TY - JOUR A1 - Yalçin, M. A1 - Taşçioğlu, C. A1 - Plarre, Rüdiger A1 - Akçay, Ç. A1 - Busweiler, Sabine T1 - Investigation of natural durability of some native and exotic wood species against Hylotrupes bajulus (Cerambycidae) and Anobium punctatum (Anobiidae) N2 - Aim of study: In this study, natural durability of some domestic and foreign wood species against Hylotrupes bajulus and Anobium punctatum larvae were tested on laboratory scale Area of study: This study was conducted at Department of Forest Products Engineering in Duzce University, Turkey and Federal Institute for Materials Research and Testing (BAM), Germany. Material and Methods: Scotch pine (Pinus sylvestris), fir (Abies nordmanniana), spruce (Picea orientalis), cedar (Cedrus libani), poplar (Populus tremula) and beech (Fagus orientalis) woods were used to test H. bajulus larvae (EN 46-1). Alder (Alnus glutinosa), oak (Quercus cerris), poplar (Populus tremula), beech (Fagus orientalis), maple (Acer carpinifolium), ash (Fraxinus angustifolia), teak (Tectona grandis), ayous (Triplochiton scleroxylon), movingui (Distemonanthus benthamianus), dahoma (Piptadeniastrum africanum), iroko (Chlorophora excelsa), bubinga (Guibourtia tessmannii) and sapele (Entandrophragma cylindiricum) woods were used for A. punctatum larvae (EN 49-1). At the end of the experiment, the mortality rates of the larvae were determined and the size and weights of the surviving larvae were measured. Main results: F. orientalis and C. libani were found to be the most resistant wood species against H. bajulus larvae while A. nordmanniana was the least resistant. All tropical wood species and oak and maple from domestic wood species showed 100% mortality rate therefore found to be the most resistant against A. punctatum larvae. The most vulnerable wood species was found to be alder with a 35% mortality. Research highlights: while F. orientalis, C. libani, and P. tremula were found the most resistance wood species against H. bajulus, P. sylvestris and A. nordmanniana were determined as most vulnerable. All tropical wood species and two domestic species (Q. cerris and A. carpinifolium) showed the highest mortality rate as 100%. The least durable domestic wood was determined as alder. KW - Hylotrupes bajulus, Anobium punctatum, natural durability, tropical wood, native wood. PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446572 DO - https://doi.org/10.17475/kastorman.311971 SN - 1303-2399 SN - 1309-4181 VL - 18 IS - 1 SP - 83 EP - 91 PB - Kastamonu University CY - Kastamonu AN - OPUS4-44657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zubia Aranburu, Judith A1 - Cappella, Brunero A1 - Zabala Eguren, A. A1 - Buruaga Lamarain, L. A1 - Aginagalde Lopez, A. A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Quantification of the adhesion force of E. coli on Ti via single-cell force spectroscopy N2 - Antibiotic resistance is a growing global problem which poses a massive threat to human health. Although human activity contributes to the acceleration of the process, bacteria have a self-driven stabilisation mechanism to protect themselves from such and other external threats: biofilm formation. Nonetheless, it is the adhesion of a single bacterial cell to a surface that triggers the formation of such network of biomolecules and microorganisms, as well as its hazardous consequences. The main objective of this work was to quantify the adhesion force of a single E. coli cell on a Ti substrate via the AFM-related single-cell force spectroscopy, with both the cell and the substrate material being of high clinical relevance. A set of 25 x 25 force displacement curves was acquired with a maximum force of 3.2 nN without dwell time, yielding a topography map and an adhesion force map that showed to be correlated. A mean adhesion force of 0.85 ± 0.175 nN was measured and the presence of cell appendages on the bacterial cell wall was verified through individual force-displacement curves. Bacterial viability was assessed after the measurements via live/dead staining. T2 - XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2022 CY - Valladolid, Spain DA - 23.11.2022 KW - Bacteria KW - Atomic force microscopy KW - Force distance curve PY - 2022 SN - 978-84-09-45972-8 SP - 217 EP - 220 AN - OPUS4-57039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -