TY - JOUR A1 - Simon, Franz-Georg A1 - Vogel, Christian A1 - Kalbe, Ute T1 - Antimony and vanadium in incineration bottom ash – leaching behavior and conclusions for treatment processes JF - Detritus N2 - Due to its large mineral fraction, incineration bottom ash (IBA) from municipal solid waste incineration is an interesting raw material that can be used for road construction or to produce secondary building materials. However, leaching chloride, sulfate, and potentially harmful heavy metals may cause problems in using IBA in civil engineering. Investigating leaching behavior is crucial for the assessment of the environmental compatibility of IBA applications. Various test procedures are available for that purpose. In the present study, a long-term leaching test of a wet-mechanically treated IBA was performed in a lysimeter for almost six years. While concentrations of chloride, sulfate and the majority of the heavy metals started to decrease rapidly with progressive liquid-to-solid ratio (L/S), antimony (Sb) and vanadium (V) behaved differently. At the beginning of the lysimeter test, the Sb and V concentrations were low, but after approximately one year of operation at an L/S ratio of around 0.8 L/kg, a steady increase was observed. It was shown that this increase is the result of low Ca concentrations due to the formation of CaCO3. With the data, the solubility products from Ca-antimonate and Ca-vanadate were calculated. The unusual leaching behavior of Sb and V should be kept in mind when considering field scenarios and evaluating the impact on the environment. KW - Bottom ash KW - Lysimeter KW - Leaching of waste materials KW - Secondary building materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534317 DO - https://doi.org/10.31025/2611-4135/2021.15115 SN - 2611-4135 VL - 16 SP - 75 EP - 81 PB - CISA CY - Padua AN - OPUS4-53431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Simon, Franz-Georg ED - Kalbe, Ute T1 - Special issue: Measurement of the environmental impact of materials T2 - Materials N2 - Throughout their life cycle—from production, via usage, through to disposal—materials and products interact with the environment (water, soil, air). At the same time, they are exposed to environmental influences and, through their emissions, have an impact on the environment, people, and health. Accelerated experimental testing processes can be used to predict the long-term environmental consequences of innovative products before these actually enter the environment. The aim of this Special Issue of the journal Materials is to publish original research and review articles as well as short communications tackling the problem of reliable environmental measurement methods and reporting exemplary case studies. KW - Contaminant transfer KW - Biocides in the environment KW - Leaching of waste materials KW - Simulation of materials degradation KW - Transport modeling KW - Ecotoxicity testing PY - 2021 UR - mdpi.com/si/41578 SN - 1996-1944 VL - 13-14 IS - 12(2020)-3(2021) SP - 13(12):2709 EP - 14(3):634 PB - MDPI CY - Basel AN - OPUS4-51985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -