TY - CONF A1 - Nordholt, Niclas A1 - Gustiherdini, Cahyaruri A1 - Lewerenz, Dominique A1 - Kanaris, Orestis A1 - Schreiber, Frank T1 - The disinfectant glutaraldehyde induces antibiotic tolerance N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Gordon Research Conference - Molecular Mechanisms in Evolution CY - Easton, Massachusetts, United States DA - 25.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics PY - 2023 AN - OPUS4-58033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pietsch, Franziska A1 - Schreiber, Frank A1 - Heidrich, Gabriele T1 - Selection of resistance in bacterial biofilms grown on antimicrobial surfaces in a multidrug environment N2 - Introduction: Biofilms are regarded as a common cause of chronic infections on medical devices. Preventive and therapeutic strategies against biofilm infections commonly involve applications of multiple antimicrobial substances: antimicrobial coatings on the implanted biomaterials in combination with systemically administered antibiotics. While this practice of combination therapy harbours the risk of developing cross-resistance, it might also provide the possibility to implement specific antimicrobial-antibiotic combinations (AACs) that can slow down the selection of antibiotic resistant strains. Hypothesis and aims: Specific AACs can exert combinatorial effects on the growth of susceptible and antibiotic-resistant Pseudomonas aeruginosa that either suppress or increase their individual effects. Our aim is to identify AACs with antagonistic or synergistic effects on pseudomonal biofilms and to understand their impact on selection of resistant strains. Specifically, we want to identify AACs that select for and against antibiotic resistance during biofilm formation. Methodology: We screened for AACs that cause antagonistic or synergistic effects on planktonic P. aeruginosa. To study the effect of antimicrobial-antibiotic exposure on resistance selection in bacterial biofilms, we will grow resistant and sensitive strains on PDMS surfaces with and without antimicrobial coatings and expose them to antibiotics. Results: Several combinations with synergistic or antagonistic interaction on the growth rate of P. aeruginosa were detected. We observed a strong antagonism when combining the antimicrobial substance chlorhexidine with the carbapenem drug meropenem. A meropenem-resistant mutant showed a selection advantage in low concentrations of chlorhexidine combined with a sub-inhibitory concentration of meropenem over the wild-type. No antagonistic effect was observed for the same combination when E. coli was exposed to chlorhexidine and meropenem, suggesting a non-chemical basis for the observed effect on P. aeruginosa. Conclusion: Gaining a better understanding about resistance selection during biofilm formation on biomedical surfaces will enable us to mitigate against biofilm-associated antimicrobial resistance. T2 - Eurobiofilms 2019 CY - Glasgow, UK DA - 03.09.2019 KW - Resistance KW - Antibiotics KW - Pseudomonas PY - 2019 AN - OPUS4-49168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -