TY - JOUR A1 - Sanchez-Martin, Pedro A1 - Becker, Roland A1 - Toepel, J. A1 - Gorbushina, Anna T1 - An improved test for the evaluation of hydrocarbon degradation capacities of diesel-contaminating microorganisms N2 - The development of a test to evaluate the degradation of semi-volatile fuels as diesel by microorganisms is presented. This method is based on the principles described in the CEC-L-103 Standard procedure that is exclusively meant for testing the biodegradability of non-volatile lubricants. Therefore, significant modifications involve aseptic conditions for testing specific microorganisms and conducting the test in closed vessels avoiding evaporation losses, while fuel quantification using gas chromatography-flame ionization detection (GC-FID) is retained. It is suggested that the modified procedure should enable routine application for semi-volatile hydrocarbon-based fuels. GC-FID provides additionally valuable information on the alteration of fuel component patterns during biodegradation. The procedure was successfully tested using two bacteria (Pseudomonas aeruginosa and Sphingomonas sp.) and two yeasts (Moesziomyces sp. and Candida sp.) isolated from real diesel contamination cases. All tested microorganisms caused a significant degradation of diesel fuel achieving hydrocarbon degradation percentages ranging from 23% to 35%. Specific aspects on the test modification and prospects for further modification regarding targeted investigations in the field of fuel contamination by microorganisms are briefly discussed. KW - Biofouling KW - Bacteria KW - Fungi KW - CEC-L-103 KW - GC-FID KW - Reference organisms PY - 2018 U6 - https://doi.org/10.1016/j.ibiod.2018.01.009 SN - 0964-8305 VL - 129 SP - 89 EP - 94 PB - Elsevier AN - OPUS4-44524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Oliver A1 - Knabe, Nicole A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - An advanced genetic toolkit for exploring the biology of the rock‑inhabiting black fungus Knufia petricola N2 - Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast-like growth and constitutive melanin formation. They dominate a range of hostile natural and man-made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. A cell biological approach was taken by generating K. petricola strains expressing green or red fluorescent protein variants. By applying: (1) traditional gene replacement; (2) gene editing and replacement via plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9, and (3) silencing by RNA interference (RNAi), we constructed mutants in the pathways leading to melanin, carotenoids, uracil and adenine. Stable single and double mutants were generated with homologous recombination (HR) rates up to 100%. Efficient, partially cloning-free strategies to mutate multiple genes with or without resistance cassettes were developed. This state-of-the-art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi. KW - Subaerial biofilms KW - Biodeterioration KW - Fluorescent microscopy KW - CRISPR/Cas9 KW - RNA interference PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-518601 VL - 10 IS - 1 SP - 22021 PB - Springer Nature AN - OPUS4-51860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A genetic toolbox for exploring the life style of the rock-inhabiting black fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence of the strain A95 is paving the way for studying interactions of K. petricola with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - black fungi KW - genomics KW - genetics PY - 2020 AN - OPUS4-50593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A Genetic Toolbox for Exploring the Life Style of the Rock-inhabiting Black Fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish sub-aerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of black yeasts such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis. For this environmental strain we developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence is paving the way for studying interactions of K. petricola and other black yeasts with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - VAAM symposium 'Molecular Biology of Fungi' CY - Göttingen, Germany DA - 19.09.2019 KW - Knufia petricola KW - Rock-inhabiting fungus KW - Genetics KW - Crispr-Cas9 PY - 2019 AN - OPUS4-49634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -