TY - CONF A1 - Pollakowski-Herrmann, Beatrix A1 - Seeger, Stefan A1 - Gross, A. A1 - Kayser, Y. A1 - Osan, J. A1 - Stabile, L. A1 - Beckhoff, B. T1 - Quantitative elemental analysis of ambient aerosol particles using portable TXRF N2 - A reliable analysis of aerosol particle is curial for enforcing EU air quality regulations to protect human health, and for research on climate change effects [1]. Although metrics such as PM10 and PM2.5 are currently in use, the level of uncertainty of aerosol metrics is too high and the traceability is insufficient. Within the AEROMET project [2] procedures are developed aiming at reducing the uncertainties of particle mass, size, and number concentration measurements including the characterization of regulated components in airborne particles. Here, we present an approach how to improve the uncertainties of the particle mass by mobile total reflection x-ray fluorescence (TXRF) analysis. The combination of TXRF and aerosols sampling techniques supported by reference-free synchrotron radiation-based XRF enables a quantitative real-time analysis of particle mass. During in-field campaigns, the procedure was tested, monitoring the size dependent mass concentrations of specific elements in ambient aerosols under dynamic conditions. This approach allows a direct time and size-resolved analysis without laborious digestion steps and a reduced risk of contamination. Aerosol particles were sampled in a 13-stage DLPI impactor on acrylic discs. TXRF analysis was performed on-site with the transportable spectrometer S2 PICOFOX (Bruker Nano GmbH). The TXRF quantification was based on internal standardization. At moderate air pollution levels (PM10 20 µg/m³) sampling times of less than 2 hours were enough to detect elements in different particle size bins. The on-site approach and the high sensitivity of TXRF enables the observation of rather quick changes in the quantity and distribution of elements in an ambient aerosol on the day of sampling. The analysis of the morning and afternoon sampling shifts reveals the occurrence of the elements Fe, Ca and Si in different size bins as well as their temporal change in respective mass concentrations over the day while the distributions of several other elements remain unchanged. T2 - 11th International Conference on “Instrumental Methods of Analysis” CY - Ioannina, Greece DA - 22.09.2019 KW - Air quality KW - Novel sample preparation techniques KW - Analytical chemistry KW - Metals PY - 2019 AN - OPUS4-49249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - Instruments for Fine and Ultrafine Particle Emission Characterization N2 - An overview on instruments and methods for the measurement and chemical characterization of particulate emissions from local sources is presented T2 - BAM - JBMIA (Japan Business Machine and Information System Industries Association) Meeting, JBMIA Emissions Working Group Meeting CY - Tokyo, Japan DA - 04.05.2019 KW - Aerosol spectroscopy KW - Particulate emission KW - Chemical analysis KW - Total reflection X-ray spectroscopy KW - Calibration PY - 2019 AN - OPUS4-47816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang T1 - Selection of low emittiong material for the construction of display cases based on the BEMMA procedure N2 - Museums worldwide are equipped with different display cases. Exhibit display cases should protect cultural objects from dust as well as from mechanical and physical damage. To ensure a stable climate inside the display cases, a low air exchange rate is maintained. Typically air exchange rates are often smaller than 0.1 d 1, which can result in rising concentrations of potential harmful immissions inside of the display cases due to emissions from materials. Especially high concentrations of organic acids, which can emit from e.g. sealing materials, can produce damage of cultural objects. In 2012 BAM introduced a procedure witch is called: BEMMA-Scheme (Bewertung von Emissionen aus Materialien für Museumsausstattungen) which stands for: “Assessment of Emissions from Materials for Museum Equipment”. Micro chambers are used for VOC emission tests of display case construction materials, e.g. textiles, plastics, sealing material, coatings and others. Each sampling procedure is carried out in duplicate. Emissions like formic acid, acetic acid, formaldehyde and oximes are excluded and the sum of emissions of VVOCs, VOCs and SVOCs is limited. For a positive assessment all listed criteria must be fulfilled; otherwise the display construction material fails the BEMMA scheme. The BEMMA scheme is not a guarantee for an emission free display case, but a necessary requirement for the choice of suitable materials for emission and immission reduced display cases. T2 - Materials Testing Symposium CY - New York City, USA DA - 06.11.2019 KW - Museum KW - Emission KW - Dispay case KW - BEMMA KW - VOC PY - 2019 AN - OPUS4-49589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Köppen, Robert A1 - Becker, Roland A1 - Traub, Heike A1 - Ostermann, Markus A1 - Bücker, Michael A1 - Reger, Christian A1 - Westphalen, Tanja T1 - Environmental sustainability and –stability of materials concerning the migration of pollutants N2 - In addition to previously reported results on the accelerated weathering of polystyrene samples (PS) containing 1 wt. % hexabromocyclododecane (HBCD), we present the first results of our investigations of polypropylene samples (PP) containing 0.1 wt. % BDE-209. All studied polymer samples were exposed to a defined weathering schedule in a climate chamber in accordance to regulation EN ISO 4892-3:2006. For the determination of BDE-209 in the collected raining water the samples were prepared in accordance to a validated protocol. Before the analyses each sample was spiked with isotopically labeled BDE-209. Subsequently the samples were extracted with isooctane. The obtained extracts were concentrated, and the resulting solutions were analyzed by GC/MS. Additionally, the total bromine content was monitored for the weathered and untreated samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray fluorescence analysis (XRF) as a non-destructive and rapid method. In general, the resulting data from the accelerated weathering will be compared to those from the natural weathering experiments. Here, the surfaces of the test pieces were analyzed by LA-ICP-MS and XRF as well. Moreover, soil bed tests were conducted in a well characterized model soil. This soil (boulder-clay, sand with 12 % loam, particle size in total 0.2-4 mm) is filled in a free-draining basin inside of an air-conditioned cellar. In this manner, TOC, water capacity and humidity are recorded parameters. To induce a leaching process from the samples by the raining water, the target water content is calculated to 8%. The actual humidity is measured by a tensiometer, assuring the duration of the raining period. A defined humidity is a fundamental parameter for a biological activity in the soil. The test polymers were placed up to the half in the soil. Microbial activity of the soil is monitored by a reference polymer (polyurethane) and should induce the release of HBCD and BDE-209 out of the test materials. These released analytes will be captured by passive samplers (silicone tubes) placed in a distinct distance to the polymer samples in the soil. The soil bed experiments are complementary to the weathering experiments due to the biological activity in the soil. T2 - Goldschmidt 2019 CY - Barcelona, Spain DA - 18.08.2019 KW - Pollutants KW - Environmental simulation KW - Migration PY - 2019 AN - OPUS4-49803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lasota, S. A1 - Horn, M. A1 - Noll, M. A1 - Stephan, Ina A1 - Otto, W. T1 - Copper in wood preservatives delayed wood decomposition and shifted soil fungal but not bacterial community composition JF - Applied and Environmental Microbiology N2 - Copper-based fungicides are routinely used for wood and plant protection, which can lead to an enrichment of copper-tolerant microbial communities in soil. To investigate the effect of such wood preservatives on the soil fungal and bacterial community compositions, five different vineyard and fruit-growing soil environments were evaluated using incubation studies over time. Pine sapwood specimens were impregnated with either water or different biocide treatment solutions containing a mixture of copper, triazoles, and quaternary ammonium compounds (CuTriQAC), a mixture of triazoles and quaternary ammonium compounds (TriQAC), or copper alone (Cu). Specimens were incubated in soil from each sample site for 8, 16, 24, and 32 weeks. The effects of preservative treatment on the modulus of elasticity (MOE) of the wood specimens and on the soil fungal as well as bacterial community composition at the soil-wood interface were assessed by quantitative PCR and amplicon sequencing of the fungal internal transcribed spacer (ITS) region and bacterial 16S rRNA gene. Specimens impregnated with CuTriQAC and Cu showed decreased MOE and reduced fungal and bacterial copy numbers over time compared to those impregnated with water and TriQAC. Fungal but not bacterial community composition was significantly affected by wood preservative treatment. The relative abundance of members of the family Trichocomaceae compared to other genera increased in the presence of the Cu and CuTriQAC treatments at three sites, suggesting these to be Cu-tolerant fungi. In conclusion, the copper-containing treatments resulted in marginally increased MOE, lowered microbial gene copy numbers compared to those in the TriQAC and water treatments, and thus enhanced wood protection against soil microbial wood degradation KW - 16S rRNA gene KW - ITS region KW - Amplicon sequencing KW - Community composition KW - Copper-based wood preservatives KW - Soil incubation study PY - 2019 DO - https://doi.org/10.1128/AEM.02391-18 SN - 1098-5336 SN - 0099-2240 VL - 85 IS - 4 SP - e02391-18, 1 EP - 13 PB - American Society for Microbiology CY - Washington, DC AN - OPUS4-47370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Background: One cornerstone to prevent the spread of antibiotic resistant bacteria in clinical settings is the application of disinfectants. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Objectives: Our objective is to investigate if persistence is a bacterial survival strategy against disinfectants. Furthermore, we investigate the mechanisms of disinfectant persistence and if persistence can evolve in the face of fluctuating exposure to disinfectants. Lastly, we test if the evolved mechanisms of disinfectant tolerance lead to disinfectant resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of disinfectants and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against disinfectants. In addition, we will present data from an ongoing evolution experiment for persistence against disinfectants. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - Regulatory Trends in the EU for Chemicals and Nanomaterials N2 - The presentation gives an overview on existing and upcoming REACH regulations in the EU concerning nanomaterials. T2 - BAM - JBMIA (Japan Business Machine and Information System Industries Association) Meeting, JBMIA Emissions Working Group Meeting CY - Tokyo, Japan DA - 04.05.2019 KW - Nanomaterials KW - REACH KW - EU regulations PY - 2019 AN - OPUS4-47814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Question: One cornerstone to prevent the spread of bacteria in clinical and industrial settings is the application of biocides including disinfectants and preservatives. However, bacteria can evolve resistance to biocides, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Our objective is to investigate if persistence is a bacterial survival strategy against biocides. Furthermore, we investigate the mechanisms of biocide persistence and if persistence can evolve in the face of fluctuating exposure to biocides. Lastly, we test if the evolved mechanisms of biocide tolerance lead to biocide resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of biocides and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against biocides. In addition, we will present data from an ongoing evolution experiment for persistence against biocides. Conclusion There is a link between antibiotic and biocide persistence with possible implications for antibiotic resistance evolution and spread. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance - EDAR 2019 CY - Hong Kong, China DA - 09.06.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Heterogeneity in the bacterial response to disinfection and its impact on antibiotic tolerance and resistance N2 - The global rise of antibiotic resistance has made the proper use of disinfectants more important than ever. Their application in clinical l settings is an integral part of antibiotics stewardship by preventing the occurrence and spread of infections. However, improper use of disinfectants also harbours the risk for the evolution of tolerance and resistance to disinfectants, but also to antibiotics. It is therefore crucial to understand whether and how bacteria can survive chemical disinfection and which conditions facilitate the evolution of tolerance and resistance. Here, we study the heterogeneity in the response of isogenic E. coli populations exposed to different levels of commonly used disinfectants. At concentrations below the minimal inhibitory concentration (MIC), we find that certain disinfectants induce prolonged lag times in individual cells, a phenotype that has been associated with persistence against antibiotics. At concentrations above the MIC, we find heterogeneous killing for a range of the tested substances. Interestingly, for the three cationic surfactants that were tested, we find kill kinetics revealing the presence of a tolerant subpopulation that can withstand disinfection longer than most of the population. We will present results from an ongoing evolution experiment in which we test the potential for evolution of population-wide tolerance and resistance through intermittent exposure to lethal doses of a cationic surfactant. T2 - New Approaches and Concepts in Microbiology CY - Heidelberg, Germany DA - 10.07.2019 KW - Persistence KW - Biocides KW - Resistance KW - heterogeneity KW - Bacteria PY - 2019 AN - OPUS4-48524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Wirth, R. A1 - Schuessler, J. A. A1 - Benning, L. G. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Feldmann, Ines T1 - Olivine weathering by the genetically amenable rock-inhabiting fungus Knufia petricola A95 N2 - In arid sun-exposed environments, rock-inhabiting fungi dominate microbial communities on rock surfaces. Fungi are known to enhance rock weathering, although the exact mechanisms are not completely understood. These natural processes can be simulated by reproducible experimental systems. Particularly attractive are genetically amenable rock-weathering fungi, where certain traits can be knocked-out to identify weathering-relevant functions. Here, we studied the effect of the rock-inhabiting fungus Knufia petricola A95 and its melanin-deficient mutant (ΔKppks) on the weathering of a Fe-bearing olivine. We examined the olivine dissolution kinetics and looked at the olivine-fungus interface. For the former we inoculated olivine powder with the fungus in batch and mixed flow reactors and analysed the medium solution by ICP-OES, for the latter biofilm-covered olivine sections from flow-through reactors were analysed by FIB-TEM. In general olivine dissolution was lower when olivine was incubated without fungi: the abiotic olivine dissolution rates were lowest and the surface of the abiotically reacted olivine sections showed no etching. Various chemical analyses show Fe (oxyhydr)oxide precipitation on top of the abiotically reacted olivine, indicating its role in inhibiting olivine dissolution. Both the wild type (WT) and ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe (oxyhydr)oxide precipitation was thus reduced, explaining the enhanced olivine dissolution in their presence. Particularly efficient at preventing Fe precipitation were attached WT cells: the inhibition of olivine dissolution almost completely disappeared. The attachment capacity of the WT is most likely caused by the production of WT-specific extracellular polymeric substances. Our presented experimental systems allowed the precipitation of Fe (oxyhydr)oxides and included a rock-inhabiting fungus and thus simulated weathering processes relevant to natural ecosystems. T2 - ISEB 2019 CY - Potsdam, Germany DA - 23.09.2019 KW - Olivine KW - Weathering KW - Fungus PY - 2019 AN - OPUS4-49585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan A1 - Osan, J. A1 - Gross, A. A1 - Stabile, L. T1 - AEROMET - Observation of quickly changing element mass concentrations in an ambient aerosol using portable TXRF N2 - Measurements of aerosol particles are vital for enforcing EU air quality regulations to protect human health, and for research on climate change effects. Although metrics such as PM10 and PM2.5 are currently in use, the level of uncertainty of aerosol metrics is too high and the traceability is insufficient. The project AEROMET, which has been started in June 2017 aims at implementing improvements in a) the uncertainty of particle mass, size and number concentration measurements and b) in the characterization of regulated components in airborne particles. Both are demanded by existing networks within the EU as well as by global atmospheric research. On-site measurement campaigns One of the objects is the application of mobile x-ray spectroscopy techniques combined with aerosol sampling techniques for quantifying particle compositions in the field for real time analysis. During two in-field measurement campaigns in Budapest, Hungary in May 2018 and Cassino, Italy in September 2018 the size dependent mass concentrations of specific elements in ambient aerosols were monitored under dynamic conditions. Typically, airborne particles are sampled on filter substrates. During this project new sampling methods with specially designed substrate holders for an in-situ TXRF analysis were developed and applied for the first time. This approach allows a direct time and size resolved analysis without laborious digestion steps and a reduced risk of contamination. Aerosol particles were sampled in a 13-stage DLPI impactor - size range from 0,03 µm to 10 µm - which was equipped with special adapters for acrylic discs of 30 mm diameter, serving as substrates. TXRF analysis was performed on site with the transportable spectrometer S2 PICOFOX (Bruker Nano GmbH) equipped with a Mo X-ray tube and a 30 mm² Silicon Drift Detector (SDD). Excitation conditions were 50 kV, 600 µA, measurement time 1000 s. Quantification was based on internal standardization using 50 ng of Y in solution, which was pipetted into the centre of the discs prior to sampling. At moderate air pollution levels, i.e. PM10 ~ 20 µg/m³, sampling times of less than 2 hours were enough for the detection of elements in different particle size bins. The in-situ approach and the high sensitivity of TXRF enables the observation of rather quick changes in the quantity and distribution of elements in an ambient aerosol on the day of sampling, as the below example from the Cassino field campaign on 11 Sept. 2018 shows: The analysis of the morning and afternoon sampling shifts reveals the occurrence of the elements Fe, Ca and Si in different size bins as well as their significant temporal change in respective mass concentrations over the day while the distributions of several other elements in the aerosol remain unchanged. The validation of these results by backup measurements is planned. T2 - European Aerosol Conference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - TXRF KW - Ambient air KW - Aerosol KW - Cascade impactor KW - Element analysis PY - 2019 AN - OPUS4-49582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kayser, Y. A1 - Pollakowski-Herrmann, Beatrix A1 - Hönicke, P. A1 - Friese, Carmen A1 - Seeger, Stefan A1 - Cara, E. A1 - Boarino, L. A1 - Gianotti, V. A1 - Laus, M. A1 - Beckhoff, Burkhard T1 - AEROMET – Traceable and reliable chemical analysis of aerosols by X-ray spectrometry N2 - Traceable and reliable chemical element analysis of aerosols by X-ray spectrometry was investigated using aerosol samples from field campaigns which have been measured in the GIXRF-beamline at BESSY. The reference-free XRF approach allows for a traceable analysis of the mass deposition. Traceable quantification by means of XRF can be transfered to benchtop instrumentation used in the laboratory Chemical and dimensional analysis of deposited aerosol allows for a comprehensive analysis of aerosols, e.g. for toxicity assessment and determination of the source The folowing elements could be identified and quantified in the field samples: Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, W, Pb. T2 - European Aerosol Conference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - TXRF KW - Element mass concetration KW - Ambient aerosol KW - Cascade impactor PY - 2019 AN - OPUS4-49583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bucar, K. A1 - Zitnik, M. A1 - Stabile, L. A1 - Ozan, J. A1 - Seeger, Stefan T1 - Performance of a Sharp GP2Y low-cost aerosol PM sensor N2 - Simple particulate matter sensors are gaining popularity due to their low price, easy handling and good temporal resolution. In this presentation, we report on the performance of a Sharp optical PM sensor GP2Y1010AU0F, which costs less than 15 €. The sensor is built around an infrared emitting diode (ILED) and a phototransistor detecting the light scattered from the aerosol particle. An electronic circuit shapes the detected light in a pulsed signal. The manufacturer advises sampling the output signal 280 microseconds after the ILED pulse. The measured output voltage is an indicator of dust concentration. We have built two identical simple PM monitoring devices using Raspberry Pi 3 computer interfacing the PM sensor with Microchip’s MCP3002 ADC via SPI. The ADC is capable of more than 100 ksamples/s at 10-bit resolution. The Rpi3 was pulsing the sensor at 10Hz, digitizing and saving the data and sending the results wirelessly. Sensor’s output pulse shape was sampled with 10 microsecond time steps and saved, thus making offline analysis possible. A time jitter of output pulses can be observed and suggests a peak fitting as a better approach to the signal readout compared to the single sampling at a fixed time after pulse triggering We compared both methods. T2 - European Aerosol Coference EAC 2019 CY - Gothenburg, Sweden DA - 25.08.2019 KW - Aerosol KW - Low cost aerosol PM sensor KW - PM PY - 2019 AN - OPUS4-49581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan A1 - Pollakowski-Herrmann, Beatrix A1 - Osan, J. A1 - Gross, A. A1 - Stosnach, H. A1 - Kayser, Y. A1 - Beckhoff, B. T1 - Quantification of element mass concentrations in aerosols by combination of cascade impactor sampling and in-situ TXRF Spectroscopy N2 - A mobile Bruker S2 Picofox TXRF spectrometer has been used in two field campaigns within the EMPIR env07 AEROMET project for the on-site analysis of cascade impactor aerosol samples.The results show that even at moderate air pollution levels – i.e.PM10 fairly below 20 μg/m³ - element mass concentrations in air in the range of 100 pg/m³could be measured in up to 13 size bins after sampling times of less than only 0.5 days. T2 - UFP 2019 Ultrafeinstaub in der Atmosphäre und in Innenräumen, 3. Symposium CY - Technische Universität Berlin, Germany DA - 19.09.2019 KW - TXRF ambient air aerosol chemical analysis aerosol element composition KW - Aerosol KW - TXRF KW - Cascade impactor KW - Aerosol element alanysis KW - Aerosol element mass concentration PY - 2019 AN - OPUS4-49580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - VOC, Fine and Ultrafine Particles Emissions from Additive Manufacturing and 3D-Printers N2 - The presentation gives an overview on Additive Manufacturing techniques and related potential risks from emission of hazardous gases and aerosols, based on emission characterizations in BAM. Voluntary mitigation strategies are presented T2 - BAM - JBMIA (Japan Business Machine and Information System Industries Association) Meeting, JBMIA Emissions Working Group Meeting CY - Tokyo, Japan DA - 04.05.2019 KW - 3D Printing KW - Additive Manufacturing KW - Particulate emissions KW - Emissions of hazardous gases KW - Filament comparison PY - 2019 AN - OPUS4-47812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - UBA Projects on Particulate Emissions from Laser Printers N2 - The presentation gives an overview on past and ongoing projects in BAM on laser printer particulate emissions, funded by the German Environment Agency (UBA) in order to further develop award criteria for the Blue Angel ecolabel for office machines T2 - BAM - JBMIA (Japan Business Machine and Information System Industries Association) Meeting, JBMIA Emissions Working Group Meeting CY - Tokyo, Japan DA - 04.05.2019 KW - Laser Printer KW - Particulate emission KW - Blue Angel ecolabel KW - Office machines PY - 2019 AN - OPUS4-47811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring T2 - Euro PM 2019 Proceedings N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM 2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Plume KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Particle gas emission KW - Aerosol measurements PY - 2019 SP - 1 EP - 7 AN - OPUS4-49388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety JF - Advanced Materials and Processes N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Simon, Franz-Georg A1 - Meggyes, Tamas ED - Meyers, Robert A. T1 - Sustainable remediation methods for metals and radionuclides T2 - Encyclopedia of Sustainability Science and Technology N2 - Since it was realized that sites contaminated with metals and radionuclides needed treatment, various remediation methods have been and are being developed. Depending on the size of the contaminated site and urgency of intervention, conventional or recently introduced techniques have been used. Conventional techniques include excavation and removal for treatment of soil and contaminants, or the so-called “pump-and-treat” method, in which contaminated groundwater is removed from the ground by pumping and treated in a treatment plant on the surface. It has the advantage of using proven techniques and is easy to control, and the treated groundwater can be reinjected into the ground or discharged in rivers or lakes. Novel methods include permeable reactive barriers, biomineralization, and electrokinetic remediation. KW - Permeable reactive barriers KW - Groundwater KW - Uranium PY - 2019 SN - 978-1-4939-2493-6 DO - https://doi.org/10.1007/978-1-4939-2493-6_63-3 SP - 1 EP - 37 PB - Springer Science+Business Media, LLC CY - Heidelberg ET - 1 AN - OPUS4-48816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Simon, Franz-Georg A1 - Quicker, P. ED - Elvers, B. T1 - Waste, Evaluation Methods T2 - Ullmann's Encyclopedia of Industrial Chemistry N2 - It is difficult to decide which waste management system fulfills best predefined sustainability goals such as maximum materials and energy recovery, least environmental impact, and lowest societal cost. Such decisions are based on many parameters. However, several evaluation methods exist with different scope and output, and the application of one or more evaluation methods provides an objective comparison of alternatives. KW - Waste treatment KW - Exergy KW - Lfe cycle assessment KW - Eco-efficiency analysis PY - 2019 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/14356007.o28_o02.pub2 SN - 978-3-52730-673-2 DO - https://doi.org/10.1002/14356007.o28_o02.pub2 SP - 1 EP - 10 PB - Wiley-VCH Verlag CY - Weinheim ET - 1. AN - OPUS4-49715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Aerosol measurements KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Plume KW - Particle gas emission PY - 2019 AN - OPUS4-49387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -