TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of a procedure for the analysis of the emissions of VVOCs N2 - Several aspects were explored towards the standardization of a suitable procedure. The use of gaseous standards is necessary and a standard gas mixture containing 60 substances was successfully generated and employed for further investigations. The suitability of different chromatography columns was addressed: The use of PLOT (Porous Layer Open Tubular) columns is well suitable for VVOC analysis. The recoveries of the 60 analytes on several adsorbents and their combinations were determined: A combination of a graphitized carbon black and a carbon molecular sieve showed great results for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. Different options such as purging, the use of a drying system or splitting were investigated for water removal. This contribution will present experimental results supporting the standardization of a method for VVOC analysis. T2 - Indoor Air conference CY - Kuopio, Finland DA - 12.06.2022 KW - Analytical method KW - EN 16516 KW - ISO 16000-6 KW - VVOCs PY - 2022 AN - OPUS4-55282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Diffusive Gradients in Thin-films (DGT) technique as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. As a result of the perpetual use of PFAS containing products, effluents and sewage sludge from wastewater treatment plants (WWTPs) have been observed to be an important pathway for PFAS into the environment. In Germany, phosphorus and other nutrients from sewage sludge and wastewater should be recycled in WWTPs of cities with a large population. However, it is not clear if PFAS contamination from wastewater and sewage sludge end up in novel wastewater-based fertilizers. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS-MS quantification. However, for screening of PFAS contaminations in sewage sludge or wastewater-based fertilizers also passive sampler based on the Diffusive Gradients in Thin-films (DGT) technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyse the “total” amount of PFAS on the passive sampler. Here, we show results from the DGT method in comparison to those of the extractable organic fluorine (EOF) method for a variety of wastewater-based fertilizers. Additionally, we analysed the adsorption of PFAS on the weak anion exchanger (WAX) based DGT passive sampler binding layer by infrared and fluorine K-edge X-ray adsorption near-edge structure (XANES) spectroscopy. T2 - SETAC Europe 2022 CY - Copenhagen, Denmark DA - 15.05.2022 KW - Passive sampling KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Wastewater PY - 2022 AN - OPUS4-54883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Biocides Used as Material Preservatives Modify Rates of de novo Mutation and Horizontal Gene Transfer in Bacteria N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-55263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank A1 - Boenke, Viola A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Sündermann, Claudia T1 - Bacterial resistance evolution towards disinfectants and antimicrobial surfaces and development of a standardized test N2 - Question Disinfectants and antimicrobial surfaces (AMCs) are important tools to prevent the spread of pathogens and antimicrobial resistant bacteria. However, concerns have been raised about the possibility for the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance - a single mechanism conferring resistance to a disinfectant and an antibiotic- and co-resistance - two distinct mechanisms physically linked on e.g. a plasmid. The risk for resistance and cross-resistance during use of biocides (including disinfectants and AMCs) must be evaluated during authorization according to the EU biocidal product regulation. However, to date there is a lack of standardized methods that support risk assessment during the authorization process. Methods We used adaptive laboratory evolution (ALE) experiments which are based on repeated exposure of bacteria to disinfectants or AMCs. The experiments are followed by phenotypic (antimicrobial susceptibility testing) and genotypic (whole genome sequencing) characterization of the evolved strains. The basic idea of these experiments is to expose bacteria to lethal conditions and select for mutants with increased survival. This approach is fundamentally different to other ALE experiments, which commonly select for increased growth at subinhibitory concentrations. However, selection for increased survival represents a selective pressure that more realistically reflects selection under in-use conditions of disinfectants and AMCs. Results First, we studied adaptation of E. coli during repeated disinfection with benzalkonium chloride in a suspension assay. The experiments showed a 2000-fold increase in survival within 5 exposure cycles. The adaptive changes are linked to highly parallel mutations in genes related to lipid A biosynthesis, less negative cell surface charge, reduced growth rate and increased competitive ability in the presence of certain antibiotics. We use the same approach to develop standardizable ALE experiments based upon accepted standards that are used to determine the efficacy of disinfectants (EN 13697) and antimicrobial surfaces (ISO 22196). The results highlight pronounced adaptation of different test strains towards surface disinfection (benzalkonium chloride and isopropanol) and AMCs (copper). Conclusion Bacteria can adapt with increased survival towards lethal stress imposed by disinfectants and AMCs. The adaptive ability of bacteria to disinfectants and AMCs can be determined in a standardized manner. T2 - 74. Jahrestagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie [DGHM] e. V. CY - Berlin, Germany DA - 05.09.2022 KW - Antimicrobial surfaces KW - ISO22196 KW - Antimicrobial resistance KW - Round robin test PY - 2022 AN - OPUS4-56432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schuehle, Florian A1 - Richter, Matthias T1 - Quality assured uptake rates for passive sampling of indoor air VOCs N2 - Generation of experimental uptake rates (UR) for > 70 VOCs (7d /100 μg m-3) Application in German Environmental Survey – VOC exposure assessment Assurance of transparency concerning UR generation and uncertainty creates basis for decision making and comparability of measurement results. Exemplarily the uncertainty u(UR) of toluene UR was modelled and determined statistically with own laboratory data (relative standard deviation of actively sampled test gas atmosphere – RSDa and n = 5 exposed passive samplers – RSDp) in line with EN 838 as well as from variation of literature UR – RSD UR,lit. T2 - Airmon 2022, 10th International Symposium on modern principles of air monitoring and biomonitoring CY - Bristol, UK DA - 06.11.2022 KW - IAQ KW - VOC KW - Diffusive sampling KW - Uptake rate PY - 2022 AN - OPUS4-56583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering microbiological influenced corrosion processes on steel with single cell-ICP-ToF-MS N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process dictated by the environment, microorganisms, and the respective electron source. Interaction pathways between cells and the metal surface remain unclear. The development of this novel single cell-inductively coupled plasma-time of flight-mass spectrometry analytical method and a MIC-specific staining procedure facilitate the investigation of steel-MIC interactions. With this it is possible to analyze the multi-elemental fingerprint of individual cells. The detection method revealed elemental selectivity for the corrosive methanogenic archaeal strain Methanobacterium-affiliated IM1. The interface between material and environmental analysis thus receives special attention, e.g., when considering MIC on solid steel. Hence, the possible uptake of individual elements from different steel samples is investigated. Results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to interact with chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. References. T2 - Future WiNS CY - Berlin, Germany DA - 07.12.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 AN - OPUS4-56567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Biocides Used as Material Preservatives Modify Rates of De Novo Mutation And Horizontal Gene Transfer in Bacteria N2 - Antimicrobial resistance (AMR) is an important global health problem. The environment has been regocnized as an improtant compartment for the occurance, evolution and transmission of AMR. Biocides used as material preservatives are in contact with the environment and natural microbial communities through direct application and passive leaching from protected materials. It has been shown that environmental contaminants, such as antibiotics, metals and pesticides, can affect resistance evolution and spread by modifying the underlying processes of de novo mutagenesis, horizontal gene transfer and selection. However, it is unknown if material preservatives are involved in these processes and thereby can also drive AMR in the environment. Here, we investigate the effect of material preservatives on rates of de novo mutation and horizontal gene transfer (HGT) in Escherichia coli and the model soil microorganisms Acinetobacter baylyi and Bacillus subtilis. To this end, we determined the effects of material preservatives on the mutation rates and HGT with the Luria-Delbrück fluctuation assay and a conjugation assay with the broad host-range plasmid pKJK5 and a transformation assay. Our data shows that the quaternary ammonium compound DDAC, copper, the pyrethroid insecticide permethrin and the azole fungicide propiconazole significantly increase mutation rates in E. coli, whereas A. baylyi and B. subtilis are not significantly affected. Moreover, we show that the carbamate IPBC and the insecticide permethrin affect HGT in a concentration dependent manner. Investigations with reporter strains for bacterial stress response pathways show that induction of the general stress response (rpoS) and components of the SOS response (recA) underlie the effects of most biocides on mutation rates and HGT. Taken together, our data is important for assessing the contribution of biocides on AMR evolution and spread in the environment. T2 - World Microbe Forum (ASM, FEMS) CY - Online meeting DA - 20.06.2021 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2021 UR - https://www.abstractsonline.com/pp8/#!/9286/presentation/11692 AN - OPUS4-54211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - Tools for Knufia petricola: new techniques for CRISPR/Cas9-based genome editing N2 - Black microcolonial fungi represent a group of ascomycetes with similar adaptations for existing in natural and anthropogenically created extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) in the multilayered cell walls. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a representative for developing methods for genetic manipulation, simulation of mineral weathering and study of symbiotic interactions. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and three additional resistance selection markers. The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter, while the black-white screening due to the concurrent elimination of pks1 (melanin) and phs1 (carotenoids) was used to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. In addition, two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series (Schumacher, 2012) and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for use in other fungal systems as well. T2 - 31st Fungal Genetics Conference CY - USA, CA, Pacific Grove DA - 15.03.2022 KW - Microcolonial fungi KW - Genetic engineering KW - Fluorescent proteins PY - 2022 AN - OPUS4-54586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Del Mastro, G. A1 - Hammerstaedt, J. A1 - Mocella, V. A1 - Rabin, Ira T1 - XRF Ink analysis of selected fragments from the Herculaneum collection N2 - Hundreds of papyrus rolls, carbonized during the 79CE eruption of Mount Vesuvius, were discovered in 1754 at Herculaneum. Sophisticated mechanical methods for unrolling the best-preserved scrolls have been applied, with varying success. However, such processes have been abandoned, to prevent risk from irremediable damage or loss and to preserve the integrity of the extremely fragile rolls. Following the development of X-ray based non-invasive techniques, attempts to virtually unroll the scrolls were made. The most common ink in Antiquity was carbon-based, and the main element of carbonized papyrus is carbon, making these investigations difficult. However, some attempts with synchrotron X-ray phase-contrast tomography (XPCT) were successful. Recently, the identification of antique inks containing metals raised hope that if some of the inks contain metal the rolls can be virtually unrolled using conventional CT- technique. We investigated the inks of a selection of partially unrolled fragments stored at the Biblioteca Nazionale di Napoli with X-ray fluorescence in order to select the best candidates for tomography. Despite the many difficulties (analysis of several layers sticking together, letters barely visible, difficulty to separate contribution from the ink and from the papyrus, inhomogeneity of the support, fragility of the fragments…), encouraging results were found, with a number of inks from Greek fragments found to contain additions to the soot (Fe, Pb, Cu P). T2 - International Symposium on Archaeometry CY - Online meeting DA - 16.05.2022 KW - XRF KW - Ink KW - Herculaneum KW - Papyrus PY - 2022 AN - OPUS4-54892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Development of a MIC single archaea-ICP-ToF-MS-method for analysis of various elements in solid steel samples N2 - ICP-ToF (Flugzeitanalysator, engl. time of flight)-MS ermöglicht den Multielement Fingerabdruck einzelner Zellen (single cell) zu analysieren. Die single cell-ICP-ToF-MS kommt bei dem vorgestellten Poster bei der Analyse von Archaeen, die an mikrobiell beeinflusster Korrosion (engl. microbiologically influenced corrosion, MIC) von Stahl eine Rolle spielen, zum Einsatz. Mittels sc-ICP-ToF-MS wird die mögliche Aufnahme von einzelnen Elementen aus dem jeweiligen Stahl untersucht – die erhaltenen Informationen fließen zukünftig in die Aufklärung zugrunde liegender Mechanismen sowie Entwicklung möglicher Materialschutzkonzepte ein. Die Arbeiten Verknüpfen moderne Methoden der Analytical Sciences mit Materialien. T2 - Tag der Chemie 2021 CY - Online meeting DA - 06.07.2021 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-52941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Mirabella, Francesca A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Bennet, Francesca A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Influence of the pulse repetition rate on the chemical and morphological properties of laser generated surface structures N2 - Inter-pulse accumulation of heat could affect the chemical and morphological properties of the laser processed material surface. Hence, the laser pulse repetition rate may restrict the processing parameters for specific laser-induced surface structures. In this study, the evolution of various types of laser-induced micro- and nanostructures at various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz) are studied for common metals/alloys (e.g. steel or titanium alloy) irradiated by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment. The processed surfaces were characterized by optical and scanning electron microscopy (OM, SEM), energy dispersive X-ray spectroscopy (EDX) as well as time of flight secondary ion mass spectrometry (TOF-SIMS). The results show that not only the surface morphology could change at different laser pulse repetition rates and comparable laser fluence levels and effective number of pulses, but also the surface chemistry is altered. Consequences for medical applications are outlined. T2 - European Materials Research Society Spring 2021 Meeting CY - Online meeting DA - 31.05.2021 KW - Laser-induced pariodic surface structures KW - LIPSS PY - 2021 AN - OPUS4-52778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg T1 - Investigation of PFAS Contaminated Solid Matrices by Combustion Ion Chromatography (CIC) - Development of EOF and AOF as Sum Parameters in Environmental Analysis N2 - Per- and polyfluoralkyl surfactants (PFAS) are industrially produced surface chemicals used in daily applications that have gained public and political attention due their unnaturally high appearance in drinking water, nourishments and soils.[1] Their chemical structures exhibit both lipophilic and hydrophilic properties, leading to a highly inert and persistent character.[2] Various PFAS have shown to be bioaccumulative in plants and animals, and some have been characterized as highly toxic when ingested.[3] When exposed to the environment, PFAS slowly get mobilized by natural water resources, leading to contamination of large areas of soil and natural water sources.[4] While PFAS contamination of drinking water has been investigated intensively, perfluoralkyl contamination of soils has been rarely examined as of yet. At the same time, an increasing amount of PFAS contamination sites are being discovered worldwide, calling for a sophisticated strategy towards analytical characterization.[5] Since the number of known PFAS already exceeds 4700, the established sum parameters like extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF) are key elements to fully survey the impact of exposure.[6] Simultaneously, innovative soil remediation strategies are required to contain environmental destruction and to minimize further spreading of contaminants.[7] Addressing these challenges requires suitable analytical devices that are capable of mobilizing PFAS in the solid as well as in the liquid phase. The use of combustion ion chromatography (CIC) enables analysis of both immobile and volatile PFAS and allows the detection of both total fluorine (TF) and EOF or AOF of a given soil or aqueous sample. Based on preliminary results, the clean-up of a PFAS contaminated matrix is monitored via EOF detection over time. Additionally, we tested the effectiveness of urea (CH₄N₂O) as fluoride scavenger with the aim to improve the separation of inorganic and organic fluorine and therefore, to improve AOF accuracy. The presented findings can be contributive with regard to future AOF/EOF sum parameter development and application. T2 - Eurosoil 2021 CY - Online meeting DA - 23.08.2021 KW - PFAS KW - Sum parameter analyis KW - Combustion ion chromatography PY - 2021 AN - OPUS4-53195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Pietsch, Franziska A1 - Heidrich, Gabriele A1 - Ciok, Michal T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - ASM-FEMS World Microbe Forum CY - Online meeting DA - 20.06.2021 KW - Antimicrobial resistance KW - Antagonism KW - Biofilms PY - 2021 AN - OPUS4-53165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank A1 - Kanaris, Orestis A1 - Schmidt, Selina T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - World Microbe Forum (ASM, FEMS) CY - Online meeting DA - 20.06.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations which can survive transient antibiotic treatment and facilitate resistance evolution. Despite the transient nature of disinfection, knowledge concerning persistence to disinfectants and its link to resistance evolution is currently lacking. Here, we show that E. coli displays persistence against a widely used disinfectant benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance. BAC tolerance is associated with reduced cell surface charge and mutations in the novel tolerance locus lpxM. Moreover, the fitness cost incurred by BAC tolerance turned into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings provide a mechanistic underpinning for the faithful application of disinfectants to prevent multi-drug-resistance evolution and to steward the efficacy of biocides and antibiotics. T2 - New Approaches and Concepts in Microbiology CY - Online meeting DA - 07.07.2021 KW - Persistence KW - Biocides KW - Evolution KW - Cross-resistance KW - Biocide tolerance PY - 2021 AN - OPUS4-53168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise A1 - Mrkwitschka, Paul A1 - Prinz, Carsten A1 - Rühle, Bastian A1 - Haase, Oskar A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Hodoroaba, Vasile-Dan A1 - Bresch, Harald A1 - Resch-Genger, Ute T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Thiele, Dorothea A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on ultrashort laser processed surfaces N2 - Bacterial biofilms are multicellular communities adhering to surfaces and embedded in a self-produced extracellular matrix. Due to physiological adaptations and the protective biofilm matrix itself, biofilm cells show enhanced resistance towards antimicrobial treatment. In medical and industrial settings, biofilms on e.g. for implants or for surfaces in food-processing industry can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. As extensive usage of antibiotics and biocides can lead to the emergence of resistances, various strategies are currently developed, tested and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area ultrashort laser scan processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials, i.e. titanium-alloy, steel, and polymer. The processed surfaces were characterized by optical and scanning electron microscopy and subjected to bacterial colonization studies with Escherichia coli test strains. For each material, biofilm results of the fs-laser treated surfaces are compared to that obtained on polished (non-irradiated) surfaces as a reference. Depending on the investigated surfaces, different bacterial adhesion patterns were found, suggesting an influence of geometrical size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself. T2 - European Materials Research Society Spring Meeting 2021 CY - Online Meeting DA - 31.05.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Ultrashort laser processing KW - Laser-induced periodic surface structures (LIPSS) PY - 2021 UR - https://www.european-mrs.com/laser-material-processing-fundamental-interactions-innovative-applications-emrs AN - OPUS4-52765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Heterogeneous tolerance to biocides and its consequences for the evolution of antimicrobial resistance N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance (AMR). Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Here, I present results which demonstrate that phenotypic heterogeneity in E. coli, namely the formation of tolerant persister cells, can enable the survival of disinfection and consequentially facilitate the evolution of AMR. Using experimental evolution that selects for tolerance, we find that mutations in lipid A biosynthesis arise following periodic treatment with benzalkonium chloride (BAC), a widely used disinfectant. BAC tolerance is associated with additional, diverse mutations as well as changes in the susceptibility to antibiotics from different classes and changes in motility and biofilm formation, suggesting extensive regulatory re-wiring in the evolved clones. Remarkably, we find that fitness costs (growth rate reduction) incurred by BAC tolerance are alleviated in the presence of antibiotics. These findings demonstrate the complexity underlying the adaptation to antimicrobials and highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. T2 - 4th VAAM discussion meeting 'Microbial Cell Biology' CY - Berlin, Germany DA - 09.10.2022 KW - Persistence KW - Biocides KW - Evolution KW - Disinfection KW - Biocide tolerance KW - Heterogeneity PY - 2022 AN - OPUS4-55958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Kanaris, Orestis A1 - Schmidt, Selina B. I. A1 - Schreiber, Frank T1 - Persistence against benzalkonium chloride promotes rapid evolution of tolerance under periodic disinfection N2 - The exposure to antimicrobial substances drives the evolution of antimicrobial resistance (AMR). Biocides are antimicrobials used as disinfectants, antiseptics and preservatives. They find application on a large scale in the industrial and medical sector, but also in private households. In terms of mass, the worldwide use of biocides exceeds that of antibiotics. Thus, despite their important role in preventing the spread of pathogens, due to their ubiquity, biocides are suspected to be drivers of the antimicrobial resistance crisis. In our work we try to understand how biocides contribute to the emergence of AMR, what the underlying adaptation principles and mechanisms are and how they compare to those found for antibiotics. Here, I present results which demonstrate that phenotypic heterogeneity in E. coli, namely the formation of tolerant persister cells, can enable the survival of disinfection and consequentially facilitate the evolution of AMR. Using experimental evolution that selects for tolerance, we find that mutations in lipid A biosynthesis arise following periodic treatment with benzalkonium chloride (BAC), a widely used disinfectant. BAC tolerance is associated with additional, diverse mutations as well as changes in the susceptibility to antibiotics from different classes and changes in motility and biofilm formation, suggesting extensive regulatory re-wiring in the evolved clones. Remarkably, we find that fitness costs (growth rate reduction) incurred by BAC tolerance are alleviated in the presence of antibiotics. These findings demonstrate the complexity underlying the adaptation to antimicrobials and highlight the links between persistence to disinfectants and resistance evolution to antimicrobials. T2 - Bacterial Networks (BacNet22) CY - Sant Feliu de Guixols, Spanien DA - 04.09.2022 KW - Persistence KW - Biocides KW - evolution KW - disinfection KW - biocide tolerance PY - 2022 AN - OPUS4-55713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Voigt, Oliver A1 - Gorbushina, Anna T1 - DHN melanin synthesis in the rock inhabitant Knufia petricola N2 - DHN (1,8-dihydroxynaphthalene) melanin is produced by different Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases (MCOs). The involved genes are tightly clustered, partially clustered or widely distributed in the genomes of DHN melanin-producing fungi. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g. in melanized reproduction, survival and/or infection structures. In contrast, a polyphyletic group of Ascomycetes (microcolonial fungi/ black yeast) dwelling in hostile habitats such as bare rock surfaces in hot and cold deserts, exhibits constitutive melanogenesis. Here, we report on the identification and functional characterization of the DHN melanogenic genes of Knufia petricola as a representative of the Chaetothyriales, the sister order of the Eurotiales. Orthologs for all melanogenic genes were identified in the genome of K. petricola A95, including one gene encoding the polyketide synthase (KpPKS1), two genes encoding ‘yellowish-green’ hydrolases (KpYGH1,2), two genes encoding THN reductases (KpTHR1,2) and one gene encoding a scytalone dehydratase (KpSDH1). Ten genes encoding MCOs were identified, all MCOs are predicted to be secreted. The genes are not clustered in the genome but are highly expressed. Gene functions are studied by generation of single, double, and multiple deletion mutants in K. petricola and by heterologous expression in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. T2 - VAAM Fachgruppentagung "Molecular Biology of Fungi" CY - Kaiserslautern, Germany DA - 07.09.2022 KW - DHN melanin KW - Genetics KW - Biodegradation PY - 2022 AN - OPUS4-55676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nitsche, Sarah A1 - Gerrits, Ruben A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - The role of the stress-activated MAP kinase SAK1 in Knufia petricola N2 - Mitogen-activated protein (MAP) kinases are highly conserved in animals, plants, and fungi and represent fundamental parts of signaling networks in eukaryotic cells. Black DHN (1,8-dihydroxynaphthalene) melanin and orange carotenoids are produced by many fungi in specific cell types/under certain conditions for protecting cells from abiotic and/or biotic stresses. Microcolonial black fungi constitutively produce DHN melanin, contain the conserved carotenogenic gene cluster, exhibit slow yeast-like growth and survive in extreme environments. Thus, the question arises to which extent pigment formation and responses mediated by the stress-activated MAP kinase module contribute to the observed extremotolerance. We address this question in the rock inhabitant Knufia petricola, the only representative of the extremotolerant black fungi that is genetically amendable. Here, the mutations of pks1, phs1 and both genes result in melanin-free (pink), carotenoid-free (black) and pigment-free (white) strains, respectively (Voigt Knabe et al. 2020, Sci Rep). The gene encoding the stress-activated MAP kinase was deleted in the wild-type and different pigment-deficient backgrounds. In addition, strains were generated that express a GFP-SAK1 fusion protein from the sak1 locus to follow the cytosolic/nuclear shuttling of SAK1 upon stress. Growth of the obtained single, double and triple deletion mutants was tested by dropping cell suspensions on solid media supplemented with different stress-inducing agents. The Δsak1 mutants show slightly reduced growth rates even under non-stress conditions and are hypersensitive to different stress conditions: reduced growth is observed on media inducing, for instance, osmotic, oxidative, membrane, and pH stress, and upon incubation at 30 °C (heat stress). Melanin-free Δsak1 mutants are more sensitive than black Δsak1 mutants to some but not all stress conditions, suggesting that melanin and the SAK1 pathway have complementary roles in protecting K. petricola from stress. T2 - VAAM Fachgruppentragung "Molecular Biology of Fungi" CY - Kaiserslautern, Germany DA - 07.09.2022 KW - Fungus KW - Extremotolerance KW - Signal transduction PY - 2022 AN - OPUS4-55677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanaris, Orestis A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Consequences of benzalkonium chloride tolerance in Escherichia coli: Effects on selection and evolution in the presence of ciprofloxacin N2 - We investigated the selection dynamics between a benzalkonium chloride (BAC)-tolerant Escherichia coli strain (S4) and a sensitive wild type under four conditions: in the absence of antibiotics and in the presence of three different sub-inhibitory concentrations of the antibiotic ciprofloxacin in liquid cultures. The wild type was selected over the BAC-tolerant strain in the absence of antibiotics, while the opposite was observed at all ciprofloxacin concentrations investigated.Furthermore, we assessed the evolvability of resistance of the two strains to inhibitory concentrations of ciprofloxacin by performing a serial dilution evolution experiment with gradually increasing ciprofloxacin concentrations. The wild type had a higher probability to develop resistance to ciprofloxacin than the tolerant strain. By the end of the evolution experiment both strains evolved to grow at the highest ciprofloxacin concentration investigated, which was 2048 ×MIC of the wild type. T2 - 6th international symposium on the environmental dimention of antibiotic resistance-EDAR 6 CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Tolerance KW - Experimental evolution KW - Selection PY - 2022 AN - OPUS4-56808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Iron uptake by the rock-inhabiting fungus Knufia petricola N2 - Iron is arguably the most essential metal in living organisms. For rock-inhabiting fungi its acquisition might be unconventional as they (1) tend to inhabit iron-deficient, oxygen-rich surfaces like marble monuments and solar panels and (2) produce the black, iron-adsorbing pigment melanin. We used a range of analytical methods, ongoing mineral dissolution experiments and gene deletion mutants of the model rock-inhabiting fungus Knufia petricola to figure out the mechanisms and substrate deteriorating effects of iron uptake by these organisms. To study both siderophore-mediated and reductive iron assimilation (RIA), genes like sidC, encoding a putative siderophore synthetase and ftr1 and fet3 encoding the subunits of an iron permease-oxidase were deleted. At iron deficient conditions, growth of the wild type (WT) and ΔsidC mutant was similar, whereas growth of the Δftr1-fet3 mutant and the double mutant ΔsidC/Δftr1-fet3 was diminished and absent, respectively. We were not able to detect the siderophore of K. petricola and the WT and mutants were not able to grow at low concentrations of strong iron chelators. However, in a cross-feeding experiment, an overexpression strain of sidC allowed more growth of ΔsidC/Δftr1-fet3 on iron deficient medium than the WT, whereas the ΔsidC mutant could not do so at all. Compared to the WT, the sidC overexpression strain also withstood oxidative stress better and had a shorter lag time and higher growth rate. Combined, these results indicate that K. petricola relies more on RIA than siderophore-mediated uptake as it likely excretes low quantities of a primarily intracellular siderophore. Interestingly, Δftr1-fet3 had a higher iron content than the WT at iron deficient conditions. This difference disappeared upon deletion of melanin synthesis (Δpks1 vs. Δpks1/Δftr1-fet3): melanin-bound iron can likely not be used without RIA. K. petricola’s chelation incapacity implies a habitat free of competition for iron while offering us a mitigation strategy. T2 - ECFG16 CY - Innsbruck, Austria DA - 05.03.2023 KW - Siderophore KW - Melanin KW - Reductive iron assimilation PY - 2023 AN - OPUS4-57148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - Development of a methodical approach for in-situ analysis of modern reverse paintings on glass N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the early 20th century and gained great popularity, especially in Germany. In contrast to other paint techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession starting with the foremost paint layer and ending with the primer (backmost layer). The paintings are viewed in reflected light, thus revealing an impressive gloss, luminosity and depth of colour. Scientific investigation of the material provides important information for appropriate conservation concepts. Transport of the precious and fragile objects to the lab is often not feasible. Therefore, in-situ, non-invasive analysis is necessary to analyse colorants and binders. However, some analytical problems need to be considered: due to the reverse paint stratigraphy in reverse paintings on glass, the measured layer is always the backmost one. The analytical possibilities are extremely reduced, when the back is covered by a metal foil (or by paper, carton etc.). However, measurements through the glass (using Raman and VIS) can still yield information on the colourants of the front layer. When the paint layer is accessible, we start our procedure using X-ray fluorescence (Tracer III-SD, Bruker AXS Microanalysis GmbH, 40 kV, 15 μA) and VIS reflectance spectroscopy (SPM 100, Gretag-Imaging AG). Both techniques provide first information on the inorganic colourants. Raman measurements (i-Raman®Plus, Bwtek inc., 785 nm, 50× objective, resolution 4 cm-1) are then carried out to clarify uncertain XRF measurements and to identify synthetic organic pigments (SOP). Diffuse Reflection-Infrared-Fourier-Transform Spectroscopy (DRIFTS; ExoScan, Agilent GmbH, 4000–650 cm-1, 500 scans, spectral resolution 4 cm-1) is used for the classification of the binders. Moreover, it may help to identify SOP, when fluorescence dominates the Raman signal. This analytical sequence yields the best results, when time is the limiting factor. We present two in-situ studies of the paintings “Kreuzabnahme” (1914-15) by Carlo Mense and “Stadt am Morgen” (1921) by Walter Dexel. The painting “Kreuzabnahme” is an outstanding piece in Mense’s ɶuvre, because the glass plate was painted on both sides (Fig. 1). The results of the back-side show mainly inorganic pigments: basic lead white, talc, red and brown ochre, cinnabar, chrome yellow, viridian, ultramarine blue, Prussian blue and bone black. The classification of binding media using DRIFTS yields positive results for drying oil. Acrylic resin could be identified in two areas, resulting from a previous restauration treatment. For the front side painting, Mense used basic lead white, cinnabar, chrome yellow and umbra as pigments and oil as binder. Measurements of the abstract painting “Stadt am Morgen” by Walter Dexel show zinc white, basic lead white, chalk, cinnabar, red lead, strontium yellow, cadmium yellow, cobalt blue, Prussian blue, ultramarine blue, brown ochre and bone black as pigments. Moreover, synthetic alizarin (PR83) was identified as dark red colorant. The results of DRIFTS classify oil as binding media. We conclude that, the use of complementary spectroscopic methods yields the best results for in-situ analysis of reverse paintings on glass. T2 - 3rd International Conference on Innovation in Art Research and Technology CY - Parma, Italy DA - 26.03.2018 KW - Modern painting KW - Non invasive analysis KW - Raman spectroscopy PY - 2018 AN - OPUS4-44780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bandow, Nicole A1 - Kalbe, Ute A1 - Schoknecht, Ute T1 - Leaching of brominated flame retardants - eluate analysis using XRF N2 - Brominated flame retardants have widely been used for more than 50 years and have been frequently detected in environmental samples as surface water and fish. Leaching from construction products was identified as one possible source. The use of substances as e.g. hexabromocyclododecane (HBCCD) was restricted recently due to increasing concern about negative impacts on the environment and human health caused by the persistent, bio accumulative and toxic properties. New polymeric brominated flame retardants have been developed to replace HBCCD in expanded polystyrene (XPS), which is used for insulation of buildings. It is assumed that the release from the polymer is much smaller in comparison to release of small molecules as HBCCD. The release from the polymer may include monomers or small fragments of different size. Thus, a sum parameter is needed. According to Schlummer et al. it is possible to detect brominated molecules using X-ray fluorescence spectroscopy by determination of brome content in XPS extracts. As only small brominated compounds can be extracted it also allows for the differentiation between the two classes of compounds. This method was applied to verify the presence of different kinds of flame retardants in XPS samples and to evaluate the leaching behavior. T2 - ESAS CANAS CY - Berlin, Germany DA - 21.03.2018 KW - Leaching KW - XPS KW - Flame-retardant KW - XRF PY - 2018 AN - OPUS4-44562 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maul, Ronald A1 - Borzekowski, Antje A1 - Drewitz, Tatjana A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. T1 - Biosynthesis of zearalenone conjugates by fungi N2 - Zearalenone (ZEN) and its sulfate and glucoside conjugates have been detected in (a broad variety of) food and feed commodities1. Both conjugated derivatives are formed as part of fungal or plant secondary metabolism and thus, belong to the group of modified mycotoxins2. After consumption of contaminated foodstuff, the conjugates can be hydrolyzed by human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. In order to include ZEN conjugates in routine analysis, as well as for toxicological investigation reliable standards are needed. The objective of the present study was to develop a simple and economic method for biosynthesis of ZEN conjugates. Preceding experiments on the biotransformation of ZEN by Rhizopus and Aspergillus species showed a mixed metabolite formation3. Therefore, these known ZEN conjugating fungal strains were screened for their potential to selectively synthesize the ZEN derivatives ZEN-14-sulfate (Z14S), ZEN-14-glucoside (Z14G) and ZEN-16-glucoside (Z16G). The screening was conducted by adding ZEN to liquid fungal cultures. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. Z14S was exclusively formed by A. oryzae. Under optimized conditions a specific biosynthesis of Z14G by R. oryzae and Z16G by R. oligosporus was achieved. After liquid-liquid-extraction and preparative chromatographic cleanup 1H-NMR purities of ≥ 73% for Z14S, ≥ 82% for Z14G and ≥ 50% for Z16G were obtained. In addition, a consecutive biosynthesis was developed by first using Fusarium graminearum for ZEN biosynthesis on rice based liquid medium. After inactivation of Fusarium the subsequent conjugation reaction was conducted utilizing Aspergillus and Rhizopus species under the various optimized conditions. In this study an easy and cost-efficient biosynthesis for Z14S, Z14G and Z16G was developed. The developed biosynthesis could be also used for other metabolites like ZEL conjugates. Our results of the in vitro screening indicate also the formation of a ZEL-glucoside and α ZEL-sulfate as major metabolites by R. oryzae. In sum, under optimized cultivation conditions fungi can be easily utilized for a targeted and stereospecific synthesis of ZEN conjugates. T2 - 10th World Mycotoxin Forum Conference CY - Amsterdam, The Netherlands DA - 12.03.2018 KW - Mycotoxins KW - Food safety KW - Analytical standards PY - 2018 AN - OPUS4-44547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of biofilms by nearambient pressure X-ray photoelectron spectroscopy N2 - The XPS information depth of approximately 10 nm is in the same size range as the outer membrane of the gram-negative bacteria, which makes XPS a suitable tool for determining the elemental composition of the bacterial surface and monitor changes caused by outer stress like dehydration or exposure to antimicrobials. However, bacteria are inherently in a hydrated state, and therefore only compatible to ultra-high vacuum after extensive sample preparation, which may degrade the sample constituents. This issue is addressed by the development of near-ambient pressure (NAP)-XPS, which enables bacteria and biofilms to be characterised in their native wet state. Artificial biofilms, bacteria and biofilms of Escherichia coli have been characterised with the laboratory NAP-XPS instrument EnviroESCA from SPECS GmbH, at pressures ranging from high vacuum to 12 mbar, and in both humid and dry environment. By studying biological samples in their native wet state, new insight about composition and transport of drugs through cell membranes and the extracellular polymeric substance (EPS) of biofilms can be obtained. T2 - Royal Society of Chemistry Twitter Conference CY - Worldwide (online conference) DA - 06.03.2018 KW - Biofilms KW - E. coli KW - Alginate KW - NAP-XPS PY - 2018 AN - OPUS4-44498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Hahn, Oliver T1 - In-situ Raman spectroscopic study of pigments used in modern reverse paintings on glass N2 - The technique of painting on the reverse side of glass was rediscovered by artists in the early 20th century. The artist group “Der Blaue Reiter” around Wassily Kandinsky and Franz Marc got in touch with this technique in 1908 and 1909. In the following years it gained great popularity, especially in Germany. Nevertheless, the technique has not received its due appreciation in art history. It was considered as stained glass. However, the paint layers are applied cold, hence this artistic technique doesn’t involve a firing step. Our multidisciplinary project investigates the art historic backgrounds, the painting techniques and materials of modern reverse paintings on glass. More than 1000 paintings from ~100 artists were discovered in the framework of our project. A selection of 60 paintings could be analyzed using non-invasive, in-situ methods such as Raman and VIS spectroscopy, Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) and X-ray fluorescence (XRF). In this paper we want to point out the key role of Raman spectroscopy for our research. It offers the unique opportunity to measure paint layers from both sides. (front = through the glass; reverse = directly on the paint layer). T2 - XIII International GeoRaman Conference CY - Catania, Italy DA - 10.06.2018 KW - Raman spectroscopy KW - Reverse painting on glass KW - Non-invasive analysis PY - 2018 AN - OPUS4-45400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg A1 - Chubarenko, B. A1 - Purina, I. T1 - Approach for analysis of environmental impact of geosynthetics in aquatic systems by example of the Baltic Sea N2 - Whereas the behavior of geosynthetics in landfill engineering is well studied and documented since decades, little is known on application in applications such as coastal protection or ballast layers for wind energy plants. However, due to the rapid expansion of offshore wind energy, rising water levels and more extreme weather conditions as a result of climate change more and more hydraulic engineering projects will be realized in the future. Construction with geosynthetics has various advantages, but it has to be ensured that there is no negative environmental impact from the application of geosynthetics in hydraulic engineering. It is expected that any effect will be visible only on the long-term. Therefore, accelerated testing is needed to derive requirements for geosynthetics in hydraulic engineering. T2 - 7th IEEE/OES Baltic Symposium, Clean and Safe Baltic Sea and Energy Security for the Baltic countries CY - Klaipeda, Lithuania DA - 12.06.2018 KW - Geosynthetics KW - Artificial ageing KW - Micro plastic PY - 2018 AN - OPUS4-45206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oberpaul, M. A1 - Spohn, M. A1 - Fracowiak, J. A1 - Plarre, Rüdiger A1 - McMahon, Dino Peter A1 - Hammann, P. A1 - Vilcinskas, A. A1 - Gläser, J. T1 - Exploiting termite nest microbiomes for antibiotic discovery by using an ultra-high throughput Microfluidics/FACS driven pipeline combined with a microtiter plate based cultivation strategy N2 - Infections with multi-resistant Gram negative pathogens are a major threat to our health system. In order to serve the needs in antibiotics development we selected untapped bioresources and implemented high throughput approaches suitable for the discovery of strains producing antibiotics with anti-Gram negative activity. Our approaches rely on the hypothesis that Termite associated bacteria are likely to produce potent antibiotics to defend their hosts against entomopathogenic microorganisms. Termite nests and guts harbor suitable, highly diverse microbiomes in which bacterial taxa are present known to potentially produce natural compounds. In a first step the diversity of Coptotermes species nest microbiomes was assessed carefully by using 16S rDNA amplicon sequencing on the Illumina MiSeq platform and nest material was selected to retrieve viable cells by using Nycodenz density gradient centrifugation. In order to analyze the diversity of the culturable termite nest microbiome, bacterial cells were either distributed in 384-well plates (approach 1) or encapsulated in small spheric agarose beads by an high throughput microfluidics technique (approach 2). Cultures obtained from approach 1 were scaled-up in 96-well Duetz-systems for characterization of diversity and for rapid supernatant screening using the bioluminescence-labeled E. coli pFU166. The generated droplets of approach 2 simultaneously received a small population of GFP-tagged Gram negative screening cells and were sorted for low fluorescence using FACS. After elimination of redundancy we performed a fast scale-up of active strains. Implementation of this pipeline allows us to prioritize antibiotics producing strains in a ultra-high throughput fashion and by cultivation of broad diversity in our approches. T2 - Annual Conference of the Society for General and Applied Microbiology (VAAM) CY - Wolfsburg, Germany DA - 15.04.18 KW - Biotechnology KW - Termites KW - Anti-microbial effects PY - 2018 AN - OPUS4-44987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Analytische Untersuchungen an Glasmalfarben mittels EDX und LIBS N2 - Nach 1850 wurde zur weiteren Herabsetzung der Einbrenntemperatur von Glasmalfarben Borax (Na2B4O7 · 10 H2O) zugesetzt. Das Verhältnis war nun 1 Teil SiO2, 3 Teile PbO und 0,5 Teile Borax. Der analytische Nachweis von Bor in eingebrannten Malschichten war bisher jedoch nicht möglich. In Laborversuchen wurden Glasmalfarben mit unterschiedlichem Gehalt an Borax auf Modellgläser aufgetragen, eingebrannt und anschließend unter simulierten Umweltbedingungen zeitraffend im Klimaschrank bewittert. Mit Hilfe von elektronenmikroskopischen Untersuchungen können Malschichten charakterisiert werden und somit Hinweise auf mögliche Schadensursachen liefern. Der Nachweis von Bor erfolgte mit Hilfe von LIBS-Messungen (Laser Induced Breakdown Spectroscopy) an im Labor hergestellten Glasmalfarben mit unterschiedlichem Boraxgehalt. T2 - Archäometrie und Denkmalpflege 2018 CY - Hamburg, Germany DA - 20.04.2018 KW - Glasmalfarben KW - Umweltsimulation KW - Analytik PY - 2018 AN - OPUS4-45069 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raedel, Martina A1 - Bücker, Michael A1 - Feldmann, Ines A1 - Reimann, Mandy T1 - Mobile anodization for the conservation of damaged architectural aluminium elements N2 - Initial situation: Aluminum is an often-used building material in modern architecture, not only for construction but as well for facades and decorative elements. In the 1950th and 1960th, after World War II, many buildings in Germany were constructed with aluminum or contain elements of colored anodized aluminum. In the last years a larger number of these buildings are increasingly in the sight of conservation works including the aluminum parts such as window frames or facade coverings. Damaged Aluminum Surfaces: Common damages are a change of color or gloss changes through weathering processes, drill holes or marks due to later modifications, scratches in the anodized layer due to extensive wear e.g. at handrails or door handles. To repair damaged aluminum surfaces, there are usually two options: smaller damaged areas are repaired by using a touch-up pen. In case of larger damages, the complete re-anodization is necessary. This includes to de-anodize the surface with cleaning and grinding the whole aluminum object. Both possibilities are disadvantageous for the objects. The touch-up pen often does not match the color of the original surface together with an insufficient corrosion protection for outdoors. While the newly anodized surface differs in color and gloss from the originally applied color. Research Approach: The whole procedure contrasts with the principal approach in conservation which aims to intervene as less as possible, in case of the conservation of an object. To fulfill this approach in a more appropriate way the research project focuses on a mobile and partial application for colored, anodized aluminum parts. To anodize aluminum the application of an electrolyte onto the surface together with sufficient voltage and current is necessary. Generally diluted sulfuric acid is used as electrolyte. Different possibilities are examined to enable the mobile application of the electrolyte, e. g. the application by producing a gel matrix or like in electroplating by pen or brush wrapped with a fleece fabric. Experimental part: First experiments are conducted to examine the structure of the anodized layer in relation with proper cleaning, anodization time with applied voltage and current and the coloring process. The aim was to reduce the preparation procedure and the anodization time as much as possible to facilitate the mobile application. Examinations with Keyence microscope, Eddy current testing and REM are performed to characterize the layers. The results are shown in table 1. A clear connection between proper cleaning, anodization time, voltage and amperage and the achieved thickness of the anodized layer is significant. Cracks in the layer show that raising the voltage and amperage results in thicker layers but as well in a crumbled and less stable anodized surface. Gel preparation: In addition to the anodization process with a liquid e.g. sulfuric acid a gel application is tested to prevent the electrolyte from rinsing down during the mobile application. For this purpose, several gel-forming agents are tested together with their stability in acid systems. It was observed, that the consistency of the gels varies dependent of the time. Conductivity: The conductivity of sulfuric acid combined with different gel-systems was measured and compared in order to predict the possible growth of layers during anodic oxidation process. Further steps: Determination and optimization of application parameters like voltage, amperage and anodization-time to build up a preferably stable and sufficient thick anodized layer. Examination of gel preparation to guarantee a stable product, enforcing with textile tape for easy application. T2 - Architectural Aluminum in the 21st Century CY - Boston, MA, USA DA - 24.03.2018 KW - Aluminum KW - Anodization KW - Historic buildings KW - Mobile application PY - 2018 AN - OPUS4-45018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bandow, Nicole A1 - Jürgens, Frederike A1 - Schoknecht, Ute T1 - Leachiing tests - a useful tool for the environmental impact assessment of construction products? N2 - Construction products and waste materials used for construction can be in contact with the environment and may release potential harmful compounds. Information on the total content of these substances in the product is not sufficient to assess its envrionmental impact since it does not consider realistic exposure conditions.The impact of these compounds is often assessed by using the total content in the product. This estimation lacks realistic exposure conditions. Concerning the pathway to soil and groundwater by contact with rain or seepage water leaching tests, which were developed and standardized by the European Committee for Standardization, are available. While for secondary construction products and waste this investigation of the leaching behaviour is standard procedure and is already part of regulation in Germany (draft ordinance on reuse of mineral waste) and within Europe (landfill directive) the release from primary construction products got in the focus more recently. Several monitoring studies found unexpected high concentrations of substances used as herbicides and fungicides in surface water and stormwater originating from urban areas. As some of these compounds are even banned for the use in agricultural applications in Europe alternative sources as roof materials and façade coatings exposed to rain were suggested. Further field and laboratory tests confirmed construction products as sources of these substances in water. The aim of this presentation is to show exemplary results of existing leaching methods and underline the strength and weaknesses of the test system with selected examples from our work. We especially draw the attention to the research which is still needed to close the gap between the results of leaching experiments and the subsequent risk assessment of the products. T2 - SETAC Europe CY - Rome, Italy DA - 13.05.2018 KW - Leaching KW - DSLT KW - Construction products PY - 2018 AN - OPUS4-44949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Broska, Selina A1 - Schreiber, Frank T1 - Persistence as a microbial survival strategy against disinfectants N2 - Antimicrobial resistance is a major threat to human health. The prevalence of multi-drug resistant (MDR) bacteria is predicted to increase in the future requiring robust control strategies. One cornerstone to prevent the spread of MDR bacteria in clinical settings is the application of disinfectants to improve hygiene standards. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than the majority of the population. Our results in E. coli indicate that persistence is a bacterial survival strategy against benzalkonium chloride, a widely used disinfectant. In future experiments, we will investigate the evolution of persistence in the face of fluctuating exposure to disinfectants and whether persistence facilitates resistance against disinfectants. Lastly, we will test how tolerance and resistance against disinfectants affects susceptibility against antibiotics. T2 - Bridging Ecology and Molecular Biology: Organismic Responses to Recurring Stress CY - Berlin, Germany DA - 09.04.2018 KW - Bacteria KW - Persistence KW - Resistance KW - Biocides PY - 2018 AN - OPUS4-44667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Feldmann, Ines A1 - Brauer, D.S. T1 - Sintering ability of fluoride-containing bioactive glass powder N2 - Sintered bioactive glass scaffolds of defined shape and porosity, e.g. made via additive manufacturing, must provide sufficient bioactivity and sinterability. As higher bioactivity is often linked to high corrosion and crystallization tendency, a certain compromise between sintering ability and bioactivity is therefore required. Groh et al. developed a fluoride-containing bioactive glass (F3), which allows fiber drawing and shows a bioactivity well comparable to that of Bioglass®45S5. To study whether and to what extent the sinterability of F3 glass powder is controlled by particle size, coarse and fine F3 glass powders (300-310µm and 0-32µm) were prepared by crushing, sieving and milling. Sintering, degassing and phase transformation during heating were studied with heating microscopy, vacuum hot extraction (VHE), DTA, XRD, and SEM. For the coarse glass powder, sintering proceeds slowly and is limited by surface crystallization of primary Na2CaSi2O6 crystals. Although the crystallization onset of Na2CaSi2O6 is shifted to lower temperature, full densification is attained for the fine powder. This finding indicate that certain porosity might be tuned via particle size variation. Above 900°C, intensive foaming is evident for the fine powder. VHE studies revealed that carbon species are the main foaming source. T2 - 92. Glastechnische Tagung CY - Bayreuth, Germany DA - 28.05.2018 KW - Sintering KW - Bioactive glass KW - Crystallization PY - 2018 AN - OPUS4-45568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen A1 - Kleinbub, Sherin T1 - Microbial corrosion coupled to methanogenesis by strains from different environments N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms, either chemically (formation of hydrogen sulfide) or electrically (direct electron uptake). Methanogenetic Archaea are also known to be involved in iron corrosion, forming a multi-species biofilm on corroding metallic structures. However, mechanistic details and kinetics of the overall process in methanogen-induced MIC are poorly understood. T2 - Beirat Material CY - Berlin, Germany DA - 26.04.2018 KW - Corrosion KW - Methanogens KW - Archaea KW - Implants KW - Biofilm PY - 2018 AN - OPUS4-45112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Bachmann, V. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. T1 - OECD Test Guideline on particle size and particle size distribution of manufactured nanomaterials: simultaneous measurement of length and diameter of fibers N2 - The new OECD test guideline will address the following four main steps in the determination of the length and width distributions of fibers: sample preparation, image acquisition, data evaluation and uncertainty analysis. As the sample preparation has to be optimized for each material, general quality criteria will be given in the protocol. For full visibility of a fiber the appropriate resolution has to be chosen. In the data evaluation the length and diameter of each fiber will be determined concurrently to allow for application of different regulatory definitions. The quality of the results critically depends on the sample preparation as well as the data evaluation. In this step the classification rules have to be formulated and followed accurately in order to optimize reproducibility of the method. The SOP will be validated in an international round robin test, which is planned for 2018/2019. T2 - BAM-PTB-Workshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Nano KW - Fibre KW - Fiber KW - OECD KW - Size distribution PY - 2018 AN - OPUS4-45107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwirn, K. A1 - Völker, D. A1 - Ahtiainen, J. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Kuhlbusch, T. T1 - OECD Test Guidelines development for chemicals safety assessment of nanomaterials N2 - The OECD test guidelines (TGs) for testing chemicals have been widely used for regulatory purposes all over the world since the establishment of the Mutual Acceptance of Data (MAD) principle in 1984. This MAD principle ensures that, if a chemical is tested under the Good Laboratory Practice (GLP) conditions accordingly to an OECD TG, the data should be accepted in all OECD countries. The TGs have been developed, harmonized, internationally validated (round robin tests) and adopted by OECD countries to be used for the physical-chemical characterisation, fate estimation, and hazard identification for risk assessment of various chemicals. In addition to the TGs, OECD Guidance Documents (GDs) usually provide guidance on how to use TGs and how to interpret the results. These GDs do not have to be fully experimentally validated, and hence they are not under MAD, but they are based on relevant published scientific research. But are the existing TGs and the related GDs applicable and adequate for the regulatory testing of nanomaterials? In general, it is accepted that most of the "endpoints" or more precisely measurement variables are applicable also for nanomaterials. However, for some endpoints new or amended TGs are needed. In addition, several GDs are needed to give more precise advice on the test performance in order to gain regulatory relevant data on nanomaterials. The poster will present the status quo on recent TGs and GDs development for nanomaterials at OECD level with relevance for physical-chemical characterisation. Emphasis will be given to the proposed OECD TG on particle size and size distribution for manufactured nanomaterials. The development of such a TG is of special importance as particle size and size distribution is considered as major information for nanomaterial identification and characterization. A reliable and reproducible characterisation of particle size and size distribution is also needed for chemicals risk assessment of nanomaterials, for instance to interpret and compare test results and - in future – to forecast interaction and effects of nanomaterials. The presented poster will illustrate the way from the idea for a new TG and new GD to an accepted OECD TG/GD. T2 - BAM-PTB Workshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Nano KW - OECD KW - Nanomaterials KW - Test Guideline KW - Prüfrichtlinie PY - 2018 AN - OPUS4-45108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Schreiber, Frank T1 - Investigating the effects of biocides and corrosion inhibitors on corrosive methanogens N2 - Microbiologically influenced corrosion (MIC) is the deterioration of metals due to the metabolic activities of microorganisms. Microorganisms can take electrons directly from the metal surface (EMIC) thereby causing corrosion. Well known culprits of EMIC are: sulfate-reducing bacteria (SRB), acetogens and methanogens. T2 - AMiCI WG2 workshop Berlin CY - Berlin, Germany DA - 7.7.2018 KW - Corrosion KW - Biocides KW - Methanogens PY - 2018 AN - OPUS4-45734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Widdel, F. T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons (Fe → Fe²⁺ + 2e⁻ ; E° = 0.47 V) in electrical contact through surface attachment. Also methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO₃⁻ + 5H⁺ → 4FeCO₃ + CH₄ + 3H₂O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO₃ precipitation may be significantly influenced by environmental conditions such as pH and advective processes. To investigate the corrosive potential of methanogens, we studied strains isolated from marine sediments (Methanococcus maripaludis 14266, 2067, Methanobacterium-affiliated strain IM1), crude oil tanks (Methanococcus maripaludis Mic1c10, KA1) and the oral cavity (Methanobrevibacter oralis) in a closed (batch) culture, and in a sand-packed flow-through cell with pH control and simulation of a fluctuating environment. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.3 mm/yr) are comparable to that caused by SRM. Surface analyses of the metal showed severe pitting. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - ISME 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Corrosion KW - Methanogens KW - Biofilm KW - Flow-System KW - Iron PY - 2018 AN - OPUS4-45735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Determination of boron in 19th and 20th century paint layers using LIBS N2 - 19th and 20th centuries glass paint layers consist of a colour body and a colourless lead silicate flux, in which borax or boric acid was added as further component to improve the paint ability and to reduce the firing temperature for multiple layers of paint. Model glasses were used in laboratory tests to investigate the stability of glass paints with additions of boron oxide. To determine boron in paint layers, a LIBS-system with pulsed NdYAG-laser was used. T2 - Technart 2019 CY - Brugge, Belgien DA - 07.05.2019 KW - Stained glass windows KW - Glass paints KW - LIBS PY - 2019 AN - OPUS4-48229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Adam, Christian T1 - Effect of Nitrification Inhibitor on Nitrogen Forms in Soil analyzed by Nitrogen K edge micro XANES Spectroscopy N2 - Specific co-fertilization of nutrients can enhance their plant-availability and thus the yield of plants. To investigate this effect, we performed a pot experiment with three different P-fertilizers and ammonium nitrate sulfate as a co-fertilizer, without and with a nitrification inhibitor (NI), and analyzed the form of nitrogen (N) in the soil via novel X-ray spectroscopic method. The application of NI with the N fertilizer led to a higher dry matter yield of maize. Novel N K-edge micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy identified that the application of a NI promotes the temporary formation of a non-exchangeable N in detectable hot-spots in the soil. The subsequent slow release and prolonged availability of N during plant growth leads to higher yield. It can be concluded that NIs lead to a temporary fixation of ammonium-N in a pool that can be accessed by plant roots. Those types of available nutrient pools meet the idea of so-called “next generation fertilizers” as plants have access to nutrients according to their current demand. T2 - Workshop for X-ray and neutron imaging applications in soil sciences CY - Lund, Sweden DA - 17.06.2019 KW - Nitrogen KW - Phosphorus recycling KW - Fertilizer KW - XANES spectroscopy KW - Pot experiment PY - 2019 AN - OPUS4-48237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Krüger, O. A1 - Hoffmann, Marie A1 - Adam, Christian T1 - Determination of chromium(VI) in phosphorus fertilizers made from recycled materials by DGT N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizer can also contain toxic pollutants e.g. chromium (Cr) in the hexavalent state (Cr(VI)), which is regulated with low limit values in agricultural products (German fertilizer ordinance limit: 2 mg/kg Cr(VI)). The determination of Cr(VI) in these novel fertilizer matrices can be hampered by redox processes that lead to false results with the standard wet chemical extraction method (German norm DIN EN 15192). Therefore, we analyzed Cr(VI) in various P-fertilizers with the DGT technique. DGT devices equipped with a APA (polyacrylamide) diffusion layer and Cr(VI) selective N-methyl-D-glucamine (NMDG) binding layer were used for the study. After a 24 h conditioning period of the fertilizer at 60% of the water holding capacity (WHC), the fertilizers were brought to 100% WHC, transferred onto the DGT devices and deployed for 24 h at 25°C. The extraction of Cr from the DGT binding layer was carried out with 1 M HNO3 for 24 h. The Cr-concentrations of the extract were determined by means of ICP-MS. We found a good correlation between the standard wet chemical extraction and the DGT method for the whole range of P-fertilizers. However, partly soluble Cr(VI) compounds cannot be detected in full extent by the DGT method that is best suited for mobile Cr(VI). Furthermore, Cr K-edge XANES spectroscopy showed that the Cr(VI)-selective DGT binding layer also adsorbs mobile Cr(III) compounds from acid treatment of phosphates which can therefore cause an overestimation of Cr(VI). The DGT method was very sensitive and in most cases selective for the analysis of Cr(VI) in P-fertilizers made from recycled materials. However, the results of certain types of P-fertilizers containing mobile Cr(III) or partly immobile Cr(VI) show that still some optimization of the method is required to avoid over- or underestimation of Cr(VI). T2 - 6th Conference on Diffusive Gradients in Thin Films CY - Vienna, Austria DA - 17.09.2019 KW - Fertilzer KW - Pollutant KW - Chromium KW - Diffusive gradients in thin films (DGT) KW - XANES spectroscopy PY - 2019 AN - OPUS4-49058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratz, S. A1 - Samman, N. A1 - Wilharm, E. A1 - Jabs, K. A1 - Anlauf, R. A1 - Vogel, Christian A1 - Bloem, E. T1 - Development of a standard substrate to facilitate the use of DGT for the assessment of P recycling fertilizers N2 - P recycling fertilizers are gaining increasing importance in our efforts to close nutrient cycles. An unsatisfactory performance of standard chemical extraction methods to assess the fertilizing effects of such products was reported. They demonstrated that DGT extractions of incubated soil/fertilizer mixtures were able to predict the fertilizing effects of the respective products more accurately. Since DGT works with soil/fertilizer mixtures, its interpretation is soil-dependent. Therefore, in order to facilitate its use as a tool to predict fertilizer performance, it needs to be standardized based on a standard substrate. This research aims to develop a standard substrate based on which evaluation categories for the DGT fertilizer extraction can be derived. The substrate composition should allow to vary the most important soil properties determining the plant availability of fertilizer P. It must also be reproducible at any time and any place. Substrate variants with varying proportions of quartz sand, a clay mineral and sphagnum peat were prepared and set to pH-levels 5.5 and 7 by addition of CaCO3. 7 variants were incubated with a set of test fertilizers (2 recycling fertilizers based on sewage sludge ash and 2 conventional mineral fertilizers) for 2 weeks. Substrate/fertilizer mixtures were then extracted with DGT and an ANOVA was performed to test if the DGT extraction was able to depict significant differences between fertilizers and substrate variants. An 8-week pot trial with ryegrass (3 cuts) was set up with the same substrate variants and test fertilizers. P uptake was determined to assess the fertilizing effect and correlated with the results of the DGT extractions. Statistically significant differences were found between DGT results for the various test fertilizers and substrate variants, indicating that DGT is able to differentiate between P solubility of fertilizers in relation to substrate quality. DGT results showed a strong relationship with P uptake, confirming that this method is suitable to predict the fertilizing effect of P fertilizers. Further optimization of substrate composition and tests with a wider variety of crops and fertilizer types are needed, before evaluation categories for DGT values can be derived. T2 - 6th Conference on Diffusive Gradients in Thin Films CY - Vienna, Austria DA - 17.09.2019 KW - Fertilzer KW - Phosphorus KW - Diffusive Gradients in thin films (DGT) PY - 2019 AN - OPUS4-49060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Single-cell trait-based biodiversity in microbial communities and its link to ecosystem functioning in a stratified lake N2 - A fundamental question in ecology is how biodiversity affects ecosystem function. Biodiversity is commonly estimated based on genetic variation. We investigated a new approach that defines and measures biodiversity in complex microbial communities. We used the variation in multiple functionally-relevant, phenotypic traits measured in parallel in single cells as a metric for microbial phenotypic diversity. We studied phenotypic diversity and ecosystem functioning throughout different photosynthetic layers dominated by divergent microbial communities in the gradient of Lago di Cadagno. We determined genetic diversity by 16S and 18S amplicon sequencing and bulk ecosystem functioning (photosynthesis). In addition, we determined phenotypic diversity using single-cell technologies such as nanometer-scale secondary ion mass spectrometry (NanoSIMS) correlated with confocal laser scanning microscopy (CLSM) and scanning flow-cytometry. We measured functional trait variation between individuals in 13CO2 fixation, 15NH4+ uptake, and variation in physio-morphological cell traits, such as cell size, shape, and auto-fluorescence for various pigments related to photosynthesis. We used the distances between individuals in a multidimensional trait space to derive phenotypic trait-based diversity indices, such as trait richness, trait evenness, and trait divergence. We find that phenotypic trait divergence associates with ecosystem functioning, whereas genetic diversity does not. Including activity-based, single-cell phenotypic measurements with NanoSIMS provided an additional accuracy to the trait-based diversity assessment and allowed us to formulate hypotheses on the mechanisms that shape the correlation between phenotypic diversity and eco-system function. Together, our results show that phenotypic diversity is a meaningful concept to measure microbial biodiversity and associate it with ecosystem functioning. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - NanoSIMS KW - Biodiversity PY - 2019 AN - OPUS4-49080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Background: One cornerstone to prevent the spread of antibiotic resistant bacteria in clinical settings is the application of disinfectants. However, bacteria can evolve resistance to disinfectants, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Objectives: Our objective is to investigate if persistence is a bacterial survival strategy against disinfectants. Furthermore, we investigate the mechanisms of disinfectant persistence and if persistence can evolve in the face of fluctuating exposure to disinfectants. Lastly, we test if the evolved mechanisms of disinfectant tolerance lead to disinfectant resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of disinfectants and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against disinfectants. In addition, we will present data from an ongoing evolution experiment for persistence against disinfectants. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.11.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank A1 - Nordholt, Niclas A1 - Schmidt, Selina A1 - Lewerenz, Dominique T1 - Persistence as a microbial survival strategy against biocides and its link to antibiotic resistance evolution N2 - Question: One cornerstone to prevent the spread of bacteria in clinical and industrial settings is the application of biocides including disinfectants and preservatives. However, bacteria can evolve resistance to biocides, which in turn can confer cross-resistance to antibiotics. Additionally, clonal bacterial populations can display phenotypic heterogeneity with respect to the tolerance of antibiotic stress leading to a prolonged survival of a sub-population; this phenomenon is termed persistence. Persistence to antibiotics is an evolvable trait and can serve as a stepping stone for the evolution of genetically encoded resistance. Until now, there is a lack of systematic studies that investigate if bacterial populations establish persister subpopulations that tolerate disinfectant stress longer than most of the population. Our objective is to investigate if persistence is a bacterial survival strategy against biocides. Furthermore, we investigate the mechanisms of biocide persistence and if persistence can evolve in the face of fluctuating exposure to biocides. Lastly, we test if the evolved mechanisms of biocide tolerance lead to biocide resistance and if they confer cross-tolerance and cross-resistance against antibiotics. Methods: We use time-kill assays in the presence of biocides and experimental evolution combined to whole-genome sequencing in the model organism E. coli. Results: We find persister sub-populations against chlorhexidine and quaternary ammonium compounds, but not to alcohols, aldehydes and oxidative compounds. We will present the relationship of mechanisms known to underlie antibiotic persister formation to the formation of persisters against biocides. In addition, we will present data from an ongoing evolution experiment for persistence against biocides. Conclusion There is a link between antibiotic and biocide persistence with possible implications for antibiotic resistance evolution and spread. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance - EDAR 2019 CY - Hong Kong, China DA - 09.06.2019 KW - Antimicrobial resistance KW - Biocides KW - Persister cells PY - 2019 AN - OPUS4-49083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Richter, Anja A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on femtosecond laser-induced periodic surface structures N2 - Biofilm formation in industrial or medical settings is usually unwanted and leads to serious health problems and high costs. Inhibition of initial bacterial adhesion prevents biofilm formation and is, therefore, a major mechanism of antimicrobial action of surfaces. Surface topography largely influences the interaction between bacteria and surfaces which makes topography an ideal base for antifouling strategies and eco-friendly alternatives to chemical surface modifications. Femtosecond laser-processing was used to fabricate sub-micrometric surface structures on silicon and stainless steel for the development of antifouling topographies on technical materials. T2 - Future Tech Week 2020 CY - Online meeting DA - 21.09.2020 KW - Laser-induced periodic surface structures (LIPSS) KW - Bacterial adhesion KW - Biofilm growth KW - Structural color KW - Femtosecond laser processing PY - 2020 UR - http://futuretechweek.fetfx.eu/wp-content/uploads/gravity_forms/2-5432af7ecff9e0243d7383ab3f931ed3/2020/09/BioCombs4Nanofibers_Poster-for-Future_Tech_Week_2020_08-09-2020_with_Reprint-permission_for_upload.pdf AN - OPUS4-51233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A genetic toolbox for exploring the life style of the rock-inhabiting black fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence of the strain A95 is paving the way for studying interactions of K. petricola with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - black fungi KW - genomics KW - genetics PY - 2020 AN - OPUS4-50593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia A1 - Hahn, Oliver A1 - Rabin, Ira T1 - A black ink by any other name...: Typologies of arabic inks and their detection limits N2 - In this poster we will present some results of a research projects dealing with Arabic recipes of black inks [1-2]. To improve conservation practices of Arabic manuscripts we have assessed the feasibility of the recipes collected from many Arabic sources on bookmaking and reproduced the most common inks. Ink samples were then artificially aged and analysed using an array of analytical techniques, mostly non-invasive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. We will show procedures and problems concerning the identification of ink types and ingredients using reflectography (in Vis, IR and UV), X-Ray Fluorescence, Infrared and Raman spectroscopy. The focus will be in particular on squid ink [3] and mixed inks – both in the form of carbon inks with the addition of tannins and of a mixture of carbon and iron gall inks – which are particularly difficult to detect [4]. We will also examine the results of iron gall inks made with iron filings or nails instead of vitriol, the various precursor used to extract gallic acid that are mentioned in the sources as surrogates of gall nuts. [1] A. Schopen, Tinten und Tuschen des arabisch-islamischen Mittelalters, Göttingen: Vandenhoeck & Ruprecht, 2004 [2] S. Fani, Le arti del libro secondo le fonti arabe originali. I ricettari arabi per la fabbricazione degli inchiostri (sec. IX-XIII): loro importanza per una corretta valutazione e conservazione del patrimonio manoscritto, PhD thesis, Napoli: Università L’Orientale, 2013 [3] S. Centeno, J. Shamir Journal of Molecular Structure, 873 (2008), 149-159 [4] C. Colini et. al, Manuscript cultures, 11 (2018) 43-50 T2 - Jahrestagung „Archäometrie und Denkmalpflege 2019“ CY - Vienna, Austria DA - 11.09.2019 KW - Inks KW - Reflectography KW - XRF KW - Raman Spectroscopy KW - ATR PY - 2019 AN - OPUS4-50162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank A1 - Heidrich, Gabriele T1 - Selection of resistance in bacterial biofilms grown on antimicrobial surfaces in a multidrug environment N2 - Introduction: Biofilms are regarded as a common cause of chronic infections on medical devices. Preventive and therapeutic strategies against biofilm infections commonly involve applications of multiple antimicrobial substances: antimicrobial coatings on the implanted biomaterials in combination with systemically administered antibiotics. While this practice of combination therapy harbours the risk of developing cross-resistance, it might also provide the possibility to implement specific antimicrobial-antibiotic combinations (AACs) that can slow down the selection of antibiotic resistant strains. Hypothesis and aims: Specific AACs can exert combinatorial effects on the growth of susceptible and antibiotic-resistant Pseudomonas aeruginosa that either suppress or increase their individual effects. Our aim is to identify AACs with antagonistic or synergistic effects on pseudomonal biofilms and to understand their impact on selection of resistant strains. Specifically, we want to identify AACs that select for and against antibiotic resistance during biofilm formation. Methodology: We screened for AACs that cause antagonistic or synergistic effects on planktonic P. aeruginosa. To study the effect of antimicrobial-antibiotic exposure on resistance selection in bacterial biofilms, we will grow resistant and sensitive strains on PDMS surfaces with and without antimicrobial coatings and expose them to antibiotics. Results: Several combinations with synergistic or antagonistic interaction on the growth rate of P. aeruginosa were detected. We observed a strong antagonism when combining the antimicrobial substance chlorhexidine with the carbapenem drug meropenem. A meropenem-resistant mutant showed a selection advantage in low concentrations of chlorhexidine combined with a sub-inhibitory concentration of meropenem over the wild-type. No antagonistic effect was observed for the same combination when E. coli was exposed to chlorhexidine and meropenem, suggesting a non-chemical basis for the observed effect on P. aeruginosa. Conclusion: Gaining a better understanding about resistance selection during biofilm formation on biomedical surfaces will enable us to mitigate against biofilm-associated antimicrobial resistance. T2 - Eurobiofilms 2019 CY - Glasgow, UK DA - 03.09.2019 KW - Resistance KW - Antibiotics KW - Pseudomonas PY - 2019 AN - OPUS4-49168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Sekine, R. A1 - Huang, J. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Adam, Christian T1 - Effect of Nitrification Inhibitor on Nitrogen Forms in Soil and Phosphorus Uptake of Plants N2 - Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P-fertilizers from recycled materials which often have a lower plant-availability compared to commercial P-fertilizers but are expected to play an increasingly important role into the future (Kratz et al. 2019). One promising way to increase the plant-availability of the fertilizer P is a co-fertilization with specific nitrogen (N) forms which can enhance the P uptake and make P-fertilizers from recycled material more competitive to commercial phosphate rock-based P-fertilizers (Rahmatullah et al. 2006; Vogel et al. 2018). To investigate this effect, we performed a pot experiment with three different P-fertilizers (sewage sludge-based, phosphate rock and triple superphosphate) and ammonium nitrate sulfate as a co-fertilizer, without and with a nitrification inhibitor (NI), and analyzed the form of N and P in soil via a suite of chemical and novel X-ray spectroscopic methods. The application of NI with the P and N fertilizers led to a higher dry matter yield and a higher P uptake of maize. Novel N K-edge micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy identified that the application of a NI promotes the temporary formation of a non-exchangeable N in detectable hot-spots in the soil. The subsequent slow release and prolonged availability of N during plant growth leads to higher yield and nutrient uptake. It can be concluded that NIs lead to a temporary fixation of ammonium-N in a pool that can be accessed by plant roots. Those types of available nutrient pools meet the idea of so-called “next generation fertilizers” as plants have access to nutrients according to their current demand. T2 - Annual Meeting of the German Society of Plant Nutrition (DGP) CY - Berlin, Germany DA - 25.09.2019 KW - Fertilzer KW - X-ray adsorption near-edge structure (XANES) spectroscopy KW - Nitrification inhibitor KW - Agronomic performance PY - 2019 AN - OPUS4-49144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dombinov, V. A1 - Meiller, M. A1 - Müller, F. A1 - Herzel, Hannes A1 - Zang, J. W. A1 - Willbold, S. A1 - Poorter, H. A1 - Watt, M. A1 - Jablonownski, N. D. A1 - Schrey, S. D. T1 - Does co-combustion of bagasse and chicken manure affect the bioavailability of P from ash to soybeans? N2 - Brazilian farming industry consumed around 2.2 million tons of phosphorus (P) fertilizers in 2016. The agricultural industry depends on imported P fertilizers and over 98% of P fertilizers were used for sugarcane, soybean and maize production. An alternative is to use P from sugarcane bagasse. Bagasse is the fibrous plant material remaining after extraction of sugarcane juice, and it is combusted for energy production. Remaining ash con-tains up to 0.6 wt% P. The use of bagasse ash (BA) as P fertilizer could decrease the annual import of P fertilizers by 6% of the imported P fertilizer based on 2016 values. Since the bioavailability of P from BA to plants is poorly investigated, this study addresses the effects of (i) gasification tempera-ture (710-849°C), (ii) processing method (gasification vs. combustion), (iii) biomass modifications by co-processing bagasse with chicken manure (BA+CM), and (iv) the soil (Brazilian Oxisol soil vs. nutri-ent poor substrate) on the bioavailability of P from BA to soybeans (Glycine max). Gasification of BA at 806 °C resulted in significantly highest uptake of P by soybeans and was around 0.33 mmol after 51 days growing. The bioavailability of P significantly increased due to co-gasification of bagasse and chicken manure (BA+CM) and the soybeans took up around 16% more P. Compared to the nutrient-poor substrate, the bioavailability of P in BA+CM ash treated Oxisol soil was signifi-cantly lower by 46% and there was no significant effect of processing method on the bioavailability of P from the BA+CM ash to soybeans. Contrary to the Oxisol soil, the bioavailability of P from co-combusted BA+CM ash was significantly higher compared to co-gasified BA+CM ash. In conclusion, co-processing of bagasse with nutrient rich residues can increase the value of BA as P fertilizer. The bioavailability of P from ash to plants depends on the P forms. Mineralogical analyses of ash P forms by NMR and X-ray diffraction are in progress and will be presented at the conference. T2 - European Biomass Conference & Exhibition CY - Lisbon, Portugal DA - 26.05.2019 KW - Sugarcane bagasse KW - Chicken manure KW - Plant growth test KW - Bioavailability KW - Co-combustion PY - 2019 AN - OPUS4-49272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea T1 - Investigating and modelling MIC using in-house developed flow system (Hi-Tension) N2 - Microbiologically influenced corrosion is a multidisciplinary research area. To develop successful mitigation strategies, expertise from the industry and research institutes are essential. In Department 4.1, we developed an innovative laboratory flow model (Hi-Tension) that allows effective monitoring of MIC under both standard and non-standard conditions. The flow model allows flexibility with material selection, flow rates, temperature and other environmental parameters changes. Furthermore, the flow model allows integration of electrochemical measurements using microsensors, providing a comprehensive view of corrosion at the biofilm level. Currently, initial results indicate corrosion in the flow model is significantly higher than that of standard laboratory set ups, i.e. static incubations, particularly for methane-producing microorganisms. T2 - Departmental Meeting with Helmotz Dresden CY - BAM, Berlin, Germany DA - 04.11.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Hi-Tension KW - Flow Model KW - Modelling PY - 2019 AN - OPUS4-49417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Kleinbub, Sherin T1 - Microbial modelling of sulfate-reducing bacteria (SRB) and methanogenic archaea (ME) using iron N2 - Sulfate reducing bacteria (SRB) and methanogenic archaea (MA) are commonly found in the oil and gas environments. The formation of hydrogen sulfide (HS-) is particularly concerning for the petroleum industry due to its corrosiveness. However, the activities of SRB are limited to the concentration of sulfate present in the environment, whereas methanogens can utilize substrates such as H¬2 for methanogenesis. MA is commonly found in sulfate-free environments, such as deep sediments, and are known to form interspecies electron transfer relationships with SRB. Recently, SRB and MA capable of microbiologically influenced corrosion (MIC) by using elemental iron as a direct electron source (EMIC) have gained increased attention. On the iron surface, EMIC-SRB can outcompete EMIC-MA in the presence of sulfate, but this changes as sulfate depletes. The formation of FeS on the metal surface can be further utilized by MA for methanogenesis as it provides a conductive path. However, the possible kinetics involved of the overall process are currently unknown. We obtained a co-culture of EMIC-SRB and EMIC-MA to investigate the growth rates and electrical potential changes under different environmental conditions, including changes in pH, temperature and salinity. Results indicate that under neutral conditions and using iron as the sole substrate, methane production (up to 5 mM) starts after sulfate was depleted. Electrochemical measurements will be conducted on the co-culture under different conditions to determine the changes in the electrical potential in correlation with the sulfate and methane concentration. Fluorescence and electron microscope images of the biofilm structure will be used to visualize cell distribution and morphology. This study embarks the first step of understanding the relationship between EMIC-SRB and EMIC-MA. Such knowledge is important for the field of microbial electrophysiology and can be further explored for industrial applications. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-7) CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Bacteria KW - Archaea KW - Iron PY - 2019 AN - OPUS4-49420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Bachmann, V. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. T1 - Test Guideline on Particle Size and Size Distribution of Manufactured Nanomaterials N2 - The particle size distribution is considered the most relevant information for nanoscale property identification and material characterization. The current OECD test guideline on particle size and size distribution (TG 110) is not applicable to ‘nano-sized’ objects. In this project we thus develop a new OECD test guideline for the measurement of the size and size distribution of particles and fibers with at least one dimension in the nanoscale. A fiber is defined as an object having an aspect ratio of length/diameter l/d >3. The width and length of each fiber should be measured concurrently. In order to measure the particle size distributions, many techniques are available. 9 methods for particles and 2 methods for fibres have been tested in a prevalidation study and appropriate methods will be compared in an interlaboratory round robin test starting in February 2019. T2 - Workshop zur gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich“ CY - Berlin, Germany DA - 02.09.2019 KW - OECD KW - Nano KW - Guideline KW - Particle size distributuion KW - Prüfrichtlinie PY - 2019 AN - OPUS4-49507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Question: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 8th Congress of European Microbiologists - FEMS 2019 CY - Glasgow, UK DA - 07.07.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Question: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - Symposium für Doktorandinnen und Doktoranden – 2019 CY - Berlin, Germany DA - 27.09.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia A1 - Hahn, Oliver A1 - Rabin, Ira T1 - A black ink by any other name...: Typologies of Arabic inks and their detection limits N2 - In this poster we will present some results of a research projects dealing with Arabic recipes of black inks. To improve conservation practices of Arabic manuscripts we have assessed the feasibility of the recipes collected from many Arabic sources on bookmaking and reproduced the most common inks. Ink samples were then artificially aged and analysed using an array of analytical techniques, mostly non-invasive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. First, we will provide an overview of the sources [1-2] employed in the study – dating from 9th to 14th century, although the manuscripts in which they can be found dates up to the 20th century – with an eye on the ink typologies (real and perceived by the compilers). Then we will show how, by reproducing the recipes, it was possible to shed light on some oddities in the procedures and the choice of ingredients. In the end we will discuss problems concerning the identification of ink types and ingredients using reflectography (in Vis, IR and UV), X-Ray Fluorescence, Infrared and Raman spectroscopy. The focus will be in particular on mixed inks – both in the form of carbon inks with the addition of tannins and of a mixture of carbon and iron gall inks – which are particularly difficult to detect [3]. We will also examine the results of iron gall inks made with iron filings or nails instead of vitriol and the various precursor used to extract gallic acid that are mentioned in the sources as surrogates of gall nuts. [1] A. Schopen, Tinten und Tuschen des arabisch-islamischen Mittelalters, Göttingen: Vandenhoeck & Ruprecht, 2004 [2] S. Fani, Le arti del libro secondo le fonti arabe originali. I ricettari arabi per la fabbricazione degli inchiostri (sec. IX-XIII): loro importanza per una corretta valutazione e conservazione del patrimonio manoscritto, PhD thesis, Napoli: Università L’Orientale, 2013 [3] C. Colini et. al, Manuscript cultures, 11 (2018) 43-50 T2 - Technart 2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Inks KW - Reflectography KW - XRF KW - Raman Spectroscopy KW - ATR PY - 2019 AN - OPUS4-50112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Leaching behavior of Antimony in MSWI bottom ash N2 - Bottom ash (BA) from municipal solid waste incineration (MSWI) contains harmful substances such as heavy metals, chloride and sulfate which are mobilized in contact with water. Standardized leaching tests are used to measure the extent of mobilization. It is known that fresh bottom ash displays elevated concentrations of various heavy metals such as lead or zinc due to the formation of hydroxo complexes as a result of high pH values of 12 and above. Storage of BA is accompanied by ageing processes, mainly the reaction of CaO and Ca(OH)2 with CO2 leading to lower pH values in contact with water around 11. Usually heavy metals concentrations are minimum at these conditions. Knowledge of the long-term leaching behavior of potentially harmful substances is crucial for the assessment of the environmental compatibility of reusing municipal solid-waste incineration bottom ash (MSWI BA) in construction, i.e., as a road base layer. BA fractions obtained from wet-processing aiming at the improvement of environmental quality were used to investigate the mobility of relevant substances. Eluates from laboratory-scaled leaching procedures (column percolation and lysimeters) were analyzed to learn about the long-term release of substances. Unsaturated conditions and artificial rainwater were used in the lysimeter tests to simulate field conditions. In addition, batch test eluates were generated at usual liquid-to-solid ratios (L/S) for compliance testing purposes. A variety of cations and anions was measured in the eluates. The wet treatment reduces the leaching of chloride and particularly sulfate by more than 60%. The release of typical contaminants for the treated MSWI BA such as the heavy metals Cu and Cr was well below 1% in the conducted leaching tests. An increase in the Sb concentration was observed in the lysimeter experiments starting at L/S 0.75 L/kg and in the column experiment at L/S 4 L/kg is assumed to be related to decreasing concentrations of Ca and thus to the dissolution of sparingly soluble calcium antimonate. The same leaching mechanism applies with V, but the concentration levels observed are less critical regarding relevant limit values. However, on the long term the behavior of Sb could be problematic for the application of MSWI BA as secondary building material. T2 - MINEA Final Conference CY - Bologna, Italy DA - 20.02.2020 KW - Antimony KW - Bottom ash KW - Leaching KW - Solubility PY - 2020 AN - OPUS4-50450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonnerot, Olivier A1 - Shevchuk, I. A1 - Glaser, L. A1 - Dupont, A.-L. A1 - Rouchon, V. A1 - Cohen, Zina A1 - Rabin, Ira T1 - Are X-rays safe for manuscripts’ materials? N2 - In the last decade, applications of X-rays to the study of manuscripts significantly spread in both diversity and extent. They range from writing material analysis, mostly with X-ray fluorescence (XRF), permitting non-invasive characterization of inks and pigments used, to the investigation of the origin of writing supports. In addition, XRF mapping has proved to be an invaluable tool for recovering erased text. Finally, computed-tomography (CT) has shown potential in virtually unrolling rolls, making text readable without using-damaging mechanical methods. Despite their growing use, little attention has been paid to the side effects of such analytical tools. We observed irreversible parchment colour changes during some experiments on dead-sea scrolls with synchrotron radiation sources. Furthermore, partial photo-reduction of iron under high intensity beam during X-ray absorption near edge structure spectroscopy (XANES) measurements of iron-gall ink on paper has been reported several times [5,6]. Such phenomena have mostly been overlooked so far, although there is an increasing awareness of the necessity to study them. We conducted experiments at the Deutsches Elektronen-Synchrotron (DESY) facilities to investigate X-ray induced structural alteration of paper and parchment to see whether the presence of absorption centres (ink and pigments) has an impact. In addition to better understanding degradation processes, we are aiming to define an appropriate methodology of analysis of manuscripts with a tolerable risk of damage. The first results concerning X-ray induced damage of cellulose materials have already been presented at the Synchrotron Radiation and Neutrons in Art and Archaeology (SR2A). We are focusing here on the results on parchment materials. T2 - Cultural and Natural Heritage Workshop CY - Grenoble, France DA - 22.01.2020 KW - X-rays KW - Manuscripts KW - Parchment KW - Synchrotron PY - 2020 AN - OPUS4-50305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas A1 - Lewerenz, Dominique A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Heterogeneity in the bacterial response to disinfection and its impact on antibiotic tolerance and resistance N2 - The global rise of antibiotic resistance has made the proper use of disinfectants more important than ever. Their application in clinical l settings is an integral part of antibiotics stewardship by preventing the occurrence and spread of infections. However, improper use of disinfectants also harbours the risk for the evolution of tolerance and resistance to disinfectants, but also to antibiotics. It is therefore crucial to understand whether and how bacteria can survive chemical disinfection and which conditions facilitate the evolution of tolerance and resistance. Here, we study the heterogeneity in the response of isogenic E. coli populations exposed to different levels of commonly used disinfectants. At concentrations below the minimal inhibitory concentration (MIC), we find that certain disinfectants induce prolonged lag times in individual cells, a phenotype that has been associated with persistence against antibiotics. At concentrations above the MIC, we find heterogeneous killing for a range of the tested substances. Interestingly, for the three cationic surfactants that were tested, we find kill kinetics revealing the presence of a tolerant subpopulation that can withstand disinfection longer than most of the population. We will present results from an ongoing evolution experiment in which we test the potential for evolution of population-wide tolerance and resistance through intermittent exposure to lethal doses of a cationic surfactant. T2 - New Approaches and Concepts in Microbiology CY - Heidelberg, Germany DA - 10.07.2019 KW - Persistence KW - Biocides KW - Resistance KW - heterogeneity KW - Bacteria PY - 2019 AN - OPUS4-48524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smol, M. A1 - Adam, Christian T1 - Towards circular economy for phosphorus in Poland N2 - In the transition to the Circular Economy (CE) model, where the added value of products is kept as long as possible and waste is eliminated, the sustainable management of raw materials plays a key role. In above CE model, especial attention is paid to CRMs which are economically and strategically important for the European economy, but have a high-risk associated with their supply. One of the most important element which can not be replaced and is an essential element for human nutrition, yet limited resource is phosphorus (P). An importance of issues related to sustainable P management results from EU legislation, which indicated P as a Critical Raw Material (CRM). The sustainable management of P-resources is especially important for the Baltic region. A consequence of waterborne loads passing into the sea, mainly as wastewater with a high P content is the eutrophication of the Baltic Sea environment. Due to the largest inputs of P (37%) into the Baltic Sea originate from Poland, the development of sustainable solutions aimed at more rational P management for this country is externally important. T2 - International Phosphorus Workshop 9 CY - Zurich, Switzerland DA - 08.07.2019 KW - Phosphorus recovery KW - Circular economy PY - 2019 AN - OPUS4-48614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smol, M. A1 - Adam, Christian T1 - Possibility of recovering phosphorus from sewage sludge ash (SSA) in Poland N2 - Due to the vital importance of phosphorus (P) and its increasing scarcity as a natural resource, phosphorus recovery has recently gained significant scientific and technical interest. An interesting sources of phosphorus are sewage sludge (SS) and sewage sludge ash (SSA) due to the major part of the phosphate from P rich wastewater is transferred to the sludge (approx. 90%). Despite the fact that the raw materials base is large (PURE report indicates that in 2020 the amount of sewage sludge generated in Poland will reach 180% of the dry matter of sewage sludge produced in 2010), at present recycling of phosphorus is not a commonly used practice in Poland. T2 - International Phosphorus Workshop 9 CY - Zurich, Switzerland DA - 08.07.2019 KW - Sewage sludge ash KW - Phosphorus recovery PY - 2019 AN - OPUS4-48616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Stege, H A1 - Bretz, S. A1 - Hahn, Oliver T1 - A complementary spectroscopic approach for the non invasive in situ identification of synthetic organic pigments in modern reverse paintings on glass N2 - This work addresses the identification of synthetic organic pigments (SOP) in ten modern reverse paintings on glass (1912-1946) by means of an in-situ multi-analytical approach. The combination of the complimentary properties of mobile Raman spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) enabled the detection of sixteen SOP even in complex mixtures with inorganic compounds and binders. For the β-naphthol pigments, both Raman and DRIFTS yield appropriate results. DRIFTS was the preferred method for the detection of synthetic alizarin (PR83). Its diagnostic band pattern even allows its detection in complex mixtures with mineral pigments, binders and fillers. Raman spectroscopy yielded distinctive spectra for the triaryl carbonium pigments (PG1, PV2, PR81) and the two-yellow azo SOP (PY3, PY12), whereas DRIFT spectra were affected by extensive band overlapping. This may also occur in Raman spectra, but in less problematic amounts. Fluorescence is the major problem with Raman and it significantly hampers the SOP spectra even with the 785 nm laser. On the one hand the big spot size of DRIFTS (10 mm) limits the technique to rather large sampling areas, whereas the use of a 50× objective for in-situ Raman measurements permits a focus on small spots and aggregated SOP flakes. Moreover, “environmental” factors like temperature changes, artificial light, limited space and vibrations when people pass by need to be considered for in-situ measurements in museums. Finally, the results show the experimental use of SOP in modern reverse glass paintings. Among several rare SOP (e.g. PB52, PR81), two of them (PG1, PV2) have never been reported before in any artwork. T2 - Technart2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Synthetic organic pigments KW - Reverse glass painting KW - DRIFTS KW - Raman spectroscopy PY - 2019 AN - OPUS4-48009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steger, Simon A1 - Oesterle, D. A1 - Mayer, R. A1 - Hahn, Oliver A1 - Bretz, S. A1 - Geiger, G. T1 - First insights into Chinese reverse glass paintings gained by non invasive spectroscopic analysis N2 - A non-invasive methodological approach (X-ray fluorescence (XRF), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy) has been carried out to identify the pigments and classify the binding media in two Chinese reverse glass paintings (The Archer, Yingying and Hongniang) from the late 19th and early 20th centuries. The results reveal a combined use of traditional Chinese and imported European materials. Several pigments like cinnabar, lead white, orpiment, carbon black and copper-arsenic green (probably emerald green) were found in both paintings; red lead, artificial ultramarine blue, Prussian blue and ochre appear in at least one of the paintings. The presence of portlandite (Ca(OH)2) along calcite (CaCO3) in the fine-grained, white backing layer of Yingying and Hongniang indicates the presence of limewash. In Chinese tradition, limewash was produced from clamshells, and was then sold as clamshell white. In contrast to the Japanese pigment, Chinese clamshell white was made of finely grounded shells, which were heated over a low fire. The residue (CaO) forms portlandite (Ca(OH)2) when water is continuously added. This water-rich mixture is applied on the painting. Portlandite reacts with atmospheric CO2 during drying and forms fine-grained calcite (CaCO3) [1,2]. The identification of emerald green (The Archer) suggests an earliest manufacturing date in the 1830s [3] and promotes the sinological dating of the painting. Drying oil was classified as a binding media in most areas of both paintings. However, the orange background of The Archer yielded prominent bands of both proteinaceous and fatty binder. T2 - Technart2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Reverse glass painting KW - Raman spectroscopy KW - Non-invasive analysis PY - 2019 AN - OPUS4-48010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Feldmann, Ines A1 - Bücker, Michael A1 - Oleszczuk, S. T1 - EDX-Analysis on medieval glasses and innovative protection of stained glass panels N2 - The church of Koszewko (Poland) is a brick building edified in the 15th century built on cobblestone foundations. There are five windows in the sanctuary. Three of them enclose heraldic panels from the Küssow’s family from the 15th century which are surrounded with Goethe glass from the 18th century to complete the windows. The colored heraldic panels are strongly damaged and corroded with massive paint layer losses, glass- and leadbreakages. Those medieval glass fragments have been shortly discovered and are of particular interest for Poland since only few medieval glazing have been conserved. The damages as well as the glass compositions have been investigated with ESEM/EDX. Two categories of medieval glass compositions have been identified. The blue glass is particularly sensible to corrosion because of his high content in K2O. The colorless and the red glass samples belong to a stable glass type. Due to the thickness of the gel layer, it is easy to see that the degradation is strongly proceeded. The protection of those medieval stained-glass panels is absolute necessary. The medieval panels have been restored and surrounded from a copper frame. Then they have been fixed on the wood frame in the church. The exterior glazing has been closed with a panel of Goethe glass. The gap between the Goethe- and the medieval glass is about 3 cm. The Goethe glass panel has been stabilized with a film based on polyester to protect the medieval glasses against any damages. In this way, a low cost protective glazing has been installed for a long-term conservation of each medieval stained-glass panels. The climate measurements over the period of one year on the restored windows are in process. The temperature and the relative humidity are recorded in the church interior, in the gap between the original and the Goethe glass and outdoors. T2 - 93rd Annual Meeting of DGG and Annual Meeting of USTV CY - Nuremberg, Germany DA - 13.05.2019 KW - Medieval glasses KW - Stained glasses KW - EDX Analysis KW - Corrosion PY - 2019 AN - OPUS4-48025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Antimicrobial resistance in soil microbes mediated by resistance evolution and horizontal gene transfer (HGT) N2 - Questions: Biocides are in contact with soils through direct application and passive leaching from protected materials. Consequently, soil microorganisms are exposed to toxic biocides even though they are not their primary targets. Soil is a large reservoir of microbial diversity and has been hypothesized to be a crucial factor for the evolution and spread of antimicrobial resistance. Currently, there is little knowledge on how biocides used to protect materials affect the evolution and spread of resistance. Thus, our aim is to investigate the risk for the evolution of biocide resistance and cross-resistance to antibiotics. In addition, we aim to elucidate the affect of biocides on the spread of resistance via horizontal gene transfer (HGT). Methods: In laboratory evolution experiments we culture selected model soil microorganism with representative biocides followed by antibiotic cross-resistance determination and genome sequencing. Moreover, we investigate if the selected biocides affect the HGT frequency of plasmids that carry resistance genes among soil microorganism and the consequences for survival of the affected populations. Results: Our initial results show only small increases of biocide resistance during serial transfers in the presence of biocides. One reason for this might be the narrow selective window for biocide resistance due to steep dose-response relationships. Furthermore, we will present results from ongoing experiments on the effects of material preservatives on HGT frequencies facilitating microbial community adaptation to stress. Conclusions: The results will enable future risk assessment regarding resistance evolution for biocides used as material preservatives. T2 - 5th International Symposium on the Environmental Dimension of Antibiotic Resistance (EDAR) CY - Hong Kong, China DA - 09.06.2019 KW - Biocides KW - Horizontal gene transfer HGT KW - Microbiology KW - Resistance evolution KW - Antimicrobial resistance PY - 2019 AN - OPUS4-49401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin A1 - Adam, Christian T1 - Gypsum plasterboard recycling - a sustainable approach N2 - Gypsum (calcium sulfate dihydrate) has excellent building material properties and has been widely used in constructions in the last decades in many countries. Accordingly, an increase of waste gypsum in C&D waste is expected in the upcoming years. On one hand, sulfates are unwanted in other secondary building materials (particularly in recycled concrete aggregates) and should be minimized for quality reasons. On the other hand, used gypsum from CDW can also be used in gypsum production if the high quality requirements for the recycled gypsum – especially regarding the sorting accuracy - are met. A large percentage of the gypsum from buildings was installed as gypsum plasterboards in interior fittings so far. Gypsum plasterboards are comparatively simple to remove and to separate during selective dismantling. Therefore, a high sorting purity can be achieved. In addition, techniques for the recycling of gypsum plasterboards already exist and high quality standards can be achieved. Also, the reuse in gypsum production has been improved in the last decade. Furthermore, an environmental evaluation of the whole process of gypsum plasterboard recycling and reuse showed that this approach can be environmentally advantageous. Therefore, a closed-loop recycling of gypsum plasterboards is feasible. This poster will show the development of gypsum consumption in different countries as well as a prognosis for the upcoming of gypsum in CDW in the future decades in Germany. Furthermore, a simplified scheme of the recycling process and selected results from an environmental evaluation will be presented. T2 - Conference on Mining the European Anthroposphere: Poster session CY - Bologna, Italy DA - 20.02.2020 KW - LCA KW - Gypsum recycling PY - 2020 AN - OPUS4-51435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raedel, Martina A1 - Bücker, Michael A1 - Feldmann, Ines A1 - Reimann, M. T1 - Conservation of damaged architectural aluminum elements N2 - Aluminum is an often-used building material in modern architecture. In recent years buildings from the 1950th and 1960th are increasingly subject of conservation works including the aluminum parts. Typical surface damages are signs of corrosion caused by weathering processes or scratches in the anodized layer due to extensive wear. To repair damaged aluminum surfaces, there are usually two options: smaller areas are repaired by using a touch-up pen, for larger damages it is necessary to remove the anodized layer completely. Both possibilities are disadvantageous for the objects; the touch-up pen often does not match the color together with an insufficient corrosion protection, while newly anodized layers often differ in color and gloss from the original surface. For this reason, a research project was initiated to develop a mobile method to repair anodized aluminum parts. The first step focusses on the mobile anodization process by using the electrolyte with a gel substrate. Different cathodic materials are to be tested together with appropriate cooling material. The anodized area should be isolated to protect undamaged areas. Examinations of the produced layers are conducted by using Keyence microscope, eddy current testing and ESEM analysis. Further steps are to transform the coloring and sealing process for mobile application. Color could be applied by using a brush or by spray while the sealing process could be performed with water vapor. An heatable putty knife could be used, if heating up the area will be necessary. Once the application process is developed, the anodization will be tested on samples with artificial damages, fixed in horizontal and vertical positions. The stability of the anodized surface will be examined by accelerated ageing in a climate chamber and outdoor weathering. The electrolyte (diluted sulfuric acid) was combined with a gel binder to enable a mobile application. Several thickening agents were tested concerning their conductivity and stability in acid systems. Anodization tests with different cathodic material and shapes were conducted. The temperature during anodization was controlled and adjusted if necessary. The anodized area was restricted by using either a lacquer, an adhesive or a removable silicon barrier. The fist results show the feasibility of the method on enclosed areas. The achieved thickness was measured by eddy current testing and the structure was controlled by ESEM analysis. The examinations show a connection between thickness and porosity of the anodized layers and the temperature during the application process. Next steps are testing mobile coloring and sealing methods followed by mobile anodization on artificial damaged areas. T2 - Metal 2019 CY - Neuchâtel, Switzerland DA - 02.09.2019 KW - Mobile anodisation KW - Aluminium KW - Conservation KW - Damage repair PY - 2020 UR - https://www.lulu.com/shop/claudia-chemello-and-laura-brambilla-and-edith-joseph/metal-2019-proceedings-of-the-interim-meeting-of-the-icom-cc-metals-working-group-september-2-6-2019-neuch%C3%A2tel-switzerland-ebook/ebook/product-24517161.html AN - OPUS4-51479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, D. A1 - Adam, Christian T1 - Formation of tricalciumsilicate from post-treated metallurgical slags N2 - LD-slags differ from Ordinary Portland Cement (OPC) mainly in a higher content of iron oxides and a low content of Tricalciumsilicate (Alite). In the context of an improved resource usage, a procedure to convert LDslags into cement clinker was investigated. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Tricalcium-silicate KW - Portland Cement KW - Alite KW - Steelmaking slag PY - 2019 AN - OPUS4-49591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A Genetic Toolbox for Exploring the Life Style of the Rock-inhabiting Black Fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish sub-aerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of black yeasts such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis. For this environmental strain we developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence is paving the way for studying interactions of K. petricola and other black yeasts with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - VAAM symposium 'Molecular Biology of Fungi' CY - Göttingen, Germany DA - 19.09.2019 KW - Knufia petricola KW - Rock-inhabiting fungus KW - Genetics KW - Crispr-Cas9 PY - 2019 AN - OPUS4-49634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abdallah, Khaled A1 - Knabe, Nicole A1 - Breitenbach, Romy A1 - Dementyeva, Polina A1 - Voigt, Oliver A1 - Gerrits, Ruben A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Developing a genetic toolbox for Knufia petricola A95: a model for stress-tolerant and symbiose-competent rock-inhabiting fungi N2 - Black microcolonial fungi (MCF) are persistent inhabitants of rock surfaces in hostile desert environments. In these niches, MCF have evolved mineral-weathering and symbiotic capabilities as well as mechanisms to cope with multiple stresses such as solar irradiation, temperature extremes and low water activity. Due to their stress tolerance these ascomycetes are prominent in modern terrestrial ecosystems – like man-made material surfaces from roof to solar panels. MCF interactive capabilities support their facultative symbiotic relationships with cyanobacteria and ensure their rock-weathering geochemical activity. Using the rock-inhabiting fungus K. petricola A95 (Chaetothyriales), we developed transformation protocols and deleted genes responsible for production of the protective pigments melanins and carotenoids. To confirm that the mutant phenotypes were not due to hidden mutations, melanin synthesis was restored by complementing the mutants with the respective wild type genes. Strains of K. petricola carrying gene variants for fluorescent proteins EGFP and DsRed are available. We successfully labelled the cytoplasm, nuclei, peroxisomes and mitochondria. Targeted and ectopic integrations result in stable transformants suitable for further phenotypical characterization. As K. petricola is a non-pathogenic fungus with all characteristic features of MCF, including meristematic growth, melanized cell-walls, extracellular polymeric substances and extensive pigment production, our results will shed light on protective role of pigments during cell wall maturation and oxidative stress defence in rock-inhabiting MCF. Genes involved in environmental sensing or substrate and phototroph interactions are currently targeted. With the help of a mutant collection and fluorescently labelled K. petricola we will be able to investigate interactions of MCF with environmental stressors, mineral substrates, soil matrices and phototrophic symbionts. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - Knufia petricola KW - Genetics KW - Melanin PY - 2019 AN - OPUS4-49635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Heeger, Felix A1 - Whitfield, Daniel A1 - Knabe, Nicole A1 - Nai, Corrado A1 - Schumacher, Julia A1 - Broughton, William A1 - Cuomo, C. A1 - de Souza, E. A1 - Lespinet, O. A1 - Mazzoni, C. A1 - Monaghan, M. A1 - Gorbushina, Anna T1 - Exploring the genome of the black yeast Knufia petricola N2 - Black yeasts form a polyphyletic group of Ascomycota that colonize bare surfaces like rocks, facades of buildings, and solar panels. Their protective adaptations enable an adequate response to fluctuating and diverse temperature, water and UV radiation stresses. Together with bacteria and algae they form sub-aerial biofilms (SAB) this way discoloring and weathering the surfaces they grow on. Strain A95 of Knufia petricola (Eurotiomycetes, Chaetothyriales) displays both typical yeast-like cell growth and constitutive dihydroxynaphthalene (DHN) melanogenesis. Along with the cyanobacterium Nostoc punctiforme as photobiont, it is already used in a model system for studying SAB formation and bio-weathering. Applying the recently developed tools for the generation of deletion mutants will allow to define gene functions and to identify genes critical for abiotic and biotic interactions. We present a chromosome-level genome assembly and annotation for K. petricola A95. The genome was assembled with MaSuRCA using a hybrid assembly approach of Illumina MiSeq and PacBio SMRT sequencing data. The resulting assembly consists of 17 contigs including the complete mitochondrial genome and five complete chromosomes. It shows indication of repeat-induced point mutations (RIP). Supported by RNA sequencing data from eight different growth conditions, 10,994 genes were predicted with the BRAKER2 pipeline. Functional annotation of genes was obtained from general functional annotation databases and the fungal specific database FungiPath. Comparative analyses are in progress to identify genes specific to black yeasts, that may facilitate the survival on exposed surfaces. In sum, the genome sequence of K. petricola is a valuable resource to gain insight into the protein inventory and functional pathways of extremotolerant and symbiosis-capable fungi. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - Knufia petricola KW - Black fungus KW - Genome sequence PY - 2019 AN - OPUS4-49636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Jann, Oliver A1 - Richter, Matthias T1 - Towards an efficient procedure for the analysis of VVOC emissions N2 - This poster summarizes the points that need to be addressed towards the standardization of an efficient procedure for the analysis of VVOC emissions: Standard mixture generation and investigations on mutual reactivity, selection of an appropriate sorbent combination, water management and choice of a suited GC column. T2 - Indoor Air 2020: The 16th conference of the international society of indoor air quality and climate CY - Online meeting DA - 01.11.2020 KW - VVOCs KW - Analytical method KW - ISO 16000-6 KW - EN 16516 PY - 2020 AN - OPUS4-52023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Simon, Franz-Georg T1 - Detailed Investigation of Perfluoroalkyl Surfactant Contaminated Soil Samples by Combustion Ion Chromatography - Development of EOF and AOF as Reference Values in Environmental Analysis N2 - Per- and polyfluoralkyl surfactants (PFASs) are industrially produced surface chemicals used in daily applications that have gained public and political attention due their unnaturally high appearance in drinking water, nourishments and soils. Their chemical structures exhibit both lipophilic and hydrophilic properties, leading to a highly inert and persistent character. Various PFASs have shown to be bioaccumulative in plants and animals, and some have been characterized as highly toxic when ingested. When exposed to the environment, PFASs slowly get mobilized by natural water resources, leading to contamination of large areas of soil and natural water sources. While PFASs contamination of drinking water has been investigated intensively, perfluoralkyl contamination of soils has been rarely examined as of yet. At the same time, an increasing amount of PFASs contamination sites are being discovered worldwide, calling for a sophisticated strategy towards analytical characterization. Since the number of known PFASs already exceeds 4700, the established sum parameters like extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF) are key elements to fully survey the impact of exposure. Simultaneously, innovative soil remediation strategies are required to contain environmental destruction and to minimize further spreading of contaminants. Addressing these challenges requires suitable analytical devices that are capable of mobilizing PFASs in the solid as well as in the liquid phase. The use of combustion ion chromatography (CIC) enables analysis of both immobile and volatile PFASs and allows the detection of both total fluorine (TF) and EOF or AOF of a given soil or aqueous sample. Based on preliminary results, the clean-up of a PFAS contaminated solid matrix is monitored via EOF detection over time. Additionally, we demonstrate the pH dependency of hydrogen fluoride absorption on active carbon (AC) and found a simple organic additive to be an effective fluoride scavenger. The presented findings can be contributive with regard to future AOF/EOF sum parameter development and application. T2 - DECHEMA Symposium Strategien zur Boden- und Grundwassersanierung 2020 CY - Online meeting DA - 23.11.2020 KW - PFAS KW - SPE extraction KW - Combustion ion chromatography KW - Organo fluorine analysis KW - Soil extraction KW - Sewage extraction PY - 2020 AN - OPUS4-51978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - Wurzler, Nina A1 - von der Au, Marcus A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Examination of biological samples by means of single-cell ICP-ToF-MS N2 - Up to now, different analytical methods for single cell analysis exist focusing on key features such as size, shape, morphology and elemental composition. The combination of the latest ICP-MS techniques - ICP-ToF-MS - together with the latest developments in the field of sample delivery - micro droplet generator (MDG) – will allow a Deep insight into the composition and size of cells. Microbiologically influenced corrosion (MIC) is an oxidation of metals affected by the presence or activity (or both) of microorganisms e.g. Shewanella Putrefaciens in biofilms on the surface of the corroding material. As this can happen for example in the soil on iron pipes of water pipes, in oil tanks or on steel sheet piling, there is great interest in MIC research, not only from various industrial sectors, but also from the environmental aspect. T2 - SALSA - Make & Measure CY - Online Meeting DA - 15.10.2020 KW - SC-ICP-ToF-MS KW - Single cell analysis KW - MDG ICP-ToF-MS KW - Microdroplet generator PY - 2020 AN - OPUS4-52441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - Roesch, Philipp A1 - Fischer, Emily A1 - von der Au, Marcus A1 - Pfeifer, Jens A1 - Cossmer, Antje A1 - Wittwer, Philipp A1 - Vogel, Christian A1 - Simon, Franz-Georg A1 - Meermann, Björn T1 - Organically bound fluorine in river water - A methode comparison of CIC and HR-CS-GFMAS N2 - Abstract: Since it is unknown for many applications, which PFASs are used and how they enter the environment, target analysis-based methods reach their limits. The two most frequently used sum parameters are the adsorbable organically bound fluorine (AOF) and the extractable organically bound fluorine (EOF). Both can be quantified using either combustion ion chromatography (CIC) or high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). Here we provide an insight on the advantageous and disadvantageous of both sum parameters and both detection methods. Our study is based on the analysis of surface water samples. Next to total fluorine (TF) analysis, AOF and EOF were determined as well as CIC and HR-CS-GFMAS are compared and results are comparatively discussed. Fluorine mass balancing revealed that, the AOF/TF proportion was higher than the EOF/TF proportion. The AOF made up 0.14–0.81% of TF and the EOF 0.04–0.28% of TF. Although, organically bound fluorine represents only a small portion of TF, PFASs are of worldwide concern, because of their extreme persistence and their bioaccumulation potential. The EOF-HR-CS-GFMAS method turned out to be more precise and sensitive than the AOF-CIC method and is a promising tool for future monitoring studies/routine analysis of PFASs in the environment. T2 - SALSA Make and Measure 2020: Advanced Characterization of Materials CY - Online meeting DA - 15.10.2020 KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Combustion ion chromatography (CIC) KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Adsorbable organically bound fluorine (AOF) KW - Extractable organically bound fluorine (EOF) KW - Surfacewaters PY - 2020 AN - OPUS4-52451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Jann, Oliver T1 - Comparison of Formaldehyde Concentrations in Emission Test Chambers Using EN 717-1 and EN 16516 N2 - For many years EN 717-1 (Wood-based panels - Determination of formaldehyde release - Part 1: Formaldehyde emission by the chamber method) is the standard for formaldehyde emission testing of wooden boards. In 2017 EN 16516 (Construction products - Assessment of release of dangerous substances - Determination of emissions into indoor air) was published as a new harmonised standard for the emission testing of construction products. Because test chamber conditions are different, both standards give different concentrations for formaldehyde. For the determination of a conversion factor four test series were set up with different wooden boards. T2 - Conference on Indoor Air CY - Philadelphia, PA, USA DA - 22.07.2018 KW - Loading factor KW - Construction products KW - European standard KW - Air exchange rate PY - 2018 AN - OPUS4-45631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroj, S. A1 - Schwibbert, Karin A1 - Kasemann, S. A1 - Domke, M. T1 - Laser-generated high wetting contrast surfaces for microbiological applications N2 - We demonstrate a 2D platform based on high contrast wetting patterns suitable for miniaturized microbiological assays. In principal, superhydrophilic spots are surrounded by a superhydrophobic surface area. The special structure of the superhydrophilic functional surface ensures that liquids, e.g. bacterial suspensions or biocide solutions, spread immediately and evenly on this surface without passing the wetting boundary. This feature allows a homogenous distribution of bacteria or chemical substances on well defined lateral dimensions. The superhydrophilic spots may also serve as substrate for bacterial biofilms. Due to the high wetting contrast and the fabrication process, it is possible to minimize the test areas as well as their distance to each other. We demonstrate the fabrication process of the high wetting contrast platform and also present a microbiological assay as an application example. Advantages of this platform are the use of low volumes and its potential of automated analysis. T2 - Biointerfaces International Conference CY - Zürich, Austria DA - 14.08.2018 KW - Biofilm KW - Bacterial growth KW - Laser structuring KW - Superhydrophobic surface KW - Superhydrophilic surface PY - 2018 AN - OPUS4-45863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Köppen, Robert A1 - Becker, Roland A1 - Bücker, Michael A1 - Ostermann, Markus A1 - Traub, Heike T1 - Weathering scenarios – Changes in polymer surface morphologies and leaching of brominated flame retardants N2 - In addition to previously reported results on the simulated aging of polystyrene samples (PS) containing 1 wt. % hexabromocyclododecane (HBCD), we present the first results of our investigations of polypropylene (PP)-samples containing 0.1 wt. % BDE-209. All studied polymer samples were exposed to a defined weathering schedule in a climate chamber in accordance to regulation EN ISO 4892-3:2006.For the determination of BDE-209 in the collected rain water samples derived from the used climate chamber, the samples were prepared in accordance with a validated protocol. Before the analyses, each sample was spiked with 2 µL of isotopically labeled BDE-209 (13C10-BDE-209) to serve as internal standard (ISTD) in the performed stable isotope dilution analysis. Subsequently the samples were extracted with isooctane, the obtained aliquots of the extracts were concentrated to 200 µL and 2 µL of the resulting solution were injected to the GC/MS for quantification. Additionally, the total bromine contents are monitored for the aged and untreated samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as well as X-ray fluorescence analysis (XRF) as non-destructive and rapid method. Furthermore, results from surface analysis using environmental scanning electron microscopy (ESEM) for morphological characterization of the aged and untreated samples were presented and discussed. In general, the resulting data from the accelerated aging will be compared to those from the natural weathering experiments (“atmospheric exposure”, in soil). The atmospheric exposure was performed by placing the samples on a weathering rack, which is aligned in SW direction (in a 45° angle to the horizon). The weathering data were regularly recorded by Deutscher Wetterdienst at this site. The surfaces of the test specimens (aged and stored references) were analyzed by ESEM as well as by LA-ICP-MS and by XRF. The surface of PS and PP specimens aged outdoors present the aging under real conditions and allow the comparison to the accelerated aged specimens by means of the weathering chamber. This way, we explore the efficiency of the accelerated aging procedure, which provides the advantage of well-defined and reproducible conditions compared to natural weathering, as a tool for testing different plastic materials. Additionally “in soil” experiments were conducted in-door in a well characterized testing soil. The soil (boulder-clay, sand with 12 % loam, particle size in total 0.2-4 mm) is filled in a free-draining concrete basin inside of an air-conditioned room. In this manner, TOC, water capacity and humidity are recorded parameters. To assure a washing out process from the samples by the raining water, the target water content is calculated to 8%. The actual humidity is measured by a tensiometer, assuring the duration of the raining period. The water content is additionally monitored by weight of the basin, capturing water from raining periods. The correct humidity is a fundamental parameter for biological activity. Samples of PS resp. PP were of dimension 10x1cm and 5 specimens were placed up to the half in the soil per basin. Microbial activity of the soil, monitored by the reference polyurethane, sets HBCD resp. BDE-209 of the samples free and will be leached from the samples by raining water. Thereafter these will be captured by passive samplers placed in a distinct distance to the samples in the soil. The “in soil” experiments are complementary to the weathering experiments due to the biological activity in the soil. These experiments simulate the fate of the brominated flame retardants in the biosphere. T2 - Umwelt 2018 CY - Münster, Germany DA - 09.09.2018 KW - BFR KW - Weathering KW - PP KW - PS PY - 2018 AN - OPUS4-47029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Defedov, A. A1 - Wöll, C. A1 - Unger, Wolfgang T1 - Exploring the capabilities of NAP-XPS: Application to metal-organic frameworks, nanoparticles and biofilms N2 - Near-ambient pressure XPS makes it possible to characterise samples not compatible to ultra-high vacuum, and enables the study of liquid-solid, gas-liquid and gas-solid interfaces. NAP-XPS meas-urements of biofilms, suspended nanoparticles and metal-organic frameworks were performed with EnviroESCA developed by SPECS. An interesting application is surface characterisation of biofilms, which are bacterial communities embedded in a self-produced polysaccharide matrix. Various model systems ranging from pure polysaccharides of alginate to biofilms harvested directly from the growth medium have been char-acterised in humid conditions[1]. NAP-XPS also makes it possible to characterise nanoparticles in solution. Silver nanoparticles in aqueous solution were characterised and the Ag 3d-spectrum compared to spectra obtained of dried nanoparticles in UHV-conditions[2]. The binding energy of the Ag 3d-core level peak was shifted by 0,6 eV towards higher binding energy for suspended nanoparticles compared to the dried sample measured in UHV. This can be assigned to a change in surface potential at the water-nanoparticle interface. Metal-organic frameworks (MOFs) are suitable materials for gas storage of small molecules due to their nanoporous, crystalline structure. However, instability in humidity remains an issue for many types of MOFs. XPS-measurements of the MOF-structure HKUST-1 were performed in various NAP-conditions to assess the stability of the sample and its interaction with the gas molecules as water, methanol and pyridine. T2 - 5th AP-XPS Workshop CY - Berlin, Germany DA - 11.12.18 KW - Biofilms KW - E. coli KW - NAP-XPS KW - Metal organic frameworks KW - Nanoparticles PY - 2018 AN - OPUS4-47060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Hermann, Annett A1 - Kunte, Hans-Jörg T1 - Investigation of methanogen-induced microbiologically influenced corrosion under dynamic environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea can also cause MIC by directly withdrawing electrons from the iron surface for methanogenesis. However, the mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite, a by-product of methanogenesis, (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - IGD-TP Exchange Forum 8 CY - Berlin, Germany DA - 04.12.2048 KW - Archaea KW - Biocorrosion KW - MIC KW - Environmental Simulation PY - 2018 AN - OPUS4-47136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Dommisch, H. A1 - Koerdt, Andrea T1 - The impact of methanogenic Archaea on material, environment and health N2 - Microbiologically influence corrosion (MIC) has become a big concern due the increased usage of different metals by our society. Microorganisms can use metal as an electron donor, causing unpredictable but serious damages. Nowadays it is known that besides sulfate reducing bacteria (SRB), other microorganisms including acetogens, iron oxidizers and methanogens can also induce MIC. Current studies related to methanogen-induced MIC (MI-MIC) mainly focused on environmental isolates from the oil and gas industry (e.g. Methanococcus maripaludis) with industrial materials e.g. iron. However, MI-MIC can occur in many other environments as well, including the oral cavity. Methanobrevibacter oralis is a methanogen isolated from the human oral cavity and was found more frequently in patients suffering from peri-implantitis/periodontitis. Titanium-implants removed from those patients have also showed clear signs of corrosion. The aim of our study is to establish and analyze corrosion potentials of dental metals (e.g. titanium) by oral methanogens. Periodontal pockets samples from patients suffering from periodontitis/peri-implantitis were taken for methanogenic and SRB enrichments. Stainless steel, pure titanium or Ti-6Al-4V alloy was used for corrosion studies. Corrosion rates and methane production were measured using weight-loss method and gas chromatography, respectively. Metal surfaces were visualized with scanning electron microscopy. Microbial communities in the dental pockets of healthy people and patients will be compared using 16S rRNA amplicon sequencing. Overall, this is the first study investigating the susceptibility of different dental implant materials to corrosion using human-related Archaea. The outcomes of this study can be further explored for a variety of clinical applications. T2 - ISME 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Methanogens KW - Corrosion KW - Biofilm PY - 2018 AN - OPUS4-45932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Lombi, E. A1 - Herzel, Hannes A1 - Zuin, L. A1 - Wang, D. A1 - Félix, R. A1 - Adam, Christian T1 - Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils N2 - A wide range of methods are used to estimate the plant-availability of soil phosphorus (P). Published research has shown that the diffusive gradients in thin films (DGT) technique has a superior correlation to plant-available P in soils compared to standard chemical extraction tests. In order to identify the plant-available soil P species, we combined DGT with infrared and P K- and L-edge X-ray adsorption near-edge structure (XANES) spectroscopy. This was achieved by spectroscopically investigating the dried binding layer of DGT devices after soil deployment. All three spectroscopic methods were able to distinguish between different kinds of phosphates (poly-, trimeta-, pyro- and orthophosphate) on the DGT binding layer. However, infrared spectroscopy was most sensitive to distinguish between different types of adsorbed inorganic and organic phosphates. Additionally, also intermediates of the time-resolved hydrolysis of trimetaphosphate in soil could be analyzed. Furthermore, infrared and XANES microspectroscopy make it also possible to analyze P compounds on the binding layer with a lateral resolution down to 1 µm2. Therefore, P species of a spatial soil segment (e.g. rhizosphere) can be mapped and analyzed. T2 - Phosphorus in Soil and Plants (PSP6) CY - Leuven, Belgium DA - 10.09.2018 KW - Soil P species KW - Spectroscopy KW - DGT PY - 2018 AN - OPUS4-45961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Feldmann, Ines A1 - Seneschal-Merz, Karine A1 - Bücker, Michael A1 - Oleszczuk, O. T1 - EDX-Untersuchungen an mittelaltelichen Gläsern und innovativer Schutz der Glasmalereien N2 - In Vorbereitung einer Restaurierung erfolgten naturwissenschaftliche Untersuchungen zu Schadensphänomenen und Glaszusammensetzungen an mittelalterlichen Gläsern aus der Dorfkirche in Koszewko (Polen)im Environmental Scanning Electron Microscope (ESEM) mit EDX. Die Ergebnisse zeigen, dass die Glasverwitterung schon sehr stark vorangeschritten ist und ein zukünftiger Schutz der mittelalterlichen Glasmalereifelder vor Umwelteinflüssen unbedingt notwendig ist. Es wurde ein Schutzverglasungsystem entwickelt, das speziell auf den langfristigen Erhalt der einzelnen mittelalterlichen Glasmalereifelder ausgelegt ist. T2 - 21th Congress of Association Internationale pour l´Histoire du Verre CY - Istanbul, Turkey DA - 03.09.2018 KW - Glasanalyse KW - ESEM KW - Schutzverglasung PY - 2018 AN - OPUS4-45947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank T1 - Selection of resistance in bacterial biofilms grown on antimicrobial surfaces in a multidrug environment N2 - Background Bacterial biofilms are regarded as the most common cause of chronic infections and are often associated with medical devices, such as implants and catheters. Bacteria growing in biofilms produce a protective, extracellular matrix, which enables them to tolerate much higher antimicrobial concentrations than free-living bacteria and survive long enough to acquire antimicrobial resistance. Preventive and therapeutic strategies against biofilm infections in clinical settings commonly involve the application of multiple antimicrobials: biocidal coatings on the biomaterials and systemically administered antibiotics. This frequent practice harbors the risk of the development of cross-resistance via shared resistance mechanisms between antimicrobials used in material coatings and administered antibiotics. Aim Our goal is to determine how bacteria adapt to antimicrobials during biofilm formation on surfaces coated with antimicrobials and how population dynamics within biofilms affect the transmission of resistance mutations. Specifically, we want to identify antimicrobial-antibiotic-combinations that select for and against antibiotic resistance in biofilms by following the population dynamics of resistant and susceptible strains in competition assays on a single cell level. Methodology To study the effect of antimicrobial-antibiotic exposure on resistance development and population dynamics on bacterial biofilms in a multidrug environment, we will grow Pseudomonas aeruginosa on glass surfaces with and without antimicrobial coatings and expose them to antibiotics. First, we will screen in vitro for combinations of antibiotics and antimicrobials that select for and against antibiotic resistance. Second, effective combinations will be chosen for in-depth investigations during bacterial adhesion and of mature biofilms of resistant and susceptible genotypes. Third, based on the outcome of the screen and the obtained mechanistic understanding we will choose a clinical example in which we study the relevance of our findings in biofilms grown in vivo. Relevance Studying the biointerfacial interactions between bacterial biofilms and medical devices in terms of population dynamics as well as on single cell level during multidrug selection will help us understand how drug resistance develops and spreads in persistent biofilm infections. Based on our findings we aim to provide clinical recommendations for improved administration of antibiotics/antimicrobials in combination with medical device materials in order to mitigate against biofilm associated antimicrobial resistance. T2 - Biofilms 8 Conference CY - Aarhus, Denmark DA - 27.05.2018 KW - Resistance KW - Antimicrobials PY - 2018 AN - OPUS4-46524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Marie A1 - Adam, Christian T1 - Scandium and scandium-aluminium alloy production from European metallurgical by-products N2 - The SCALE Project is a Horizon2020 Project (GA°730105) that aims to develope a secure supply chain for Scandium in Europe. To achieve that, the whole value chain is investigated and new methodologies and techniques are being developed. In BAM we are characterizing potential Scandium-bearing industrial by-products. T2 - Poster presentation during Exploration Geology Short Course DMG CY - Freiburg, Germany DA - 19.02.2018 KW - Scandium KW - Red Mud KW - Aluminium KW - SCALE PY - 2018 AN - OPUS4-46539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hoffmann, Marie A1 - Adam, Christian T1 - Scandium in industriellen Reststoffen - Die Suche nach der Nadel im Heuhaufen N2 - Im Zusammenhang mit dem Horizon2020 geförderten Projekt SCALE (GA°730105) untersuchen wir an der BAM die Scandium Spezies in industriellen Restsoffen wie zum Beispiel Rotschlamm. Dabei kommen Methoden wie Elektronenmikroskopie, LA-ICP-MS und auch X-ray Adsorption near edge structure an Synchrotron-Lichtquellen zum Einsatz. Das Verständnis der Bindungsformen des Scandiums soll im Weiteren helfen, metallurgische Gewinnungsmethoden zu verbessern und anzupassen. T2 - Posterpräsentation während des Themenfeldtags Umwelt CY - Berlin, Germany DA - 18.10.2018 KW - Scandium KW - Rotschlamm KW - Aluminium KW - SCALE PY - 2018 AN - OPUS4-46540 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Schreiber, Frank A1 - Koerdt, Andrea T1 - Investigating the effects of biocides and corrosion inhibitors on corrosive methanogens N2 - Microbiologically influenced corrosion (MIC) is the deterioration of metals due to the metabolic activities of microorganisms. Microorganisms can take electrons directly from the metal surface (EMIC) thereby causing corrosion. Well known culprits of EMIC are: sulfate-reducing bacteria (SRB), acetogens and methanogens. Our aims - Develop a novel flow system to study MIC by methanogens to mimic industrial Environments - Investigate the inhibitory concentrations of biocides targeting SRB on corrosive methanogenic strains - Investigate the inhibitory effects of corrosion inhibitors on methanogens - Compare the inhibitory concentrations to SRB T2 - BAM meeting CY - BAM, Berlin, Germany DA - 06.06.2018 KW - MIC projekt KW - Mikrobiell beeinflusste Korrosion KW - Microbiologically influenced corrosion KW - Korrosion KW - Corrosion KW - Material degradation KW - Biocide PY - 2018 AN - OPUS4-46010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cohen, Zina A1 - Bonnerot, Olivier A1 - Schlanger, J. A1 - Hahn, Oliver A1 - Rabin, Ira T1 - Composition analysis of writing materials in Geniza fragments N2 - The Cairo Geniza is an “archive” discovered in the 19th century in Ben Ezra Synagogue in Fustat, a district in Old Cairo (Egypt), located south of the center of modern Cairo. The giant collection of mostly Jewish documents that vary in genres, languages and writing supports contains a large number of early medieval Hebrew manuscripts, mostly in fragmentary form. The larger part of the Cairo Geniza is stored today in the Cambridge University Library (CUL). The Geniza provides sources for the literary, linguistic, historical studies of the various aspects Jewish life. As the documents attest, at least two Jewish communities co-existed in Fustat up to 11th century: a so-called Babylonian and Palestinian. These communities had different leaders, different traditions and lived independently. The differences seem to manifest themselves also in the paleographical, codicological and some material properties of the manuscripts produced by each community. The aim of this project is to compare the inks used in the Jewish documents depending on different variables: support (paper, parchment), purpose of the manuscript (legal, private, religious), provenance of the scribe. For the determination of the inks type and composition we had to choose non-invasive, non-destructive and portable techniques to analyse the corpus directly in the CUL. The analyses were carried out with a mobile energy dispersive micro-X-ray spectrometer ArtTAX® (Bruker GmbH, Berlin, Germany), which consists of an air-cooled, low-power molybdenum tube, polycapillary X-ray optics (measuring spot size 70 µm in diameter), an electrothermally cooled Xflash detector, and a CCD camera for sample positioning (Bronk et al 2001, Hahn et al. 2010). All measurements are executed using a 30 W low-power Mo tube, 50 kV, 600 µA Mo tube, and with an acquisition time of 15 s (live time) to minimize the risk of damage (Fig. 1, 2). Fig. 1: XRF spectrometer probe above a manuscript fragment Fig. 2: Typical element profile of a XRF linescan The Dino Lite digital stereomicroscope (Fig. 3) features built-in LED illumination at 395 nm and 940 nm and a customized external white light source. During use, the microscope is fastened to a small tripod or mounted on a Plexiglas ring holder that incorporates a white light source. Fig. 3: Dino Lite digital stereomicroscope Fig. 4: Details of one fragment (T-S 16.124) observed with the Dino microscope (x20). On the left, when illuminated with NIR (Near-Infrared, 940 nm) light, the ink fades, indicating iron-gall ink. On the right, the image under NIR light does not change. It is carbon ink. On example of these studies is the manuscript T-S 16.124 (Cambridge University Library, Fig. 5) whom belongs to the third corpus. It is a deed, written in Hebrew, dated from 1328 (= 1017 CE) and witnessed by a very high number of people (6) comparing to the standard of similar documents (between 2 and 3), from at least two different Jewish communities in Fustat (trans congregational). The verso is written in Arabic (Bareket 1999). Fig. 5: Manuscript T-S 16.124 (Cambridge University Library) To compare the inks, we used the fingerprint model. This method relies on the determination of characteristic elemental compositions and represents the amount of a minor constituent relative to the main component, iron in iron gall ink (Malzer et al. 2004, Hahn et al. 2004, Rabin et al 2014). However, a calculation of a fingerprint based on XRF measurements is not possible in the case of carbon ink since carbon, its main component, cannot be detected with this technique. Fig. 6: Ink fingerprint T-S 16-124 (recto) normalized to iron (Fe) Conclusion We show that using reflectography and XRF analysis it is possible to sort the inks according to their type. In the case of the iron-gall inks, use of the ink fingerprint, i.e. amount of the vitriol components normalized to iron we can make direct comparisons of the ink composition. We would like also to stress that though the methods of material analysis listed above have been successfully employed in the field of cultural heritage and conservation including ancient and medieval manuscripts they have not yet been used to study fragments from the Cairo Genizah. Therefore, we believe that this research project is a pioneering study that will provide new insights into the history of Hebrew writing materials, their production techniques and materials and, thus, contribute new data to the field of Hebrew paleography. T2 - Konferenz DESY “Archäometrie und Denkmalpflege 2018” CY - Hamburg, Germany DA - 20.03.2018 KW - Ink KW - XRF Analysis KW - Manuscript PY - 2018 AN - OPUS4-46042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vandrich, Jasmina A1 - Alfaro Espinoza, Gabriela A1 - Kunte, Hans-Jörg T1 - Tampering with ectoine production and excretion in Halomonas elongata using CRISPRi and gene knock-outs N2 - The halophilic bacterium Halomonas elongata can tolerate salt concentrations above 10% NaCl and uses the accumulation of the compatible solute ectoine as a major osmoregulatory mechanism. Ectoine can be accumalted inside the cell through import from the medium or de novo synthesis and establishes an osmotic equilibrium with the surrounding1. Ectoine also protects proteins from the effects of freezing, drying and high temperatures4 and DNA from ionizing radiation2. These features make ectoine a valuable compound for cosmetics and medical devices. H. elongata was originally isolated from a solar salt facility, where it thrives under high salt concentrations. It was found that marine prokaryotes, which are exposed to high oxidative stress in their environment, vary glycolytic strategies5. A variation in the use of the glucose metabolic pathways is also assumed for H. elongata. T2 - International Society for Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Halomonas CRISPR Ectoine PY - 2018 AN - OPUS4-46080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vandrich, Jasmina A1 - Alfaro Espinoza, Gabriela A1 - Kunte, Hans-Jörg T1 - Establishing CRISPRi in Halomonas elongata to uncover metabolic pathways N2 - The halophilic bacterium Halomonas elongata can tolerate salt concentrations above 10% NaCl and uses the accumulation of the compatible solute ectoine as a major osmoregulatory mechanism. Ectoine can be accumalted inside the cell through import from the medium or de novo synthesis and establishes an osmotic equilibrium with the surrounding1. Ectoine also protects proteins from the effects of freezing, drying and high temperatures4 and DNA from ionizing radiation2. These features make ectoine a valuable compound for cosmetics and medical devices. H. elongata was originally isolated from a solar salt facility, where it thrives under high salt concentrations. It was found that marine prokaryotes, which are exposed to high oxidative stress in their environment, vary glycolytic strategies5. A variation in the use of the glucose metabolic pathways is also assumed for H. elongata. T2 - Association for General and Applied Microbiology CY - Wolfsburg, Germany DA - 15.04.2018 KW - Halomonas CRISPR Ectoine PY - 2018 AN - OPUS4-46081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Steger, Simon A1 - Bonnerot, Olivier A1 - Hahn, Oliver A1 - Buzi, P. A1 - Rabin, Ira T1 - Understanding the technological evolution of writing materials. Scientific systematic study of inks from Coptic manuscripts N2 - While studying the socio-geographic history of inks, division 4.5 of the BAM (Bundesanstalt für Materialforschung und Prüfung) together with the Centre for the Study of Manuscript Cultures in Hamburg has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink and a subsequent in-depth analysis using several spectroscopic techniques: XRF, FTIR, and Raman. In most cases, we can obtain satisfactory results using a non-invasive protocol. However, mixed inks that contain no metals evade such a protocol. These inks constitute a heterogeneous group of media used especially in the Middle East and the Islamicate world since at least the 10th century; they are characterized by blending carbon ink and tannins, with or without the addition of vitriol. Our own research aims primarily at recreating a socio-geographic history of inks, parchment, and papyrus and includes the comparative analysis of the writing materials of the Dead Sea Scrolls, ink and papyrus in Ancient and Hellenistic Egypt, and inks in documents from various contemporary medieval communities in Fustat (first nucleus of Cairo). During many years of study, we concluded that the continuous production of Coptic manuscripts from late Antiquity to the Middle Ages offers a unique opportunity for historical study of the ink in a large geographic area. Thanks to the collaboration with the ERC project “PAThs” (www.paths.uniroma1.it), based at the University of Rome La Sapienza, and within the activities of a PhD research dedicated to this topic, we therefore created a new branch of our project focused entirely on the analysis of Coptic inks, pigments, and dyes. This pioneering systematic study of writing materials coming from a specific area and time frame (5th-10th century) aims not only at a better understanding of the complex Coptic multicultural and plurilingual society, but also and mainly at clarifying the links among the Coptic and other societies between the ancient and medieval eras. Finally, it will cast light on the history of the technological development of inks in the eastern world, from Antiquity to the middle ages. T2 - Konferenz: Scientific Methods in Cultural Heritage Research, Gordon Research Conference CY - Castelldefels, Spain DA - 22.07.2018 KW - Coptic KW - Ink KW - Manuscript PY - 2018 AN - OPUS4-46024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwibbert, Karin A1 - Menzel, Friederike T1 - Bacterial Adhesion on Different Materials N2 - Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial adhesion. We present a flow chamber system to test and quantify bacterial adhesion on materials that are part of antifouling concepts. The adhesion process is standardized and can be adapted to different bacteria in subaquatic of subaerial environments. It is combined with a standardized evaluation procedure based on statistical evidence. T2 - AMiCI Workshop Berlin CY - BAM Berlin, Germany DA - 07.06.2018 KW - Bacterial adhesion KW - Flow chamber system KW - Biofilm formation KW - Standardized test and quantification procedure PY - 2018 AN - OPUS4-46374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Widdel, F. T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - EMBO-Workshop CY - Vienna, Austria DA - 02.08.2018 KW - Methanogens KW - MIC KW - Corrosion KW - Environmental Simulation PY - 2018 AN - OPUS4-46396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Widdel, F. T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - ISME CY - Leipzig, Germany DA - 12.08.2018 KW - Methanogens KW - MIC KW - Corrosion KW - Environmental Simulation PY - 2018 AN - OPUS4-46397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank T1 - Selection of Resistance in Bacterial Biofilms Grown on Antimicrobial Surfaces in a Multidrug Environment N2 - Background Bacterial biofilms are regarded as the most common cause of chronic infections and are often associated with medical devices, such as implants and catheters. Bacteria growing in biofilms produce a protective, extracellular matrix, which enables them to tolerate much higher antimicrobial concentrations than free-living bacteria and survive long enough to acquire antimicrobial resistance. Preventive and therapeutic strategies against biofilm infections in clinical settings commonly involve the application of multiple antimicrobials: biocidal coatings on the biomaterials and systemically administered antibiotics. This frequent practice harbors the risk of the development of cross-resistance via shared resistance mechanisms between antimicrobials used in material coatings and administered antibiotics. Aim Our goal is to determine how bacteria adapt to antimicrobials during biofilm formation on surfaces coated with antimicrobials, how antimicrobial resistance mutations are acquired and evolve within mature biofilms, and how population dynamics within biofilms affect the transmission of resistance mutations. Specifically, we want to identify antimicrobial-antibiotic-combinations that select for and against antibiotic resistance in biofilms by following the population dynamics of resistant and susceptible strains in competition assays. Methodology We will grow biofilms of Pseudomonas aeruginosa on glass surfaces with and without antimicrobial coatings and expose them to antibiotics. Then we will track their physiological properties, evolutionary adaptations, and population dynamics. First, we will screen in vitro for combinations of antibiotics and antimicrobials that select for and against antibiotic resistance. Second, effective combinations will be chosen for in-depth investigations during bacterial adhesion and of mature biofilms of resistant and susceptible genotypes. Third, based on the outcome of the screen and the obtained mechanistic understanding we will choose a clinical example in which we study the relevance of our findings in biofilms grown in vivo. Relevance Studying the biointerfacial interactions between bacterial biofilms and medical devices in terms of population dynamics as well as on single cell level during multidrug selection will help us understand how drug resistance develops and spreads in persistent biofilm infections. Based on our findings we aim to provide clinical recommendations for improved administration of antibiotics/antimicrobials in combination with medical device materials in order to mitigate against biofilm associated antimicrobial resistance. T2 - Challenges and New Concepts in Antibiotic Research CY - Paris, France DA - 19.03.2018 KW - Resistance KW - Antimicrobials PY - 2018 AN - OPUS4-46398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Depth-dependent analysis of model biofilms by combining laboratory- and synchrotron-based X-ray photoelectron spectroscopy N2 - Synchrotron XPS in the soft-X-ray regime is suitable for the detection of light elements commonly found in biological samples. Various model systems of biofilms have been developed and characterised at synchrotron- and lab-based facilities. By obtaining the chemical composition at various information depths, the vertical distribution of iodine in an artificial biofilm have been determined. T2 - Tenth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Biofilms KW - HAXPES KW - XPS KW - Iodine KW - Synchrotron-XPS PY - 2018 AN - OPUS4-46929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -