TY - JOUR A1 - Schoknecht, Ute A1 - Mathies, H. T1 - The Impact of Weather Conditions on Biocides in Paints JF - Materials N2 - Weather conditions affect biocides on exposed outer surfaces on constructions. Contact with water causes hydrolysis and leaching of substances. Ultraviolet radiation may induce photolysis. As a result, a mixture of biocidal active substances and transformation products can be emitted into the environment. In a semi-field study, leaching of the biocidal active substances terbutryn, diuron, octylisothiazolinone, carbendazim, and selected transformation products was observed for two paints containing either a white or a red pigment. Painted test panels were exposed to natural weathering for about 1.5 years. Runoff samples were analyzed during the course of the experiment. At the end of the study, residues of biocidal active substances and transformation products were determined in sections of the test panels. Emissions of substances were mainly observed during the first few months of the experiments. Increased emissions of transformation products were observed during periods of increased global radiation and subsequent periods with relatively high amounts of driving rain. Different patterns of transformation products were observed, especially for terbutryn, both for paints containing different pigments and in experiments that were started in different periods of the year, as well as during different periods of the experiments. KW - Substance release KW - Construction products KW - Biocides KW - Transformation KW - Weathering KW - Driving rain KW - Global radiation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560651 DO - https://doi.org/10.3390/ma15207368 VL - 15 IS - 20 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Seneschal-Merz, Karine A1 - Bücker, Michael T1 - Entwicklung von transparenten farbigen keramischen Schmelzfarben für den Einsatz auf digitalen Druckmaschinen N2 - Ziel des Projektes war es, schwermetallfreie Schmelzfarben für den Einsatz auf einem Digitaldrucker zu entwickeln. Dafür sollten die Glasfarben, bei Temperaturen unter 630°C verarbeitbar und deren Eigenschaften kompatibel mit denen von Floatgläsern sein. Zudem sollte die aufgeschmolzene Farbe transparent und im Außenbereich eingesetzt beständig sein. Weiterhin mussten die Farben eine Partikelkorngröße kleiner als 20µm besitzen, um die Druckköpfe des Digitaldruckers nicht zu verstopfen. Gute Dispergierbarkeit, thixotropes Verhalten und eine schnelle Trocknung waren weitere Voraussetzungen. Die Ersetzung von PbO durch ZnO und Bi2O3 wurde getestet und zeigte positive Ergebnisse. Ein geeigneter Mahl-und Dispergierprozess wurde entwickelt. Bei der Firma „glas&räume“ wurden die Musterfarben getestet und zeigten ein gutes Druckverhalten. Bedingt durch das Tintenstrahlverfahren erreicht der Farbauftrag keine 100%ige Transparenz. Trotzdem erscheint die transparente keramische Schmelzfarbe im Vergleich zur Verwendung von opaker Schmelzfarbe tatsächlich völlig transparent. Der Unterschied ist signifikant und öffnet so ein neues Kapitel im keramischen Digitaldruck. KW - Glass KW - Low melting KW - Chemical durability KW - Dispersion of glass particle KW - Printing KW - Architecture KW - Weathering KW - Architektur KW - Chemische Beständigkeit KW - Dispergierung von Glaspartikeln KW - Glas KW - Niedrig schmelzend KW - Druck KW - Bewitterung PY - 2018 SP - 1 EP - 61 AN - OPUS4-44650 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gerrits, Ruben T1 - Data of "An experimental study of fungal olivine weathering" N2 - This file contains all the data used for the figures shown in the Dissertation of Ruben Gerrits with the title "An experimental study of fungal olivine weathering". In this study, the weathering-affecting, rock-inhabiting fungus, Knufia petricola A95 and the Fe-bearing olivine (Fe0.2Mg1.8SiO4) were selected to investigate fungi-induced effects on mineral dissolution. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, that produced more extracellular polymeric substances (EPS) than the wild type (WT), enabled comparative studies of the role of melanin and EPS in weathering processes. KW - Olivine KW - Weathering KW - Fungus PY - 2019 DO - https://doi.org/10.26272/opus4-48770 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gerrits, Ruben T1 - An experimental study of fungal olivine weathering N2 - Free-living and (ecto)-mycorrhizal fungi enhance rock weathering. In their roles as mineral weathering agents and mutualistic partners of phototrophs, fungi supply primary producers like plants and phototrophic microorganisms with mineral-derived nutrients. The exact mechanisms behind fungus-induced mineral weathering processes are however not well understood. Progress can be achieved here by reproducible experimental simulations of the natural processes, using well-characterised model organisms and minerals. In this study, the weathering-affecting, rock-inhabiting fungus, Knufia petricola A95 and the Fe-bearing olivine (Fe0.2Mg1.8SiO4) were selected to investigate fungi-induced effects on mineral dissolution. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, that produced more extracellular polymeric substances (EPS) than the wild type (WT), enabled comparative studies of the role of melanin and EPS in weathering processes. Three experimental systems, which generate long-term microbiological stability, were developed to study the impact of the WT and ΔKppks on olivine weathering: (1) batch and (2) mixed flow dissolution experiments, and (3) biofilm cultivation experiments. In addition, state-of-the-art analytical techniques were used to monitor changes in the growth medium, as well as of the mineral surface and biofilm-mineral interface. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of the Mg, Si and Fe concentrations in the reacted growth medium was used to quantify olivine dissolution. In abiotic controls, Mg and Si dissolved congruently, while Fe precipitated. The measured olivine dissolution rates at pH 6 were two orders of magnitude lower than previously reported, but similar at acidic pH. X-ray photoelectron spectroscopy (XPS) analyses of the olivine surface confirmed the presence of Fe (oxyhydr)oxide precipitates. Transmission electron microscopy (TEM) imaging of an abiotically reacted polished olivine section from the long-term cultivation experiment showed the presence of an amorphous layer enriched in Fe. All these observations indicate that the precipitation of Fe (oxyhydr)oxides on the olivine surface inhibits olivine dissolution. Both tested rock-inhabiting fungal strains affect Fe precipitation as well as olivine dissolution. Evaluation of the WT and ΔKppks revealed that the WT formed less biomass but could take up higher amounts of metals (e.g. Fe) and was more efficient in its attachment to olivine. The WT and ΔKppks enhanced olivine dissolution as demonstrated by higher Mg and Si concentration in the reacted growth medium. They furthermore prevented Fe precipitation by binding Fe and retaining it in solution, thereby allowing olivine dissolution to proceed. The WT cells that were attached to the olivine surface were particularly efficient at inhibiting Fe precipitation. By binding Fe directly at the olivine surface, the WT cells removed the inhibition of olivine dissolution almost completely. TEM analysis of polished olivine sections, colonised by a fungal biofilm for seven months, supported this hypothesis. After long-term fungus-olivine interaction, the Fe-enriched, amorphous layer did not develop, and the olivine surface was stronger etched compared to the abiotic control. To study the effect of mutualism on mineral weathering, K. petricola was grown with the cyanobacterium, Nostoc punctiforme ATCC 29133. Both partners showed an enhanced growth and formed a stratified biofilm which attached more strongly to olivine. Nevertheless, the olivine dissolution rate of the fungus-cyanobacterium consortium was moderate. Rock weathering simulation systems developed here are promising research instruments. The experimental conditions allow for the alteration of the studied mineral surface, while the clear definition of these conditions delivers a stable growth of microorganisms. The latter makes these systems universally applicable, especially in combination with integrative multidisciplinary analytics. Processes underlying environmental and biological effects on rock weathering, metal corrosion, plastic degradation, or the deterioration of any other substrate can be studied reproducibly and over a long period of time. The chemical and biological complexity of these simulation systems mimics natural rock weathering processes. The mineral dissolution rates generated in this study are therefore relevant to natural ecosystems. KW - Olivine KW - Weathering KW - Fungus PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-refubium-25125-1 DO - https://doi.org/10.17169/refubium-2880 SP - 1 EP - 178 PB - Freie Universität Berlin CY - Berlin AN - OPUS4-48825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Wirth, R. A1 - Schuessler, J. A. A1 - Benning, L. G. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Feldmann, Ines T1 - Olivine weathering by the genetically amenable rock-inhabiting fungus Knufia petricola A95 N2 - In arid sun-exposed environments, rock-inhabiting fungi dominate microbial communities on rock surfaces. Fungi are known to enhance rock weathering, although the exact mechanisms are not completely understood. These natural processes can be simulated by reproducible experimental systems. Particularly attractive are genetically amenable rock-weathering fungi, where certain traits can be knocked-out to identify weathering-relevant functions. Here, we studied the effect of the rock-inhabiting fungus Knufia petricola A95 and its melanin-deficient mutant (ΔKppks) on the weathering of a Fe-bearing olivine. We examined the olivine dissolution kinetics and looked at the olivine-fungus interface. For the former we inoculated olivine powder with the fungus in batch and mixed flow reactors and analysed the medium solution by ICP-OES, for the latter biofilm-covered olivine sections from flow-through reactors were analysed by FIB-TEM. In general olivine dissolution was lower when olivine was incubated without fungi: the abiotic olivine dissolution rates were lowest and the surface of the abiotically reacted olivine sections showed no etching. Various chemical analyses show Fe (oxyhydr)oxide precipitation on top of the abiotically reacted olivine, indicating its role in inhibiting olivine dissolution. Both the wild type (WT) and ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe (oxyhydr)oxide precipitation was thus reduced, explaining the enhanced olivine dissolution in their presence. Particularly efficient at preventing Fe precipitation were attached WT cells: the inhibition of olivine dissolution almost completely disappeared. The attachment capacity of the WT is most likely caused by the production of WT-specific extracellular polymeric substances. Our presented experimental systems allowed the precipitation of Fe (oxyhydr)oxides and included a rock-inhabiting fungus and thus simulated weathering processes relevant to natural ecosystems. T2 - ISEB 2019 CY - Potsdam, Germany DA - 23.09.2019 KW - Olivine KW - Weathering KW - Fungus PY - 2019 AN - OPUS4-49585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute A1 - Mathies, Helena T1 - Transformation of biocides in organic coatings due to UV radiation and water contact N2 - Transformation of carbendazim, diuron, octylisothiazolinone and terbutryn was investigated in two paints containing either white titanium dioxide or a red iron oxide pigment. Test specimens of these coatings on glass were exposed to water contact and UVA-radiation under laboratory conditions. Panels of birch plywood were coated and exposed to natural weather conditions in a field experiment. Concentrations of biocides and transformation products were analysed in leachates from laboratory tests, runoff samples and remaining coatings. Water contact, UVA radiation as well as pigments in the paints affected the pattern and amount of transformation products. T2 - Advanced Coationgs Technology '18 CY - Sosnowiec, Poland DA - 13.11.2018 KW - Biocide KW - Transformation KW - Weathering KW - UV radiation PY - 2018 AN - OPUS4-46648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Uhlig, S. A1 - Colson, B. A1 - Schoknecht, Ute T1 - A mathematical approach for the analysis of data obtained from the monitoring of biocides leached from treated materials exposed to outdoor conditions JF - Chemosphere N2 - Leaching processes are responsible for the release of biocides from treated materials into the environment. Adequate modeling of emission processes is required in order to predict emission values in the framework of the risk assessment of biocidal products intended for long-term service life. Regression approaches have been applied to data obtained from the long-term monitoring of biocide emissions in experiments involving semi-field conditions. Due to the complex interaction of different underlying mechanisms such as water and biocide diffusion and desorption, however, these attempts have proven to be of limited usefulness e at least, for the available biocide emission data. It seems that the behavior of the biocide emission curve depends to a considerable extent on whichever underlying mechanism is slowest at a given point in time, thus limiting the amount of biocide available for release. Building on results obtained in the past few years, the authors propose a criterion for determining which mechanism controls the leaching process at a given point in time based on the slope of the log-log emission curve. In addition, a first-order approximation of this slope value is presented which displays advantages both in terms of computability and interpretability. Finally, an algorithm for the determination of breakpoints in the slope of the log-log emission curve is presented for the demarcation of phases within which one mechanism acts as a limiting factor. KW - Biocides KW - Leaching KW - Weathering KW - Mathematical analysis PY - 2019 DO - https://doi.org/10.1016/j.chemosphere.2019.04.102 SN - 0045-6535 SN - 1879-1298 VL - 228 SP - 271 EP - 277 PB - Elsevier AN - OPUS4-47886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Köppen, Robert A1 - Becker, Roland A1 - Bücker, Michael A1 - Ostermann, Markus A1 - Traub, Heike T1 - Weathering scenarios – Changes in polymer surface morphologies and leaching of brominated flame retardants N2 - In addition to previously reported results on the simulated aging of polystyrene samples (PS) containing 1 wt. % hexabromocyclododecane (HBCD), we present the first results of our investigations of polypropylene (PP)-samples containing 0.1 wt. % BDE-209. All studied polymer samples were exposed to a defined weathering schedule in a climate chamber in accordance to regulation EN ISO 4892-3:2006.For the determination of BDE-209 in the collected rain water samples derived from the used climate chamber, the samples were prepared in accordance with a validated protocol. Before the analyses, each sample was spiked with 2 µL of isotopically labeled BDE-209 (13C10-BDE-209) to serve as internal standard (ISTD) in the performed stable isotope dilution analysis. Subsequently the samples were extracted with isooctane, the obtained aliquots of the extracts were concentrated to 200 µL and 2 µL of the resulting solution were injected to the GC/MS for quantification. Additionally, the total bromine contents are monitored for the aged and untreated samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as well as X-ray fluorescence analysis (XRF) as non-destructive and rapid method. Furthermore, results from surface analysis using environmental scanning electron microscopy (ESEM) for morphological characterization of the aged and untreated samples were presented and discussed. In general, the resulting data from the accelerated aging will be compared to those from the natural weathering experiments (“atmospheric exposure”, in soil). The atmospheric exposure was performed by placing the samples on a weathering rack, which is aligned in SW direction (in a 45° angle to the horizon). The weathering data were regularly recorded by Deutscher Wetterdienst at this site. The surfaces of the test specimens (aged and stored references) were analyzed by ESEM as well as by LA-ICP-MS and by XRF. The surface of PS and PP specimens aged outdoors present the aging under real conditions and allow the comparison to the accelerated aged specimens by means of the weathering chamber. This way, we explore the efficiency of the accelerated aging procedure, which provides the advantage of well-defined and reproducible conditions compared to natural weathering, as a tool for testing different plastic materials. Additionally “in soil” experiments were conducted in-door in a well characterized testing soil. The soil (boulder-clay, sand with 12 % loam, particle size in total 0.2-4 mm) is filled in a free-draining concrete basin inside of an air-conditioned room. In this manner, TOC, water capacity and humidity are recorded parameters. To assure a washing out process from the samples by the raining water, the target water content is calculated to 8%. The actual humidity is measured by a tensiometer, assuring the duration of the raining period. The water content is additionally monitored by weight of the basin, capturing water from raining periods. The correct humidity is a fundamental parameter for biological activity. Samples of PS resp. PP were of dimension 10x1cm and 5 specimens were placed up to the half in the soil per basin. Microbial activity of the soil, monitored by the reference polyurethane, sets HBCD resp. BDE-209 of the samples free and will be leached from the samples by raining water. Thereafter these will be captured by passive samplers placed in a distinct distance to the samples in the soil. The “in soil” experiments are complementary to the weathering experiments due to the biological activity in the soil. These experiments simulate the fate of the brominated flame retardants in the biosphere. T2 - Umwelt 2018 CY - Münster, Germany DA - 09.09.2018 KW - BFR KW - Weathering KW - PP KW - PS PY - 2018 AN - OPUS4-47029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -