TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, D. A1 - Kargl, F. A1 - Adam, Christian T1 - Formation and chemical stabilisation of tricalcium-silicate during solidification from the melt of post-treated metallurgical slags N2 - Tricalcium-silicate (C3S) or Alite is the most important mineral in Portland cement. Since pure tricalcium-silicate is only stable above temperatures of 1250 °C, its decomposition has to be prevented technically by fast cooling after the sintering process. At room temperature, the decomposition velocity is very slow so that metastable tricalcium-silicate is obtained. Although the mechanisms of clinker phase formation during burning process of Portland cement in a rotary kiln were solved and improved over the years, in view of possible economic and ecological benefits current projects aim to produce clinker phases from metallurgical slags. Recent studies discovered that the mineral phase which remained after a reducing treatment and separation of formed metallic iron from molten Linz-Donawitz (LD-) slags contained about 60 wt.% Alite despite it was cooled slowly. Because the results could be verified using slags from different origins and varying cooling velocities a chemical stabilisation of the Alite can be assumed. First tests in mortars indicate that workability, hardening and solid state properties are comparable with an ordinary Portland cement. An application of the observed phenomenon in cement production requires enhanced knowledge about formation and stabilisation conditions of Alite during crystallisation from melts in contrast to the sintering reactions in conventional Portland cement production. Therefore, this study focuses on the stabilisation mechanisms of Alite in consolidating melts. Samples from different melting experiments are analysed to determine stabilising factors. T2 - 15th International Congress on the Chemistry of Cement CY - Prag, Czech Republic DA - 16.09.2019 KW - Tricalcium-silicate KW - Portland Cement KW - Alite KW - Steelmaking slag PY - 2019 SP - Paper 492, 1 EP - 10 AN - OPUS4-49050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, D. A1 - Adam, Christian T1 - Formation of tricalciumsilicate from post-treated metallurgical slags N2 - LD-slags differ from Ordinary Portland Cement (OPC) mainly in a higher content of iron oxides and a low content of Tricalciumsilicate (Alite). In the context of an improved resource usage, a procedure to convert LDslags into cement clinker was investigated. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Tricalcium-silicate KW - Portland Cement KW - Alite KW - Steelmaking slag PY - 2019 AN - OPUS4-49591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Stephan, D. A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit T1 - Production of a hydraulic material from post-treated steelmaking slags N2 - Steelmaking slag is a by-product of steel production of which 4.5 Mt were produced in 2020 in Germany alone. It is mainly used in road construction, earthwork and hydraulic engineering. A smaller part is returned to the metallurgical circle, used as fertilizer or landfilled. With this use, iron oxides still contained in steelmaking slag are lost. In addition, the possibility of producing higher-grade products from steelmaking slag is foregone. In recent decades, many researchers have investigated the production of Portland cement clinker and crude iron from basic oxygen furnace slags (BOFS) via a reductive treatment. Carbothermal treatment of liquid BOFS causes a reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density. Simultaneously, the chemical composition of the reduced slag is adapted to that of the Portland cement clinker. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as a reducing agent. The resulting low-iron mineral product had a similar chemical composition to Portland cement clinker and was rich in the tricalcium silicate solid solution alite (Ca3SiO5). Based on its chemical and mineralogical composition, similar to that of Portland cement clinker, the reduced BOFS has the potential to react comparably. In our study, the reduced BOFS produced less heat of hydration compared to OPC and its hydraulic reaction was delayed. However, adding gypsum has been shown to accelerate the hydration rate of the reduced BOFS compared to that known from the calcium silicates of Portland cement clinker. Further research to improve the hydraulic properties of the reduced slag is essential. If successful, producing a hydraulic binder and crude iron from BOFS could have economic and ecological benefits for both the cement and steel industry. T2 - 16th International Congress on the Chemistry of Cement ICCC 2023 CY - Bangkok, Thailand DA - 18.09.2023 KW - Steelmaking slag KW - Alite hydraulic reactivity KW - Clinker substitute PY - 2023 AN - OPUS4-58522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF ED - Schraut, Katharina ED - Adamczyk, Burkart ED - Adam, Christian ED - Stephan, D. ED - Simon, Sebastian ED - von Werder, Julia ED - Meng, Birgit T1 - Production of a hydraulic material from post treated steelmaking slags N2 - Steelmaking slag is a by-product of steel production, of which 4.5 Mt were produced in 2020 in Germany alone. It is mainly used in road construction, earthwork and hydraulic engineering. A smaller part is returned to the metallurgical cycle, used as fertiliser or landfilled. With this use, iron oxides still contained in steelmaking slag are lost. In addition, the possibility of producing higher-grade products from steelmaking slag is foregone. In recent decades, many researchers have investigated the production of Portland cement clinker and crude iron from basic oxygen furnace slags (BOFS) via a reductive treatment. Carbothermal treatment of liquid BOFS causes a reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density. Simultaneously, the chemical composition of the reduced slag is adapted to that of Portland cement clinker. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as a reducing agent. The resulting low-iron mineral product has a similar chemical composition to Portland cement clinker and was rich in the tricalcium silicate solid solution alite (Ca3SiO5). Based on its chemical and mineralogical composition, similar to that of Portland cement clinker, the reduced BOFS has the potential to react comparably. In our study, the reduced BOFS produced less hydration heat than OPC, and its hydraulic reaction was delayed. However, adding gypsum has shown to accelerate the hydration rate of the reduced BOFS compared to that known from the calcium silicates of Portland cement clinker. Further research to improve the hydraulic properties of the reduced slag is essential. If successful, producing a hydraulic binder and crude iron from BOFS has economic and ecological benefits for both the cement and steel industries. T2 - The 16th International Congress on the Chemistry of Cement 2023 (ICCC2023) CY - Bangkok, Thailand DA - 18.09.2023 KW - Steelmaking slag KW - Alite KW - Clinker substitute KW - Hydraulic reactivity PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-590522 UR - https://www.iccc-online.org/archive/ SP - 432 EP - 436 CY - Bangkok AN - OPUS4-59052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -