-resistance KW - Surface antimicrobial testing KW - Materials testing PY - 2025 AN - OPUS4-64568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - Biocides, including disinfectants and antimicrobial surfaces (AMCs), are important to prevent the spread of pathogens and antimicrobial resistant bacteria via surfaces. However, concerns have been raised about the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance and co-resistance. We need to understand the mechanisms and risks of disinfectants and AMCs for resistance and cross-resistance evolution to optimize their application and safeguard their long-term efficacy. We used adaptive laboratory evolution (ALE) experiments based on repeated exposure of bacteria to disinfectants. Our results show that repeated disinfection of E. coli with benzalkonium chloride in suspension results in a 2000-fold increase in survival within 5 exposure cycles. Adaption is linked to the initial presence of persister cells highly tolerant to benzalkonium chloride. We used the same approach to develop standardizable ALE experiments to determine resistance evolution to AMCs. The results highlight rapid adaptation of E. coli and P. aeruginosa towards copper surfaces. Moreover, there are multiple situations in the clinic or in the environment in which biocides and antibiotics co-occur and in which combination effects can shape their antimicrobial activity or their selective effects. Our work with P. aeruginosa shows prevalent combination effects of biocides and antibiotics, ranging from synergy to antagonism and resulting in the selection for or against antibiotic resistant strains. The combination effects are dependent on the biofilm mode-of-growth, manifesting in apparent differences in the structural arrangement of antibiotic sensitive and resistant strains in biofilms exposed to combinations. Furthermore, biocides affect rates of mutation and horizontal gene transfer, thereby having a potential facilitating effect on resistance evolution. Taken together, our work shows that the role of biocides as potential drivers of resistance evolution and selection deserves further study and regulative action. T2 - Eurobiofilms 2022 CY - Palma, Spain DA - 31.08.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Antimicrobial surfaces PY - 2022 AN - OPUS4-55608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides as drivers for the evolution of antimicrobial resistance N2 - This presentation provides an overview about how biocides drive the evolution of antimicrobial resistance during application and as pollutants in the environment. The presentation shows that biocides can lead to heterogeneous killing, facilitating tolerance evolution. This evolution is related to decreased susceptibility to antibiotics and has potential for co-selection. In contrast, evolved tolerance can limit antibiotic evolvability via epistatic interactions. Moreover, biocides can co-select for antibiotic resistance in wastewater and affect rates of mutation and horizontal gene transfer. Biocides and antibiotics show strong combination effects with consequences for selection of antibiotic resistance. T2 - Novel strategies and considerations in fighting pathogens CY - Tartu, Estonia DA - 16.06.2025 KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance KW - Standardization PY - 2025 AN - OPUS4-64867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides as drivers for the Selection and evolution of antimicrobial resistance N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution, selection and transmission of AMR. These processes are impacted by pollution with antibiotics. However, antimicrobial biocides used as disinfectants and material preservatives are major pollutants exceeding the antibiotic market in terms of chemical diversity and mass. The aim of our work is to understand the mechanisms and risks of biocides for resistance and antibiotic cross-resistance evolution in bacteria to optimize their application and safeguard their efficacy. We use adaptive laboratory evolution experiments, phenotypic characterization, single-cell analysis, whole genome sequencing, and competition experiments to investigate AMR evolution and selection of the model organism E. coli in the presence of biocides. Our work shows that biocides have the potential to affect evolutionary processes towards AMR by increasing the rates of de-novo mutation and conjugation. Importantly, widely used compounds such as chlorhexidine and quaternary ammonium compounds (QACs) affect rates of mutation and conjugation at environmentally relevant concentrations. Furthermore, we show that single-cell phenotypic heterogeneity regarding tolerance (persistence) determines survival against specific biocides including QACs and isopropanol. Mechanistic investigations reveal that known antibiotic persister mechanisms contribute to persister formation to biocides. The evolution of high-level tolerance to different biocides is linked to the initial persister level and the evolution of specific genetically encoded mechanisms related to properties of the cell envelope. Biocide-tolerant strains have a selective advantage in the presence of environmentally-relevant concentrations of antibiotics, which could lead to the stabilization of biocide tolerance in environments where biocides and antibiotics co-occur (e.g. wastewater, animal stables). Taken together, our work shows the importance of assessing the contribution of biocides on evolution and selection of AMR in the environment. T2 - 10th Symposium on Antimicrobial Resistance in Animals and the Environment (ARAE) CY - Berlin, Germany DA - 30.06.2025 KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance KW - Standardization PY - 2025 AN - OPUS4-64869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides as drivers for the evolution of antimicrobial resistance N2 - This presentation provides an overview about how biocides drive the evolution of antimicrobial resistance during application and as pollutants in the environment. The presentation shows that biocides can lead to heterogeneous killing, facilitating tolerance evolution. This evolution is related to decreased susceptibility to antibiotics and has potential for co-selection. In contrast, evolved tolerance can limit antibiotic evolvability via epistatic interactions. Moreover, biocides can co-select for antibiotic resistance in wastewater and affect rates of mutation and horizontal gene transfer. Biocides and antibiotics show strong combination effects with consequences for selection of antibiotic resistance. T2 - Vorstellungsvortrag zur Habilitation FU Berlin CY - Berlin, Germany DA - 15.05.2025 KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance KW - Standardization PY - 2025 AN - OPUS4-64873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution to antimicrobial biocides N2 - This talk discusses resistance evolution to antimicrobial biocides. It shows (i) that biocides show heterogeneous killing facilitating tolerance evolution, (ii) that serial transfer at subinhibitory concentrations is not appropriate to model evolutionary adaptation to disinfection, (iii) that biocides affect rates of mutation and horizontal gene transfer Biocides, and (iv) that antibiotics show strong combination effects. T2 - Evolutionary Biology meets the Antibiotic Crisis vol. 2 CY - Plön, Germany DA - 24.09.2024 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2024 AN - OPUS4-61545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Dr. Frank Schreiber and Work on Biocide Resistance at BAM N2 - This talk details the career path of Dr. Frank Schreiber and his work on biocide resistance at BAM. Biocides are antimicrobial products for defined applications (disinfectants, preservatives, pest control). Biocides show heterogeneous killing facilitating resistance/tolerance evolution. Adaptation to biocides has effects on growth and selection. T2 - Vortrag an der Berliner Hochschule für Technik CY - Berlin, Gemany DA - 07.06.2024 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2024 AN - OPUS4-61543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides as drivers for the evolution and selection of antimicrobial resistance N2 - This presentation provides an overview about how biocides drive the evolution of antimicrobial resistance during application and as pollutants in the environment. The presentation shows that biocides can lead to heterogeneous killing, facilitating tolerance evolution. This evolution is related to decreased susceptibility to antibiotics and has potential for co-selection. In contrast, evolved tolerance can limit antibiotic evolvability via epistatic interactions. Moreover, biocides can co-select for antibiotic resistance in wastewater and affect rates of mutation and horizontal gene transfer. Biocides and antibiotics show strong combination effects with consequences for selection of antibiotic resistance. T2 - 12. Dresdner Wasserseminar ' Wasser und Verunreinigung' CY - Dresden, Germany DA - 26.06.2025 KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance KW - Standardization PY - 2025 AN - OPUS4-64868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Beyond Antibiotics – Biocides as Drivers of Environmental AMR N2 - This presentation provides an overview about how biocides drive the evolution of antimicrobial resistance during application and as pollutants in the environment. It also discusses the contribution of biocides for the environmental transmission of AMR. T2 - OneBridge: Making environmental AMR Surveillance Fit for Purpose: Data Integration and the Ecology of Resistance CY - Dresden, Germany DA - 06.10.205 KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance KW - Standardization PY - 2025 AN - OPUS4-64872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - This presentation describes our work at BAM on resistance evolution towards biocides and antimicrobial surfaces. T2 - Break biofilms workshop CY - Vienna, Austria DA - 16.01.2023 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides PY - 2023 AN - OPUS4-57857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). In adaptive laboratory evolution experiments we cultured selected model soil microorganism with representative biocides under selection regimes with increasing and stable biocide concentrations followed by antibiotic and biocide cross-resistance determination. Moreover, we investigate if the selected biocides affect the rates of de novo mutations and HGT of plasmids that carry resistance genes among soil microorganism. Our results show only small increases of biocide resistance during serial transfers under increasing biocide concentrations. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, our results indicate that a stable low-level biocide regime did not select for high level cross-resistance to antibiotics and other biocides. Moreover, material preservatives affected the rates of HGT via conjugation and the mutation rates at sub-inhibitory concentrations. The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 4th Evo Eco PhD Meeting CY - Lutherstadt Wittenberg DA - 04.03.2020 KW - Microbiology KW - Biocides KW - Horizontal gene transfer HGT KW - Resistance evolution KW - Antimicrobial resistance PY - 2020 AN - OPUS4-51313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide resistance risk assessment N2 - This presentation details the current status of biocide resistance risk assessment. T2 - Risk assessment of biocide and antibiotic resistance CY - Online meeting DA - 09.03.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 UR - https://www.gu.se/en/biocide/risk-assessment-of-biocide-and-antibiotic-resistance AN - OPUS4-56235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - A presentation given at the VAAM conference 2022, summarizing our findings published in the research paper "Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection" T2 - Annual conference of the association for general and applied microbiology (VAAM) 2022 CY - Düsseldorf, Germany DA - 21.02.2022 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance KW - Disinfection PY - 2022 AN - OPUS4-54437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Phenotypic heterogeneity in bacterial lag times and antibiotic tolerance induced by the disinfectant glutaraldehyde N2 - Phenotypic heterogeneity in clonal bacterial populations can be considered a preliminary stage of functional differentiation, which may increase population fitness in fluctuating environments. Here, we investigated how transient exposure of clonal bacterial populations to residual amounts of a commonly used disinfectant, glutaraldehyde (GTA), induces phenotypic heterogeneity, ensuring survival of the population upon sudden challenge with high doses of antibiotics. Using the ScanLag system, we found that exposure to GTA resulted in wide lag-time distributions across different bacterial isolates of E. coli, S. aureus, and P. aeruginosa. Importantly, this was associated with elevated levels of survival (i.e. tolerance) towards lethal doses of antibiotics. As revealed by RNAseq in E. coli, GTA exposure caused global transcriptome remodeling, with more than 1200 differentially expressed genes of diverse biological functions. Several of these genes that were not previously associated with antibiotic tolerance or persistence induced, when overexpressed alone, antibiotic tolerance without showing a lag phenotype. This suggests that exposure to GTA induces unspecific, lag-dependent and specific, lag-independent tolerance to antibiotics in clonal bacterial populations. These findings have implications for 1.) settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and 2.) for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments because of the trade-off that arises from exiting lag and resuming growth as fast as possible and maintaining antibiotic tolerance. This trade-off may be weakened by phenotypically heterogeneous clonal populations as induced by GTA. T2 - 1st International Conference on Emergent Functions of Bacterial Multicellularity CY - Berlin, Germany DA - 06.01.2025 KW - Disinfectants KW - Biocides KW - Phenotypic heterogeneity PY - 2025 AN - OPUS4-62462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - BIOCIDE N2 - This presentation gives an overview about the BIOCIDE project performed with the Aquatic Pollutants joint call. T2 - Aquatic Pollutants TransNet workshop CY - Online meeting DA - 09.11.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Risk assessment KW - Wastewater PY - 2022 AN - OPUS4-56265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Hydrogen storage & Microbiologically influenced corrosion - Improved test system for Stability and Durability of the Materials & Gas N2 - Underground hydrogen storage (UHS) is a strategic step towards implementing the hydrogen economy. Achieving the required infrastructure by 2050 necessitates advancements in hydrogen-dedicated assets and the evaluation of existing infrastructure. The unique conditions in UHS require an experimental set-up to simulate UHS operating conditions, which allows to assess the readiness of current storage and transmission for hydrogen, and develop new technologies for material-resistance, operational-simulations, and risk-assessments. In addition to the physical/chemical conditions in UHS (e.g., salinity, hydrogen concentration, operating temperature/-pressure, water content), biological threats must also be considered. Therefore, we present here a high-pressure-set-up, developed for research/-industrial testing purposes. Currently, UHS-experiments for microbiologically-influenced-corrosion (MIC) are performed in standard autoclaves with relatively high volumes/pressures; they were primarily designed for material-specific investigations. While these methods provided some useful information for biological questions, they had significant limitations. Besides, the rapid depressurization that occurs with standard autoclaves can greatly affect materials, especially amorphous materials like polymers, causing damage that isn't due to the actual hydrogen storage. This presents a challenge, as the test results may not accurately reflect real-world conditions. To address these issues, specialized autoclaves have been developed to allow for slower depressurization while also enabling continuous monitoring of gases and liquids during the experiment. Such modifications could help obtain more accurate and reliable data. The novel UHS-simulation-set-up presented here is designed with a controlled independently temperature and pressure. Field samples can be used to mimic geology, water chemistry, construction materials, and microbiological conditions. Most significant advantages of the set-up are: 1. It allows for liquid addition during the test, enabling the study of biocides or the evaluation of operating setups. 2. It permits liquid/-gas sampling during the test, allowing for more efficient monitoring of testing conditions and a better understanding of the process over time. Additionally, a low-release function is added, which is particularly important for studying MIC to avoid negative side effects, on the material (e.g. polymers/corrosion product-layer/cells itself) which might occur due to the fast pressure release. T2 - MATHEA | MATerials in Hydrogen related Energy Applications 2025 CY - Hamburg, Germany DA - 24.06.2025 KW - MIC KW - MISTRAL KW - Underground storage KW - Hydrogen KW - Polymer KW - Metal PY - 2025 AN - OPUS4-63567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis T1 - Consequences of tolerance to disinfectants on the evolution of antibiotic resistance in E. coli N2 - Biocides are used as disinfectants and preservatives; one important active substance in biocides is benzalkonium chloride (BAC). BAC-tolerant bacterial strains can survive short treatments with high concentrations of BAC. BAC tolerance and resistance have been linked to antibiotic resistance. Here, the selection dynamics between a BAC-tolerant Escherichia coli strain and a sensitive wild type were investigated under four conditions: in the absence of antibiotics and in the presence of three different sub-inhibitory concentrations of the antibiotic ciprofloxacin in liquid cultures. The wild type was selected over the BAC-tolerant strain in the absence of antibiotics, while the BAC-tolerant strain was selected over the wild type at all ciprofloxacin concentrations investigated, with a minimum selection concentration (MSC) of 1/10th of the minimum inhibitory concentration (MIC) of the wild type. Furthermore, the evolvability of resistance of the two strains to inhibitory concentrations of ciprofloxacin was assessed by performing a serial dilution evolution experiment with gradually increasing ciprofloxacin concentrations. The wild type had a higher probability to develop resistance to ciprofloxacin than the tolerant strain. By the end of the evolution experiment both strains evolved to grow at the highest ciprofloxacin concentration investigated, which was 2048 ×MIC of the wild type. The importance of these results is highlighted by the fact that concentrations of ciprofloxacin well above the calculated MSC can be found in environmental samples such as hospital wastewaters and livestock slurry. In turn, BAC is used as a disinfectant in the same settings. Thus, the selection of BAC-tolerant strains at sub-inhibitory concentrations of ciprofloxacin can contribute to the stabilization and spread of BAC-tolerance in natural populations. The prevalence of such strains can impair the effects of BAC disinfections. T2 - µClub seminar series CY - Berlin, Germany DA - 15.12.2023 KW - Antimicrobial resistance PY - 2023 AN - OPUS4-59222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistenzen von Bakterien gegen Biozide – Evolution, Mechanismen und Methoden N2 - Diese Präsentation gibt einen Überblick über die Aktivitäten zum Thema Biozidresistenz an der BAM. T2 - Life Science Nord - Online-Update Hygiene und Infektionsprävention CY - Online meeting DA - 14.06.2022 KW - Antimikrobielle Resistenz KW - Antmikrobielle Oberflächen KW - Standardisierung KW - Biozide KW - Risikobewertung PY - 2022 UR - https://vimeo.com/722198443 AN - OPUS4-56236 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by Phenotypic Heterogeneity and transcriptome remodeling N2 - Glutaraldehyde (GTA) is commonly used to disinfect medical equipment, in animal husbandry and in hydraulic fracturing. Its wide use bears the risk that microorganisms in different environments are exposed to potentially non-lethal doses of glutaraldehyde. To date, little is known about the effects of glutaraldehyde on the susceptibility of bacteria to antibiotics and its role in the selection of tolerant phenotypes. Objectives • To determine the effect of glutaraldehyde exposure on the survival of E. coli, S. aureus and P. aeruginosa to antibiotics • To find the mechanistic basis for antibiotic tolerance upon glutaraldehyde exposure Materials & Methods Four bacterial isolates were exposed to sub-inhibitory glutaraldehyde. Antibiotic tolerance was determined by time-kill assays. Regrowth dynamics (lag times) were determined with ScanLag. E. coli was further investigated, using RNAseq to identify genes and processes involved in antibiotic tolerance. Mutants of candidate genes were screened for their antibiotic tolerance and heterogeneous target gene expression under stressed and unstressed conditions. Results Short-term exposure to sub-inhibitory levels of glutaraldehyde induced tolerance to high doses of bactericidal antibiotics. Tolerance to antibiotics was associated with highly heterogeneous regrowth dynamics and global transcriptome remodeling. Differentially expressed genes represented diverse biological functions and cellular components, including antibiotic efflux, metabolic processes, and the cell envelope. The heterogeneous regrowth dynamics and the diversity of the differentially expressed genes are likely related to the unspecific mode-of-action of glutaraldehyde. Among the many differentially expressed genes, several genes were identified that were not previously associated with antibiotic tolerance or persistence, which, when overexpressed alone, increased antibiotic tolerance. Conclusion Our results highlight how the big advantage of a disinfectant, its unspecific mode-of-action, can induce transient tolerance to antibiotics in bacteria. These findings have implications for 1.) settings where disinfectants and antibiotics are used in proximity, such as hospitals and animal husbandry, and 2.) for the selection dynamics of tolerant bacteria in fluctuating environments because of the trade-off that arises from overcoming the lag phase as fast as possible and maintaining antibiotic tolerance. T2 - VAAM Jahrestagung 2023 CY - Göttingen, Germany DA - 10.09.2023 KW - Glutaraldehyde KW - Disinfectants KW - Biocides KW - Antibiotics KW - Bacteria PY - 2023 AN - OPUS4-58439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - This talk discusses resistance evolution towards biocides and antimicrobial surfaces. It shows (i) that biocides affect rates of mutation and horizontal gene transfer, (ii) that biocides show heterogeneous killing facilitating tolerance evolution, and (iii) that biocides and antibiotics show strong combination effect on growth and selection. T2 - STOP project internal seminar CY - Online meeting DA - 24.04.2024 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides KW - Antimicrobial surfaces PY - 2024 AN - OPUS4-61546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - Antimicrobial Resistance in Biofilms and on Biomaterials CY - Online meeting DA - 10.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms PY - 2021 AN - OPUS4-53162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Consequences of BAC tolerance for selection and evolution in the presence of antibiotics N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance. Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work at BAM we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Within our group, I mainly focus on the following two questions: How does phenotypic heterogeneity in bacteria affect the ability to survive treatment with biocides? And what are the consequences of phenotypic heterogeneity for the evolution of resistance to biocides and antibiotics? I will share published and unpublished results which demonstrate that phenotypic heterogeneity can enable the survival of biocide treatment and, through this, facilitate the evolution of AMR. On the other hand, we find that adaptation to a biocide can unexpectedly impair the ability to evolve resistance against an antibiotic. T2 - FEMS summer school for postdocs 2022: Microbial Evolvability Mechanisms: Resistance, Biology, and Strategies to Defeat and Detect CY - Split, Croatia DA - 27.04.2022 KW - Disinfection KW - Biocides KW - Evolution KW - Resistance KW - Biocide tolerance PY - 2022 AN - OPUS4-54846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Risk Assessment of Biocide Resistance N2 - This presentation details approaches for the risk assessment of biocide resistance. Different methods are presented to acquire the necessary data for such risk assessments. T2 - OECD, 7th Meeting of the Working Party on Biocides CY - Leiden, Netherlands DA - 18.09.2023 KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2023 AN - OPUS4-59062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Progress on STOP-project WP5 and WP6 at BAM N2 - An overview of the progress that has been made on testing of antimicrobial efficacy and method development in the STOP project at BAM. T2 - STOP project meeting 09/2024 CY - Bukarest, Romania DA - 18.09.2024 KW - Antimicrobial surfaces KW - ISO22196 PY - 2024 AN - OPUS4-61178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina T1 - Effect of biocides on the evolution and spread of resistance N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Antimicrobial resistance KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-56426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobisch, Lydia-Yasmin T1 - Biocide resistance evolution of corrosion causing sulfate reducing bacteria N2 - SRB are environmentally and industrially important microorganisms. The disadvantage of their metabolic activity (e.g. sulfate reduction) results in the formation of toxic sulfide that leads to microbial influenced corrosion. SRB have been responsible for biocorrosion of ferrous metal. One of mitigation strategy is the use of biocides. However, it has been shown that various bacteria develop antimicrobial resistance due to excessive use of biocides. Thus, a deeper understanding of the evolution of biocide resistance of SRB is necessary. Three commonly used biocides, THPS, BAC, and GLUT were applied to investigate the susceptibility of Desulfovibrio alaskensis G20.The minimum inhibitory and bactericidal concentration and the killing kinetics of the three biocides was determined. These results will be used to conduct evolution experiments to determine the evolution of resistance towards biocides of SRBs. The outcome of this work can be helpful to improve the management of MIC treatments. T2 - Panel, Pitch & Popcorn by EUROMIC CY - Online meeting DA - 21.06.2021 KW - Biocide KW - Evolution KW - Mircobially influcenced corrosion KW - Sulfate reducing bacteria PY - 2021 AN - OPUS4-56940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -