TY - CONF A1 - Steger, Simon A1 - Stege, Heike A1 - Hahn, Oliver T1 - In-situ spectroscopic analysis of modern reverse paintings on glass (1905-1955) N2 - The technique of painting on the reverse side of a glass panel was rediscovered by German artists at the beginning of the 20th century. In contrast to other paint techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession starting with the foremost paint layer and ending with the primer (backmost layer). The paintings are viewed in reflected light, thus revealing an impressive gloss, luminosity and depth of colour. The artist group “Der Blaue Reiter” (the Blue Rider) around W. Kandinsky and F. Marc got in touch with this technique in the summers of 1908 and 1909 and spread their knowledge in different regions. Our pioneering project is tracing this transfer of knowledge by a multidisciplinary approach in terms of art history, painting technology and material science. More than 100 artists and >1000 reverse paintings on glass (1905-1955) were identified during the project. This numbers clearly point out that this technique was by far more important for modern art than previously assumed. In-situ, non-invasive measurements (XRF, Raman, VIS, DRIFTS) on a well-considered selection of 67 paintings reveal the broad palette of colorants ranging from traditional to experimental materials. Special attention is paid on artists who are strongly connected to Berlin. Demonstrative examples by W. Dexel, G. Muche and L. Hildebrandt are used to discuss analytical challenges and highlights. T2 - Young Researchers in Archaeometry (YRA) 2nd Workshop CY - Berlin, Germany DA - 23.09.2018 KW - Raman spectroscopy KW - DRIFTS KW - Reverse glass painting PY - 2018 AN - OPUS4-46066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroj, S. A1 - Schwibbert, Karin A1 - Kasemann, S. A1 - Domke, M. T1 - Laser-generated high wetting contrast surfaces for microbiological applications N2 - We demonstrate a 2D platform based on high contrast wetting patterns suitable for miniaturized microbiological assays. In principal, superhydrophilic spots are surrounded by a superhydrophobic surface area. The special structure of the superhydrophilic functional surface ensures that liquids, e.g. bacterial suspensions or biocide solutions, spread immediately and evenly on this surface without passing the wetting boundary. This feature allows a homogenous distribution of bacteria or chemical substances on well defined lateral dimensions. The superhydrophilic spots may also serve as substrate for bacterial biofilms. Due to the high wetting contrast and the fabrication process, it is possible to minimize the test areas as well as their distance to each other. We demonstrate the fabrication process of the high wetting contrast platform and also present a microbiological assay as an application example. Advantages of this platform are the use of low volumes and its potential of automated analysis. T2 - Biointerfaces International Conference CY - Zürich, Austria DA - 14.08.2018 KW - Biofilm KW - Bacterial growth KW - Laser structuring KW - Superhydrophobic surface KW - Superhydrophilic surface PY - 2018 AN - OPUS4-45863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Syc, M. A1 - Simon, Franz-Georg A1 - Biganzoli, L. A1 - Grosso, M. A1 - Hyks, J. ED - Holm, O. ED - Thome-Kozmiensky, E. T1 - Resource recovery from incineration bottom ash: Basics, concepts, principles T2 - Removal, Treatment and Utilisation of Waste Incineration Bottom Ash N2 - Waste-to-energy (WtE) is one of the leading technologies for municipal solid waste (MSW) treatment in Europe. According to Eurostat data, in 2015, 27 % of MSW was utilized in WtE plants, which represents more than 80 million tons per year. Therefore, the European annual production of incineration bottom ash (IBA) is about 20 million tons, as it is about 25 wt% of input MSW. In the European List of Waste, IBA is listed as mirror entry (i.e. waste materials which should be classified as either non-hazardous or hazardous, depending on its hazardous properties and/or content of hazardous substances) under codes 19 01 11 and 19 01 12. Recent trends indicate that WtE allows, apart from utilization of the energy content of waste, also the recovery of various valuable components. Hence, WtE can be included in the key technologies that can put the circular economy concept into practice. Secondary raw materials in the case of WtE are solid residues, especially IBA, as it is a secondary source, particularly of ferrous metals (Fe) and non-ferrous metals (NF) and glass. Moreover, the residual mineral fraction can be used for various applications in the construction industry, i.e. as aggregates substitute for bound or unbound applications, in cement manufacturing or, as indicated by recent research, also in more sophisticated applications, e.g. for ceramics production. Recovery of these metals can also cause huge greenhouse gas savings. Alone in Europe, metal recovery from IBA reduces greenhouse gas emissions by approximately 3.2 million tonnes of CO2 equivalent. KW - Bottom ash KW - Recovery PY - 2018 SN - 978-3-944310-44-2 VL - 1 SP - 1 EP - 10 PB - Thomé-Kozmiensky Verlag GmbH CY - Neuruppin ET - 1 AN - OPUS4-46146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taube, Mareike Carolin A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Schulenburg, F. A1 - Bartmann, U. A1 - Beckmann, T. A1 - Michalik, K. A1 - Reuter, M. A1 - Stelter, M. T1 - Optimisation of a Pyrometallurgical Niobium and Tantalum Recyling Process with on-line-LIBS N2 - Tantalum and niobium are essential for the development of electronics towards a more and more compact design, but without reducing their performance today. Especially in smart phones and tablets, tantalum and niobium capacitors with high charge densities have already become almost indispensable. However, tantalum as a critical raw material is still a problem for the sustainable production of electronics. Due to this fact, the existence of efficient recycling processes especially in Europe is becoming even more important nowadays. The Bundesanstalt für Materialforschung und -prüfung (BAM) is currently working on the optimisation of an existing pyrometallurgical tantalum recycling process. Optimisation of this industrial process is carried out in a small-scale electric arc furnace (480 kVA, capacity approx. 150 kg/h) at BAM using a new and innovative equipment for on-line analysis of high temperature processes. The aim of this project is to identify the best timing for an optimum slag tapping, when the slag is lower than minimum targeted tantalum concentration. Hence, LIBS (Laser induced breakdown spectroscopy) is used to identify the chemical composition of the slag layer and during slag tapping. The on-line-LIBS prototype of BAM enables an in-situ measurement of the element distribution in the melt after calibration on the slag system. First results of this joint research project will be presented including on-line-LIBS-measurements and thermodynamic and kinetic aspects of the process. T2 - European Mineral Processing & Recycling Congress (EMPRC 2018) CY - Essen, Germany DA - 25.06.2018 KW - Laser-induced breakdown spectroscopy KW - Process control KW - Tantalum KW - In-situ analysis KW - Pyrometallurgy PY - 2018 AN - OPUS4-45614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taube, Mareike Carolin A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Schulenburg, F. A1 - Bartmann, U. A1 - Beckmann, T. A1 - Michalik, K. A1 - Reuter, M. A1 - Stelter, M. T1 - Optimisation of a Pyrometallurgical Niobium and Tantalum Recyling Process with on-line-LIBS T2 - Proceedings / EMPRC 2018, European Mineral Processing & Recycling Congress N2 - Tantalum and niobium are essential for the development of electronics towards a more and more compact design, but without reducing their performance today. Especially in smart phones and tablets, tantalum and niobium capacitors with high charge densities have already become almost indispensable. However, tantalum as a critical raw material is still a problem for the sustainable production of electronics. Due to this fact, the existence of efficient recycling processes especially in Europe is becoming even more important nowadays. The Bundesanstalt für Materialforschung und -prüfung (BAM) is currently working on the optimisation of an existing pyrometallurgical tantalum recycling process. Optimisation of this industrial process is carried out in a small-scale electric arc furnace (480 kVA, capacity approx. 150 kg/h) at BAM using a new and innovative equipment for on-line analysis of high temperature processes. The aim of this project is to identify the best timing for an optimum slag tapping, when the slag is lower than minimum targeted tantalum concentration. Hence, LIBS (Laser induced breakdown spectroscopy) is used to identify the chemical composition of the slag layer and during slag tapping. The on-line-LIBS prototype of BAM enables an in-situ measurement of the element distribution in the melt after calibration on the slag system. First results of this joint research project will be presented including LIBS-measurements and thermodynamic and kinetic aspects of the process. T2 - European Mineral Processing & Recycling Congress (EMPRC 2018) CY - Essen, Germany DA - 25.06.2018 KW - Laser-induced breakdown spectroscopy KW - On-line analysis KW - Tantalum KW - Niobium KW - Pyrometallurgy PY - 2018 SN - 978-3-940276-84-1 SP - 347 EP - 362 PB - GDMB Verlag GmbH CY - Clausthal-Zellerfeld AN - OPUS4-47040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi JF - ACS Applied Nano Materials N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vandrich, Jasmina A1 - Alfaro Espinoza, Gabriela A1 - Kunte, Hans-Jörg T1 - Tampering with ectoine production and excretion in Halomonas elongata using CRISPRi and gene knock-outs N2 - The halophilic bacterium Halomonas elongata can tolerate salt concentrations above 10% NaCl and uses the accumulation of the compatible solute ectoine as a major osmoregulatory mechanism. Ectoine can be accumalted inside the cell through import from the medium or de novo synthesis and establishes an osmotic equilibrium with the surrounding1. Ectoine also protects proteins from the effects of freezing, drying and high temperatures4 and DNA from ionizing radiation2. These features make ectoine a valuable compound for cosmetics and medical devices. H. elongata was originally isolated from a solar salt facility, where it thrives under high salt concentrations. It was found that marine prokaryotes, which are exposed to high oxidative stress in their environment, vary glycolytic strategies5. A variation in the use of the glucose metabolic pathways is also assumed for H. elongata. T2 - International Society for Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Halomonas CRISPR Ectoine PY - 2018 AN - OPUS4-46080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vandrich, Jasmina A1 - Alfaro Espinoza, Gabriela A1 - Kunte, Hans-Jörg T1 - Establishing CRISPRi in Halomonas elongata to uncover metabolic pathways N2 - The halophilic bacterium Halomonas elongata can tolerate salt concentrations above 10% NaCl and uses the accumulation of the compatible solute ectoine as a major osmoregulatory mechanism. Ectoine can be accumalted inside the cell through import from the medium or de novo synthesis and establishes an osmotic equilibrium with the surrounding1. Ectoine also protects proteins from the effects of freezing, drying and high temperatures4 and DNA from ionizing radiation2. These features make ectoine a valuable compound for cosmetics and medical devices. H. elongata was originally isolated from a solar salt facility, where it thrives under high salt concentrations. It was found that marine prokaryotes, which are exposed to high oxidative stress in their environment, vary glycolytic strategies5. A variation in the use of the glucose metabolic pathways is also assumed for H. elongata. T2 - Association for General and Applied Microbiology CY - Wolfsburg, Germany DA - 15.04.2018 KW - Halomonas CRISPR Ectoine PY - 2018 AN - OPUS4-46081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Sekine, R. A1 - Steckenmesser, D. A1 - Lombi, E. A1 - Herzel, Hannes A1 - Zuin, L. A1 - Wang, D. A1 - Félix, R. A1 - Adam, Christian T1 - Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils N2 - A wide range of methods are used to estimate the plant-availability of soil phosphorus (P). Published research has shown that the diffusive gradients in thin films (DGT) technique has a superior correlation to plant-available P in soils compared to standard chemical extraction tests. In order to identify the plant-available soil P species, we combined DGT with infrared and P K- and L-edge X-ray adsorption near-edge structure (XANES) spectroscopy. This was achieved by spectroscopically investigating the dried binding layer of DGT devices after soil deployment. All three spectroscopic methods were able to distinguish between different kinds of phosphates (poly-, trimeta-, pyro- and orthophosphate) on the DGT binding layer. However, infrared spectroscopy was most sensitive to distinguish between different types of adsorbed inorganic and organic phosphates. Additionally, also intermediates of the time-resolved hydrolysis of trimetaphosphate in soil could be analyzed. Furthermore, infrared and XANES microspectroscopy make it also possible to analyze P compounds on the binding layer with a lateral resolution down to 1 µm2. Therefore, P species of a spatial soil segment (e.g. rhizosphere) can be mapped and analyzed. T2 - Phosphorus in Soil and Plants (PSP6) CY - Leuven, Belgium DA - 10.09.2018 KW - Soil P species KW - Spectroscopy KW - DGT PY - 2018 AN - OPUS4-45961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Adam, Christian A1 - Kugler, Stefan A1 - Herzel, Hannes T1 - Phosphorus recovery from waste streams for fertilizer production N2 - Phosphorus (P) plays an essential role in the global food security. However, the global P reservoirs have a statistic lifetime of about 385 years only. Due to the scarcity of P and the increasing world population an efficient and sustainable recycling management is required. A few biogenic waste materials are high in P contents such as sewage sludge and meat and bone meal. Thus, they are suitable for P recycling and fertilizer production. But besides the high P content sewage sludge is often highly contaminated with organic pollutants and toxic heavy metals which have to be eliminated before agricultural field application. In this presentation we show the potential of sewage sludge as secondary resource for fertilizers. This includes our developments in thermochemical processes for the production of novel P-fertilizers from recycled materials. Furthermore, for these novel P-fertilizers common extraction tests to determine the plant-available P are often unusable. Therefore, we successfully applied the Diffusive gradients in thin-films (DGT) techniques to analyse the plant-availability of P-fertilizers from recycled materials. T2 - Eingeladener Vortrag an der University of South Australia CY - Mawson Lakes, Australia DA - 22.11.2018 KW - Phosphorus recovery KW - Sewage sludge KW - Diffusive Gradients in thin films (DGT) PY - 2018 AN - OPUS4-46764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin A1 - Adam, Christian T1 - Advantages of recycling gypsum plasterboards N2 - During the last decades the material composition of buildings has become increasingly diverse. However, largely sorted material flows are needed for generating high quality secondary building materials. The use of secondary building materials can meet the requirements of sustainability in several ways: the extended time availability of primary raw materials and, thereby, the preservation of natural resources as well as the conservation of landfill sites. Recycling of gypsum (calcium sulfate) can be a good example for the environmental benefits of closed-loop recycling. The content of sulfates in other secondary building materials, in particular in recycled concrete aggregates, should be minimized for quality reasons. In contrast, separated gypsum can also be used in gypsum production if the high quality requirements for the recycled gypsum are met. Since almost all processing steps in the recycling process are associated with environmental impacts, an environmental evaluation of the use of recycled gypsum as a substitute in gypsum production has to be carefully conducted. This paper focusses on the techniques for generating recycled gypsum from gypsum plasterboards, the related quality requirements and a comprehensive environmental evaluation of the complete process. T2 - IV International Conference Progress of Recycling in the Built Environment CY - Lisbon, Portugal DA - 11.10.2018 KW - Environmental evaluation KW - CDW processing KW - Gypsum PY - 2018 AN - OPUS4-48079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Jann, Oliver T1 - Comparison of Formaldehyde Concentrations in Emission Test Chambers Using EN 717-1 and EN 16516 N2 - For many years EN 717-1 (Wood-based panels - Determination of formaldehyde release - Part 1: Formaldehyde emission by the chamber method) is the standard for formaldehyde emission testing of wooden boards. In 2017 EN 16516 (Construction products - Assessment of release of dangerous substances - Determination of emissions into indoor air) was published as a new harmonised standard for the emission testing of construction products. Because test chamber conditions are different, both standards give different concentrations for formaldehyde. For the determination of a conversion factor four test series were set up with different wooden boards. T2 - Conference on Indoor Air CY - Philadelphia, PA, USA DA - 22.07.2018 KW - Loading factor KW - Construction products KW - European standard KW - Air exchange rate PY - 2018 AN - OPUS4-45631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Seeger, Stefan T1 - VOC-Emissions from thermoplastic filaments for 3-D-printing N2 - Summary: A screening test for potential emissions of volatile organic compounds (VOC) was run on different thermoplastic filaments used for 3D printing. The method of direct thermal desorption was used to simulate the high temperatures during the 3D printing process and to identify the main compounds emitted from the filaments. A large number of unexpected compounds were detected that might affect the user’s health and have an impact on indoor air chemistry. Introduction: The use of desktop 3D printers is increasing. Compared to other devices with known emissions, e.g. laser printers, there is still a lack of information on possible emissions of VOC and ultrafine particles during operation and the effect on indoor air quality. Most of the commercially available desktop 3D printers operate with a molten polymer deposition. For this process a solid thermoplastic filament is heated in an extrusion nozzle. Most filaments for desktop 3D printers use either acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) as filament. Alternatives are polyvinyl alcohol (PVA) or polycarbonate (PC). Method: Eight different thermoplastic filaments for 3D printers were analysed by direct thermal desorption followed by GC-MS identification of the emitted substances. Direct thermal desorption was done by desorbing 5 mg of the feedstock for 1 minute at a temperature of 210°C. This is an average temperature for 3D printing with thermoplastic filaments. Results and conclusions: The comparison of the 4 different filament groups showed the highest overall emissions from ABS, followed by PLA, PC and PVA. Filament ABS 2 emitted mainly SVOCs and triphenyl phosphate, the latter has the highest emission for a single compound from all evaluated filaments. Thermoplastic filaments are a new source of VOC emissions due to the high temperatures associated with 3D printing, which can reach up to 270°C. Some of the detected compounds like lactic acid, lactide and bisphenol A have never been described before in the indoor environment. Additionally some of the main substances could not be identified and some others might have the potential to affect the indoor air chemistry. The appearance of some newly detected compounds raises concerns about potential health effects for the users of 3D printers at home. T2 - 20th Conference | Odour and Emissions of Plastic Materials CY - Kassel, Germany DA - 20.03.2018 KW - VOC KW - Emissions KW - 3D printing KW - Thermoplastic filaments PY - 2018 AN - OPUS4-44551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Jann, Oliver T1 - Comparison of Formaldehyde Concentrations in Emission Test Chambers Using EN 717-1 and EN 16516 T2 - Proceedings of Indoor Air Conference 2018 N2 - For more than 25 years EN 717-1 (Wood-based panels - Determination of formaldehyde re-lease - Part 1: Formaldehyde emission by the chamber method) is the standard for formalde-hyde emission testing of wooden boards. In 2017 EN 16516 (Construction products - Assess-ment of release of dangerous substances - Determination of emissions into indoor air) was published as a new harmonised standard for the emission testing of construction products. Because test chamber conditions are different, both standards give different concentrations for formaldehyde. To determine a conversion factor four test series were set up with different wooden boards. For a loading of 1 m²/m³ the conversion factor is 1.6. This means that the formaldehyde concentration measured under the conditions of EN 16516 is a factor of 1.6 higher compared to EN 717-1. T2 - Conference on Indoor Air CY - Philadelphia, PA, USA DA - 22.07.2018 KW - Loading factor KW - European standard KW - Construction products KW - Air exchange rate PY - 2018 SP - paper 627 AN - OPUS4-45630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wurzler, Nina A1 - Kleinbub, Sherin A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem T1 - Effect of conditioning layers on the attachment and biofilm formation of electroactive bacteria on stainless steel N2 - The characteristics of different molecules chosen as representatives for specific functionalities in conditioning layers play an important role on attachment behavior and later biofilm formation of bacteria. The chemical composition is a major component influencing the attachment but there is a conglomerate of influences. T2 - Eurocorr2018 CY - Krakow, Poland DA - 09.09.2018 KW - Conditioning layer KW - Stainless steel KW - Bacterial attachment PY - 2018 AN - OPUS4-46487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wöhlecke, Andreas T1 - Agency perspectives on geomembrane durability, service life and end of life N2 - Die Präsentation erläutert die Hintergründe der nationalen Anforderungen für die Verwendung von Kunststoffdichtungbahnen in Deponieabdichtungen. Die Beständigkeit wird diskutiert. Anforderungen an das Qualitatsmanagement während der Produktion der Produkte und der Bauphase werden aufgezeigt und die Auswirkungen auf die langzeitige Funktionserfüllung werden beschrieben. T2 - IGS TC-B GeoBarrier Workshop CY - Munich, Germany DA - 06.06.2018 KW - Beständigkeit KW - Kunststoffdichtungsbahnen KW - Deponiebau PY - 2018 AN - OPUS4-45123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Wünsch, Christoph A1 - Simon, Franz-Georg ED - Maletz, Roman ED - Dornack, Christina ED - Ziyang, Lou T1 - The reduction of greenhouse gas emissions through the source-separated collection of household waste in Germany T2 - Source Separation and Recycling - Implementation and Benefits for a Circular Economy N2 - The production of secondary materials from waste materials requires, in most cases, significantly lower energy amounts than the primary material production of raw materials. Along with lower energy demand, the greenhouse gas emissions produced are also lower. The duty of a modern waste management system should therefore be to collect and sort the waste materials in a way that the highest amounts of single material fractions with the highest qualities can be generated. In this contribution, the greenhouse gas balances of the theoretical treatment of the household waste, if collected as mixed waste in sanitary landfills, in waste incineration plants, or in mechanical-biological treatment plants, are compared to the existing separate waste collection and treatment in Germany in 2014. The results show that the treatment of the mixed collected household waste in sanitary landfills would lead to a significant release of greenhouse gases. The treatment in MBTs with the recovery of valuables and the further disposal of the biologically stabilized fraction on landfills, as well as the treatment of the high calorific fraction (also called refuse derived fuel – RDF) in RDF plants, coal-fired power plants, or cement kilns, would lead to small amounts of avoided greenhouse gas emissions. The thermal treatment in waste incineration plants would lead to moderate amounts of avoided greenhouse gases. Only with the actually practiced separate collection and treatment of household waste were significant amounts of greenhouse gas emissions avoided. In total, this is approximately 5.5 million tons of carbon dioxide equivalents for approximately 45.5 million tons of separate collected and treated household waste in Germany in 2014. KW - Greenhouse gas accounting KW - Greenhouse gas mitigation KW - Household waste KW - Material recycling KW - Separate collection PY - 2018 SN - 978-3-319-69071-1 DO - https://doi.org/10.1007/698_2017_35 VL - 63 SP - 269 EP - 287 PB - Springer International Publishing CY - Berlin ET - 1 AN - OPUS4-44937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yalçin, M. A1 - Taşçioğlu, C. A1 - Plarre, Rüdiger A1 - Akçay, Ç. A1 - Busweiler, Sabine T1 - Investigation of natural durability of some native and exotic wood species against Hylotrupes bajulus (Cerambycidae) and Anobium punctatum (Anobiidae) JF - Journal of Forestry Faculty of Kastamonu University N2 - Aim of study: In this study, natural durability of some domestic and foreign wood species against Hylotrupes bajulus and Anobium punctatum larvae were tested on laboratory scale Area of study: This study was conducted at Department of Forest Products Engineering in Duzce University, Turkey and Federal Institute for Materials Research and Testing (BAM), Germany. Material and Methods: Scotch pine (Pinus sylvestris), fir (Abies nordmanniana), spruce (Picea orientalis), cedar (Cedrus libani), poplar (Populus tremula) and beech (Fagus orientalis) woods were used to test H. bajulus larvae (EN 46-1). Alder (Alnus glutinosa), oak (Quercus cerris), poplar (Populus tremula), beech (Fagus orientalis), maple (Acer carpinifolium), ash (Fraxinus angustifolia), teak (Tectona grandis), ayous (Triplochiton scleroxylon), movingui (Distemonanthus benthamianus), dahoma (Piptadeniastrum africanum), iroko (Chlorophora excelsa), bubinga (Guibourtia tessmannii) and sapele (Entandrophragma cylindiricum) woods were used for A. punctatum larvae (EN 49-1). At the end of the experiment, the mortality rates of the larvae were determined and the size and weights of the surviving larvae were measured. Main results: F. orientalis and C. libani were found to be the most resistant wood species against H. bajulus larvae while A. nordmanniana was the least resistant. All tropical wood species and oak and maple from domestic wood species showed 100% mortality rate therefore found to be the most resistant against A. punctatum larvae. The most vulnerable wood species was found to be alder with a 35% mortality. Research highlights: while F. orientalis, C. libani, and P. tremula were found the most resistance wood species against H. bajulus, P. sylvestris and A. nordmanniana were determined as most vulnerable. All tropical wood species and two domestic species (Q. cerris and A. carpinifolium) showed the highest mortality rate as 100%. The least durable domestic wood was determined as alder. KW - Hylotrupes bajulus, Anobium punctatum, natural durability, tropical wood, native wood. PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446572 DO - https://doi.org/10.17475/kastorman.311971 SN - 1303-2399 SN - 1309-4181 VL - 18 IS - 1 SP - 83 EP - 91 PB - Kastamonu University CY - Kastamonu AN - OPUS4-44657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -